<|lI!

TXSeries for Multiplatforms

CICS Intercommunication Guide

Version 6.0

SC34-6644-00

<|lI!

TXSeries for Multiplatforms

CICS Intercommunication Guide

Version 6.0

SC34-6644-00

Note

Before using this information and the product it supports, be sure to read the general information under

First Edition (November 2005)
This edition replaces SC09-4462-04.
Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures.IiX
TablesXi

About thisbook Xxiii

Who should read this book. xiii
Document organization xii
Conventions used in this book. xiv
How to send your commentsXxv

Part 1. Intercommunication planning 1

Chapter 1. Introduction to CICS
intercommunication
Network protocols

Overview of the 1ntercommun1cat10r1 fac111t1es .
IBM CICS Universal Client products

B~ ww W

Chapter 2. Intercommunication planning

and system design . . 5
Designing your network configuration.5
Communicating across TCP/IP connections . 5
Communicating across SNA connections8
Mixing the communications methods.11
Summary of communication methods13
Additional considerations . . B
Ensuring that the system is still secure14
Identifying the remote system 14
Identifying the user that initiated the request . .15
Ensuring data integrity with synchronization
support.16
Converting between EBCDIC and ASCII data .. 019
Performance issues for intercommunication. . . . 19
Choosing which intercommunication facility to
useo ... 20
A checklist of apphcatron requrrements A |
Operational issues for intercommunication22
Bidirectional input and display on AIX22

Part 2. Configuring for
intercommunication 23

Chapter 3. Configuring CICS for TCP/IP 25

Naming your region for a TCP/IP

intercommunication environment 25

Configuring CICS for CICS family TCP/IP support 26
Configuring LD entries for CICS family TCP/IP 27
Adding a service name to the TCP/IP

configuration. . . . 30
Increasing the size of the mbuf pool (AIX only) 30
Tuning TCP/IP on the Windows platform . . . 33

Configuring CD entries for CICS family TCP/IP 34

© Copyright IBM Corp. 1999, 2005

Using SMIT to configure CD entries (AIX only) 39
Configuring an IBM CICS Client to use CICS family
TCcp/P.42

Timeouts supported on TCP / IP connectrons

between a TXSeries for Multiplatforms region

and a Universal Client V3.1 or higher43
CICS family TCP/IP Configuration examples .. .43
CICS OS/2 configuration. . . . L. 44
Configuration for region cicsopen45
Configuration for region cics46

Configuring CICS for CICS PPC TCP/ IP support. . 47
Configuring CD entries for CICS PPC TCP/IP. . 47
Summary of CICS attributes for TCP/IP resource

definitions.54
Configuring for automstallatron of CD entrres . .55
Configuring the default CD entry (CICS on Open

Systems)56

Configuring the default CD entry (CICS for
Windows) . . . A 74
Configuring region database table sizes58
What the supplied version of DFHCCINX does 58
The parameters passed to DFHCCINX59
Writing your own version of DFHCCINX . . . 62
Installing your version of DFHCCINX into the
region65

Chapter 4. Configuring CICS for SNA 67
Naming CICS regions in an SNA

intercommunication environment67
Configuring CICS for local SNA support70
Configuring CICS for local SNA from the
command line75

Configuring CICS for local SNA support by
using the IBM TXSeries Administration Tool

(CICS on Windows platforms only) . . .77
Configuring CICS for local SNA support by
using SMIT (CICS for AIX only)82
SNA Receive Timeout feature (For CICS on AIX
only) . . . 88
Configuring CICS for PPC Gateway server SNA
support. . . . 89
Configuring CICS for PPC Gateway server SNA
support from the command line95

Configuring CICS for PPC Gateway server SNA
support by using the IBM TXSeries

Administration Tool (CICS on Windows

platforms only) 98
Configuring CICS for PPC Gateway server SNA
support by using SMIT (CICS for AIX only) . . 103

Chapter 5. Configuring resources for
intercommunication 109
Configuring transactions for intersystem
communication.109

iii

Transactions over an SNA connection (CICS on

Open Systems only) . . 109
Back-end DTP transactlons over TCP / IP and an
SNA connection . . 109
Configuring for the mdoubt condltlon . . 109
Default modenames . . 110
SNA tuning . 111
Configuring 1ntrapart1t10n TDQs for
intercommunication . 111
Terminals as principal facrhtres . 112
Remote terminals as principal facilities . . 112
Remote systems as principal facilities . 112
Configuring Program Definitions (PD) for DPL . . 112
Example of a PD for DPL . .. 113
Defining remote resources for function shlpplng 113
Defining remote files . . . 113
Defining remote transient data queues . . 114
Defining remote temporary storage queues . 115
Defining resources for transaction routing . . 116
Shipping terminal definitions . . 117
Fully qualified terminal identifiers R V4
Defining terminals to the application—owning
region . . 118
Using the alias for a termmal in the
application-owning region . . 118
Defining remote transactions for transactlon
routing . . 119
Defining remote transactlons for asynchronous
processing . 120
Chapter 6. Configuring intersystem
security 123
Overview of intersystem security . . 123
Implementing intersystem security . . 123
Summary of CICS intersystem security . . 124
Identifying the remote system . . 124
Authenticating systems across CICS famlly TCP/ IP
connections . . . 124
Authenticating systems across CICS PPC TCP / IP
connections . .. 124
Authenticating systems across SNA connectlons 125
Authenticating systems across PPC Gateway server
connections . . . 126
CICS link security . . 126
CICS user security. . 127
Method one:. . 127
Method two: . 129
Setting the RemoteSysSecunty attrrbute to
trusted or verify . 130
Setting up a CICS reglon to flow user IDs . 130
Setting up a CICS region to flow passwords . . 131
Receiving user IDs from SNA-connected
systems . 133
Link security and user securlty compared . 136
How the resource definition security attributes
are used 137
Examples of link and user securlty . . 139
Security and function shipping R 3]
Security requirements for the mirror transaction 141
Outbound security checking for
function-shipping requests . 141

1V TXSeries for Multiplatforms: CICS Intercommunication Guide

The NOTAUTH condition . . 141
EXEC CICS start requests from a remote system 142
Using CRTE and CESN to sign on from a remote
system o142
Intersystem securlty checkhst . 143
When link security or user security is used . 143
When link security is used . . 143
When user security is used . .o . 143
Common conflguratlon problems with mtersystem
security . 144
Remote user is logged in to wrong user ID . 144
User IDs are not flowed to a remote system . . 145
Flowed user IDs are not received from a remote
system . 145
CD RSLKeyMask and TSLKeyMask attnbutes
are ignored . . 145
Unexpected message ERZO45006W no obV1ous
effect on security . S . 145
Access is unexpectedly restrlctlve (message
ERZ045006W) . . 145
Access unexpectedly re]ected or granted on
inbound request . 146
Chapter 7. Data conversion . 147
Introduction to data conversion . . 147
SBCS, DBCS, and MBCS data conversion
considerations . . 148
Numeric data conversion Cons1derat10ns . 149
Summary of data conversion for CICS
intercommunication functions . . 152
Code page support . 153
Data conversion for functlon shlpplng, d1str1buted
program link and asynchronous processing . 156
Which system does the conversion . . 156
How code page information is exchanged . . 157
When TXSeries for Multiplatforms does not
convert the data . 157
Avoiding data conversion . . 158
Standard data conversion for functlon shrppmg,
DPL and asynchronous processing . 159
Non-standard data conversion (DFHUCNV) for
function shipping, DPL and asynchronous
processing . . 160
Data conversion for transactlon rout1ng . 164
When is DFHTRUC called . . 165
Parameters passed to DFHTRUC . . 165
Writing your own version of DFHTRUC . 166
Installing your version of DFHTRUC into the
region . . 168
Data conversion for d1str1buted transactron
processing (DTP) . . 169
Summary of data conversion . . . 169
Data conversion for function shrppmg . 169
Data conversion for transaction routing. . 170
Data conversion for distributed transaction
processing . 171
Part 3. Operating an SNA
intercommunication environment . 173

Chapter 8. Creating and using a PPC
Gateway server in a CICS

environment. .. . 175

Overview of the PPC Gateway server . . 175
Sharing server names between a CICS reglon
and a PPC Gateway server . . 177
Process for making an intersystem request from
a CICS region through a PPC Gateway server . 178
Process for making an intersystem request to a
CICS region through a PPC Gateway server . . 179
Exchange log names (XLN) process . . 180

Choosing a management method . . 181

Using the CICS control program (cicscp)

configuration tool to manage a PPC Gateway

server . . 182
Creating a PPC Gateway server . 182
Starting a PPC Gateway server . 183
Stopping a PPC Gateway server . . 184
Destroying a PPC Gateway server . 184

Using CICS commands to manage a PPC Gateway

server . o . 184
Creating a PPC Gateway server . 184
Starting a PPC Gateway server . 186
Stopping a PPC Gateway server . . 187
Destroying a PPC Gateway server . 188
Changing the attributes of a PPC Gateway
server . . 188
Listing the PPC Gateway servers defmed on a
machine . . 188
Viewing the attrlbutes of a PPC Gateway server 188
Listing the PPC Gateway servers running on a
machine . .. 189
Releasing the lock of a PPC Gateway server . . 189

Using the IBM TXSeries Administration Tool to

manage a PPC Gateway server .o . 190
Creating a PPC Gateway server . 190
Starting a PPC Gateway server . 191
Stopping a PPC Gateway server . . . 193
Modifying the attributes of a PPC Gateway
server . .o . 193
Destroying a PPC Gateway server . 194

Using SMIT to manage a PPC Gateway server . 195
Creating a PPC Gateway server . . 195
Starting a PPC Gateway server . 197
Stopping a PPC Gateway server . . 198
Viewing and changing the attributes of a PPC
Gateway server. . 199
Destroying a PPC Gateway server . 200

Using ppcadmin commands . . 200
Viewing CICS configuration in the PPC
Gateway server. . 203
Viewing XLN process status in the PPC
Gateway server. . . 204
Requesting the XLN process w1th a remote SNA
system . 205
Viewing pendmg resynchromzatrons in the PPC
Gateway server. .. 206
Canceling pending resynchromzatlons in the
PPC Gateway server . . 206

Viewing intersystem requests running in the

PPC Gateway server 207
Viewing LUWs in the PPC Gateway server . . 208
Changing CICS intercommunication definitions for
use with a PPC Gateway server210

Chapter 9. Intersystem problem
determination 213

Intersystem problem solving process213
Step 1. Understand the failure scenario. . . . 213
Step 2. Identify the failing component 214
Step 3. Fix the problem215
Getting further help215

Common intercommunication errors. . . . 216

Symptom: cannot start (acquire) SNA sessions 216
Symptom: the PPC Gateway server fails to start 217
Symptom: CICS will not configure the PPC

Gateway server. 217
Symptom: CICS will not conflgure my

transactions in the PPC Gateway server . . . 217
Symptom: CICS cannot configure the PPC

Gateway server. 218
Symptom: CICS for MVS / ESA transactlons

abend AXEX. 219
Symptom: SNA exchange log names (XLN) falls 219
Symptom: all inbound requests fail 220
Symptom: all outbound requests fail 220
Symptom: invalid or unrecognizable data is

passed to applications 221
Symptom: applications fail because of securlty
violations. . . o221

Symptom: Transactlon routmg to CICS
Transaction Server for z/OS fail with

communications error 15a00007/a0000100 . . . 221

Symptom: Transaction routing causes screen

errors . . . 222

Symptom: CICS falls to detect a predefmed CD

entry, and autoinstalls another. 222
SNA product-specific errors223
CICS error codes 223
PPC Gateway server problem determmatlon ... 228

Format of PPC Gateway server messages and

trace 0228

Tracing a PPC Gateway server.230

PPC Gateway server message descrlptlons ..232

Part 4. Writing application
programs for intercommunication . 245

Chapter 10. Distributed program link

(DPL). .. Y'Y 4
Comparmg DPL to functlon shlppmg R . 247
BDAM files, and IMS, DL/I, and SQL databases 248
Performance optimization for DPL 248
Restrictions on application programs that use DPL 249
Securityand DPL250
Abends when using DPL 251
Taking sync points when using DPL or functlon

shipping25

Contents V

Multiple DPL links to the same region 251
Two ways to implement DPL in your application
program 0252

Implicitly spec1fymg the remote system ... 252

Explicitly specifying the remote system. . . . 252
Using the dynamic distributed program link user
exit. 02582

Information passed to the user ex1t253

Initial invocation of the user exit. 253

Changing the target CICS system. 254

Changing the remote program name 255

Changing the mirror transaction name 255

Changing the user ID 255

Invoking the user exit at end of routed program 255

Chapter 11. Function shipping 257

How to use function shipping.257
Two ways to use function shipping 257
Serial connections.257
CICS file control datasets258
Transientdata258
Local and remote names.258
Synchronization258
Data security and 1ntegr1ty Lo . . 258

Application programming for function shlppmg 259
File control259
Temporary storage260
Transientdata260
Exceptional conditions260

Chapter 12. Transaction routing . . . 263

Initiating a transaction from a terminal. 263
The initiating terminal 263
The initiated transaction. . . . 263

Application programming for transactlon routmg 264
Pseudo-conversational transactions 264

The terminal in the application-owning region 264
Using the assign command in the

application-owning region265
Automatic transaction initiation (ATI) 266
Terminal definitions for ATT 266
Transaction definitions for ATI 266
Indirect links for transaction routing. 266
Dynamic transaction routing 267

Writing a dynamic transaction routmg user ex1t 268

Chapter 13. Asynchronous processmg 273

Security considerations . . . o . 273
How to use asynchronous processmg 278
Two ways to initiate asynchronous processing 273
Starting and canceling remote transactions . . 274
The started transaction 276
Application programming for asynchronous
processing . . .o 277
Starting a transact1on ona remote reglon .o 277
Exceptional conditions for the EXEC CICS
START command 277
Retrieving data associated with a remotely
issued start request277

Vi TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 14. Distributed transaction

processing (DTP).

Concepts of distributed transaction processing

(DTP) .

Conversations .
Conversation states
Distributed processes.
Maintaining data integrity .

Designing distributed processes .
Structuring distributed transactions .
Designing conversations.

Writing programs for CICS DTP . .
Conversation initiation and the front-end
transaction . .

Back-end transaction 1n1t1atlon .

The back-end transaction fails to start .
Transferring data on the conversation
Communicating errors across a conversation
Safeguarding data integrity.

Ending the conversation.

Checking the outcome of a DTP command
Testing the conversation state .

Initial states .

Summary of CICS commands for APPC mapped

. 279

. 279
. 280
. 280
. 281
. 282
. 283
. 283
. 285
. 286

. 286
. 289
. 291
. 291

295

. 296
. 298
. 300
. 303

. 303

conversations . 304
Using DTP to check the avallablhty of the
remote system . A .o . 304
Chapter 15. Sync pointing a
distributed process. . . 307
The EXEC CICS SYNCPOINT command . 307
The EXEC CICS ISSUE PREPARE command . . 308
The EXEC CICS SYNCPOINT ROLLBACK
command . . 308
When a backout is requlred . 309
Synchronizing two CICS systems. . 309
SYNCPOINT in response to SYNCPOINT . 309
SYNCPOINT in response to ISSUE PREPARE 310
SYNCPOINT ROLLBACK in response to
SYNCPOINT ROLLBACK 311
SYNCPOINT ROLLBACK in response to
SYNCPOINT .31
SYNCPOINT ROLLBACK in response to ISSUE
PREPARE .. 312
ISSUE ERROR in response to SYNCPOINT . 312
ISSUE ERROR in response to ISSUE PREPARE 313
ISSUE ABEND in response to SYNCPOINT . 313
ISSUE ABEND in response to ISSUE PREPARE 314
Synchronizing three or more CICS systems . 314
Sync point in response to EXEC CICS
SYNCPOINT . 314
Sync point rollback in response to EXEC CICS
SYNCPOINT . . 316
Conversation failure and the 1ndoubt perrod . 317
Part 5. Appendixes 319
Appendix A. DFHCNV - The data
conversion macros . . 321

Using the DFHCNYV macros

Examples of DFHCNV macros

Flow of DFHCNYV macro sequence .
The DFHCNYV TYPE=INITIAL macro
The DFHCNV TYPE=ENTRY macro.
The DFHCNV TYPE=KEY macro.
The DFHCNV TYPE=SELECT macro
The DFHCNYV TYPE=FIELD macro .
The DFHCNV TYPE=FINAL macro .

Appendix B. The conversation state
tables.
How to use the state tables

The state numbers. .

The state conversation table notes -
Synchronization level 0 conversation state table
Synchronization level 1 conversation state table
Synchronization level 2 conversation state table

Appendix C. Migrating DTP
applications .
Migrating to LU 6.2 APPC mapped conversations

. 321
. 322
. 324
. 324
. 325
. 327
. 327
. 328
. 329

. 331
. 331
. 331
. 331

333
335
338

. 343

343

Differences between SNA and TCP/IP for DTP .
Allocating a conversation

Use of conversation identifiers (CONVIDs)

State after backout.

Terminating a synchromzatlon level 2 Conversatlon
The EXEC CICS WAIT and EXEC CICS SEND
WAIT commands .

Transaction identifiers . .
Migration considerations for functlon shlppmg

Appendix D. Data conversion tables
(CICS on Windows Systems and CICS
for Solaris only)

Bibliography.

Notices . .o
Trademarks and service marks

Index .

Contents

. 343
. 344
. 344
. 344

344

. 345
. 345
. 345

. 347

. 355

. 357
. 358

. 361

vii

viili TXSeries for Multiplatforms: CICS Intercommunication Guide

Figures

1.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

27.

28.
29.
30.

31.
32.
33.
34.
35.

36.
37.

38.
39.
40.
41.

Communicating with CICS family TCP/IP
support . .
Communlcatmg w1th CICS PPC TCP / IP .

SNA

Using a PPC Gateway server to communicate

across SNA

Communications using TCP/ IP a PPC
Gateway server, and SNA.

CICS region acting as a client gateway

A simple transaction

A distributed application .
Acknowledgment processing.

Listener Definitions (LD) entry .

SMIT panel for adding an LD entry for CICS
family TCP/IP support. .

General Communications Def1n1t10ns (CD)
panel.

TCP/IP Communlcatlons Def1n1t1ons (CD)
panel. . .
Security Communlcatlons Def1n1t10ns (CD)
panel.

SMIT panel for addlng a CD entry for CICS
family TCP/IP support.

IBM CICS Client Server and Drlver examples

CICS family TCP/IP example .

CICS OS/2 System Initialization Table

CICS 0OS/2 Connection and session table
Listener Definitions (LD) entry .
Communications Definitions (CD) entry
Communications Definitions (CD) entry
Listener Definitions (LD) entry .
Communications Definitions (CD) entry
General Communications Definitions (CD)
panel. .
TCP/IP Commumcatlons Deﬁnltlons (CD)
panel. .

Security Communlcatlons Def1n1t10ns (CD)
panel. .

Two regions communlcatlng across TCP / IP
Two regions communicating across TCP/IP
SMIT panel for adding a CD entry for CICS
PPC TCP/IP support . S
An example network

An example network using local SNA support

Listener Definition window . .
Region Definition Properties window .
Communication Definition window: General
tab

Communication Definition window: SNA tab

Communication Definition window: Security
tab

Add Llstener SMIT panel .

Show /Change Region SMIT panel (Part 1)
Show /Change Region SMIT panel (Part 2)
Add Communication SMIT panel .

© Copyright IBM Corp. 1999, 2005

.7
.8
Using local SNA support to communicate across

.9

. 10
.12
.13
. 16
. 16
.17
.29
. 33
. 37
. 37
. 38

.41

42

. 44
. 45

45

. 45

46
46

. 46

47

. 48

. 48

. 49

50
51

. 53

. 69
71

.78
.79

. 80

81

. 82
. 83

85
86

. 88

42.

43.
44.

45.
46.

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

58.

59.

60.

61.

62.
63.
64.
65.

66.
67.
68.

69.
70.
71.
72.
73.
74.

75.
76.
77.
78.
79.
80.

81.
82.

An example network using PPC Gateway
server SNA support. .
Region Definition Properties w1ndow
Communication Definition window: General
tab .

Communication Deflnltlon w1ndow SNA tab

Communication Definition window: Security
tab .

Add Gateway SMIT panel

Show /Change Region SMIT panel

Add Communication SMIT panel .

The bind password exchange

Representation of numbers . .
Sample C function for halfword swap
Sample C function for fullword swap
Example record structure .

Data conversion for function sh1pp1ng
Avoiding data conversion

Directory structure of the PPC Gateway
server (assumes an Open Systems platform)
How server names are shared between a
CICS region and a PPC Gateway server.
Process for making an intersystem request
from a CICS region through a PPC Gateway
server .

Process for maklng an 1ntersystem request to

a CICS region through a PPC Gateway server.
Listing PPC Gateway servers with the cicsget

command . .

PPC Gateway server attrlbutes for Clcsgwy
Default PPC Gateway server attributes

ps -ef | grep ppcgwy command

New PPC GWY Server screen with example
configuration e
Start PPC GWY server screen .

Stop PPC GWY server screen .

PPC Gateway server Properties
screen—General tab .
Destroy PPC GWY Server screen .

Create PPC Gateway Server screen

Auto Start a PPC Gateway Server screen
Shutdown a PPC Gateway Server screen
Show /Change PPC Gateway Server screen
Using ppcadmin commands in interactive
mode .

Using ppcadmin commands in command
mode . .

ppcadmin list luentrles command
ppcadmin query luentry command
ppcadmin list xIns command

ppcadmin force xIn command with successful

results . .
ppcadmin force xln command w1th
unsuccessful results

ppcadmin query resync command
ppcadmin cancel resync command

.92
. 99

. 100
101

. 102
. 104
. 105
. 107
. 125
. 150

151
151

. 152

157

. 158

. 176

. 177

. 179

180

. 188

189
189

. 189

. 191
. 192
. 193

. 194
. 195
. 197

198
199
200

. 202

. 202
. 203
. 204

. 205

. 205

. 206
. 206
. 207

ix

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.

96.

97.

98.

99.

X TXSeries for Multiplatforms: CICS Intercommunication Guide

ppcadmin list convs command.
ppcadmin query conv command .
ppcadmin list luws command .
ppcadmin query luw command

Example PPC Gateway server message
Distributed program link

Serially connected systems . .
Transferring a temporary storage queue
Starting a conversation at synchronization
level 2 . .

Startup of a back—end APPC mapped
transaction at synchronization level 2
Transferring data on a conversation at
synchronization level 2 .

Checking the outcome of an EXEC CICS
SEND INVITE WAIT command

Checking the outcome of an EXEC CICS
RECEIVE command

EXEC CICS SYNCPOINT in response to
EXEC CICS SEND followed by EXEC CICS
SYNCPOINT on a conversation .
EXEC CICS SYNCPOINT in response to

EXEC CICS SEND INVITE followed by EXEC

CICS SYNCPOINT on a conversation
EXEC CICS SYNCPOINT in response to
EXEC CICS SEND LAST followed by EXEC
CICS SYNCPOINT on a conversation
EXEC CICS SYNCPOINT in response to
EXEC CICS ISSUE PREPARE on a
conversation .

. 207
. 208
. 209
. 209

228

. 248
. 248

284

. 287

. 290

. 292

. 293

. 294

. 309

. 310

. 310

. 311

100.

101.

102.

103.

104.

105.

106.

107.

108.
109.
110.
111.
112.

EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT
ROLLBACK on a conversation .

EXEC CICS SYNCPOINT ROLLBACK in
response to EXEC CICS SYNCPOINT on a
conversation . .
EXEC CICS SYNCPOINT ROLLBACK in

response to EXEC CICS ISSUE PREPARE on a
. 312

conversation . .
EXEC CICS ISSUE ERROR in response to
EXEC CICS SYNCPOINT on a conversation
EXEC CICS ISSUE ERROR in response to
EXEC CICS ISSUE PREPARE on a
conversation . .
EXEC CICS ISSUE ABEND in response to
EXEC CICS SYNCPOINT on a conversation
EXEC CICS ISSUE ABEND in response to
EXEC CICS ISSUE PREPARE on a
conversation . .
A distributed sync pomt w1th all partners
running on CICS

Rollback during distributed sync pomtmg
Sample macro source for data conversion
Record layout for VSAM99 .

Description for record layout for VSAM99
Example of DFHCNV macro sequence

. 311

. 312

. 313

. 313

. 314

. 314

. 315

317
322

. 323

323
324

Tables

G W=

57\

®© N

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.

31.
32.

Getting started road map. L xiil
Conventions that are used in this book xiv
Roadmap1
Road map5
Summary of communlcatlon methods across
TCP/IP and SNA13
Synchronization level used on outbound
intersystem requests18
Roadmap23
Where tonext.26
Road map . . .41
CICS family TCP / IP conflguratlon example 44
Road map54
Comparison of CICS resource def1n1t10ns

TCP/IP connections. . . . 54
How CD attributes are set in an automstalled

CD entry55
Fields in the DFHCCINX COMMAREA

structure, CICS_CCINX_Parameters59
CD attributes that can be changed by

DFHCCINX N A
Communications products for various

platforms to enable local SNA support . . .70

Comparison of CICS Communications
Definitions (CD) for local SNA connections . . 72
Comparison of CICS Listener Definitions (LD)

for local SNA connections. . . .73
Comparison of CICS Region Def1n1t10ns (RD)

for local SNA connections. . . .74
Comparison of CICS Transaction Defmltlons

(TD) for local SNA connections74

Communications products for various

platforms to enable PPC Gateway server SNA
support.9
Comparison of CICS Communlcatlons

Definitions (CD) for PPC Gateway server SNA

connections . . . 93
Comparison of CICS Gateway Def1n1t10ns (GD)
for PPC Gateway server SNA connections . . 94
Comparison of CICS Region Definitions (RD)

for PPC Gateway server SNA connections . . 95

Comparison of CICS Transaction Definitions
(TD) for PPC Gateway server SNA connections 95

Security keys assigned to example systems 128
Security keys assigned to example users 128
Which user ID is flowed when local task

issues a request. 130
Comparing security options between

platforms e ..o 134
Defining security parameters o . 135

Example resource definitions for link securlty 140
CICS Shortcodes and code pages that
TXSeries for Multiplatforms supports . . . 153

© Copyright IBM Corp. 1999, 2005

33.

34.

35.
36.

37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.

Comparison of data conversion with other
CICS systems .
Resource class abbrev1at10ns and resource
types

Road map .
Communications products for various
platforms .

ppcadmin commands that are apphcable to
the CICS environment

The effect of updating CICS
intercommunication resource definitions
Sources of information for following the path
of a request . . .
Required information for the service
representative

Message types .

Trace types

Authority required by PPC Gateway Server
Road map o
Indirect links for transactlon routing .
Conversation states available for each
synchronization level . .

CICS synchronization commands for use
across transactions . R
EIB and conversation state request responses
Indications of partner response

Command sequence for synchronlzahon
levels . . .
Interaction between some EIB f1elds .
RECEIVE and CONFIRM flags.

Relationship of cvda codes to conversation
states .

CICS commands used in APPC mapped
conversations . .
Synchronization level 0 conversatlon state
table (states 1 to 8). .
Synchronization level 0 conversatlon state
table (states 9 to 13) . .
Synchronization level 1 conversatlon state
table (states 1 to 8). .
Synchronization level 1 conversatlon state
table (states 9 to 13) .

Part 1 of Synchronization level 2 conversatlon
state table (states 1 to 8) .

Part 1 of Synchronization level 2 conversatron
state table (states 9 to 13)

Part 2 of Synchronization level 2 conversatlon
state table (states 1 to 8) .

Part 2 of Synchronization level 2 conversatlon
state table (states 9 to 13)

SBCS data conversion table .

DBSC and mixed data conversion table

SBCS and DBCS data conversion table

. 158

. 160
. 173

. 175

. 201

. 210

. 214

. 215

. 228
. 229

243

. 245
. 267

. 280

. 296

297

. 298

. 299

. 301

. 302

. 303

. 304

. 333

. 334

. 335

. 336

. 338

. 339

. 341

. 342
. 347

351
354

xi

xil TXSeries for Multiplatforms: CICS Intercommunication Guide

About this book

This book describes how CICS® systems communicate with other CICS systems. It
describes both how TXSeries® for Multiplatforms regions communicate with other
TXSeries for Multiplatforms regions, as well as with other members of the CICS
family (such as CICS Transaction Server for z/ OS® and IBM CICS Universal
Clients), and with any application that supports the SNA LU 6.2 protocol.

It describes how to design and implement a network configuration for a TCP/IP
and an SNA network, how to configure the CICS resources, and how to design,
write, and manage the application programs.

Who should read this book

The book is intended for system administrators who design, configure, and
manage a network of interconnected CICS systems.

You should be familiar with the operation and configuration of a basic CICS
region. You should have a understanding of network operations for either TCP/IP
or SNA networks. Familiarity with the implementation and terminology used by
the partner system with which the CICS region communicates is also useful

Document organization

Table 1. Getting started road map

If you want to... Refer to...

Read a summary of CICS communications Part 1, “Intercommunication planning,” on|

[page 1|

Read how to configure CICS resources to Part 2, “Configuring fo1

enable your system to communicate with intercommunication,” on page 23|
other systems

Read how to configure an SNA product TXSeries for Multiplatforms Using IBM®|

Communications Server for AIX® with CICS}
TXSeries for Multiplatforms Using IBM|
Communications Server for Windows® Systems|
with CICS| [T XSeries for Multiplatforms Using|
[Microsoft® SNA Server with CICS,[TXSeries for]
Multiplatforms Using HP-UX SNAplus2 with|
CICS|, and [TXSeries for Multiplatforms Using|
SNAP-IX for Solaris with CICS|

Read how to manage your CICS system Part 3, “Operating an SNA|

when it is communicating with other intercommunication environment,” on page]
systems 173

Read how to write CICS transaction Part 4, “Writing application programs for]
programs that communicate with other intercommunication,” on page 245|

systems

© Copyright IBM Corp. 1999, 2005 xiii

Conventions used in this book

TXSeries for Multiplatforms documentation uses the following typographical and

keying conventions.

Table 2. Conventions that are used in this book

Convention Meaning

Bold Indicates values that you must use literally, such as commands,
functions, and resource definition attributes and their values. When
referring to graphical user interfaces (GUIs), bold also indicates
menus, menu items, labels, buttons, icons, and folders.

Monospace Indicates text that you must enter at a command prompt.
Monospace also indicates screen text and code examples.

Italics Indicates variable values that you must provide (for example, you
supply the name of a file for file_name). Italics also indicates
emphasis and the titles of books.

<> Encloses the names of keys on the keyboard.

<Ctrl-x> Where x is the name of a key, indicates a control-character sequence.
For example, <Ctrl-c> means hold down the Ctrl key while you
press the c key.

<Return> Refers to the key labeled with the word Return, the word Enter, or
the left arrow.

% Represents the UNIX® command-shell prompt for a command that
does not require root privileges.

Represents the UNIX command-shell prompt for a command that
requires root privileges.

C:\> Represents the Windows command prompt.

> When used to describe a menu, shows a series of menu selections.

For example, "Select File > New” means "From the File menu, select
the New command.”

Entering commands

When instructed to “enter” or “issue” a command, type the
command and then press <Return>. For example, the instruction
“Enter the Is command” means type Is at a command prompt and
then press <Return>.

Encloses optional items in syntax descriptions.

Encloses lists from which you must choose an item in syntax
descriptions.

Separates items in a list of choices enclosed in { } (braces) in syntax
descriptions.

Ellipses in syntax descriptions indicate that you can repeat the
preceding item one or more times. Ellipses in examples indicate that
information was omitted from the example for the sake of brevity.

IN In function descriptions, indicates parameters whose values are
used to pass data to the function. These parameters are not used to
return modified data to the calling routine. (Do not include the IN
declaration in your code.)

ouT In function descriptions, indicates parameters whose values are

used to return modified data to the calling routine. These
parameters are not used to pass data to the function. (Do not
include the OUT declaration in your code.)

X1V TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 2. Conventions that are used in this book (continued)

Convention

Meaning

INOUT

In function descriptions, indicates parameters whose values are
passed to the function, modified by the function, and returned to
the calling routine. These parameters serve as both IN and OUT
parameters. (Do not include the INOUT declaration in your code.)

$CICS

Indicates the full path name of the location in which the CICS
product is installed; for example, /usr/lpp/cics on AIX. If the CICS
environment variable is set to the product path name, you can use
the examples exactly as shown in this book; otherwise, you must
replace all instances of $CICS with the CICS product path name.

CICS on Open
Systems

Refers collectively to the CICS product for all supported UNIX
platforms.

TXSeries for
Multiplatforms

Refers collectively to the CICS for AIX, CICS for HP-UX, CICS for
Solaris, and CICS for Windows products.

CICS

Refers generically to the CICS for AIX, CICS for HP-UX, CICS for
Solaris, and CICS for Windows products. Other CICS products in
the CICS Family are distinguished by their operating system (for
example, IBM mainframe-based CICS for the ESA, MVS™, and VSE
platforms).

How to send your comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other
TXSeries for Multiplatforms documentation, send your comments by e-mail to
idrcf@hursley.ibm.com. Be sure to include the name of the book, the document
number of the book, the version of TXSeries for Multiplatforms, and, if applicable,
the specific location of the information you are commenting on (for example, a
page number or table number).

About this book XV

XVi TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 1. Intercommunication planning

This part introduces CICS intersystem communications. It describes the functions
that are available, and helps you plan and design your network.

Table 3. Road map

If you want to...

Refer to...

Read about the network protocols CICS
supports

|"Network protocols” on page 3|

Read about the intersystem communication
functions that CICS supports

“Overview of the intercommunication|
facilities” on page 3|

Read about the functions that are supported
by IBM CICS clients

“IBM CICS Universal Client products” on|
[page 4|

Read about how to design your network

“Designing your network configuration” on|
[page 5|

© Copyright IBM Corp. 1999, 2005

2 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 1. Introduction to CICS intercommunication

In a multiple system environment, TXSeries for Multiplatforms regions can
communicate with other systems to:

* Provide users of the local region with services that are held on remote systems
* Provide users on remote systems with services that are held on the local region

This communication is achieved by networking the systems so that they can
cooperate directly and share data and applications. The communication between
the interconnected systems is referred to as intercommunication.

Network protocols

When two systems communicate, they need to agree on the set of rules that they
use to interpret the data that they exchange. These rules are known as network
protocols and they are defined in a network architecture. TXSeries for Multiplatforms
intercommunication is based on the IBM Systems Network Architecture (SNA) LU
6.2 protocol. This protocol, which is often referred to as advanced program-to-program
communications (APPC), was developed to handle the needs of two systems that
want to share data and applications. Therefore, it is ideally suited to the CICS
intercommunication environment.

TXSeries for Multiplatforms supports intercommunication across an SNA network
between a local region and the following:

¢ Other TXSeries for Multiplatforms regions

+ Other CICS products such as CICS Transaction server for z/OS and CICS/400®
regions

 IBM CICS Universal Clients

¢ Applications on systems that support the SNA LU 6.2 protocol

In addition, TXSeries for Multiplatforms can emulate SNA LU 6.2 across TCP/IP
networks. This allows a local region to communicate with the following by means
of TCP/IP:

* Other TXSeries for Multiplatforms regions

* IBM CICS Universal Clients

The method of connecting your TXSeries for Multiplatforms regions to SNA and
TCP/IP networks is described in [Chapter 2, “Intercommunication planning and|
kystem design,” on page 5.|

Overview of the intercommunication facilities

The CICS intercommunication facilities that TXSeries for Multiplatforms supports
simplify the operation of distributed systems. In general, this support extends the
standard CICS facilities (such as reading and writing to files and queues) so that
applications or users can use resources that are on remote systems without needing
to know where the resources are. TXSeries for Multiplatforms supports the
following CICS intercommunication facilities:

* Distributed program link (DPL) extends the use of the EXEC CICS LINK
command to allow a CICS application program to link to a program that resides
on a different CICS system.

© Copyright IBM Corp. 1999, 2005 3

* Function shipping allows an application program to access files, transient data
queues, and temporary storage queues that belong to another CICS system.

* Transaction routing allows the execution of a transaction on a remote system.
The transaction can display information on your terminal as if it were running
on your local system.

* Asynchronous processing extends the EXEC CICS START command to allow an
application to initiate a transaction to run on another CICS system. As with
standard EXEC CICS START calls, the transaction that is requested in the START
command runs independently of the application that is issuing the START
command.

* Distributed transaction processing (DTP) uses additional EXEC CICS
commands that allow two applications to run on different systems and pass
information between themselves. These EXEC CICS commands map to the LU
6.2 mapped conversation verbs that are defined in the SNA Architecture.

DTP is the only CICS intercommunication facility that can be used to
communicate with non-CICS applications. The non-CICS applications must use
advanced program-to-program communications (APPC) protocol.

IBM CICS Universal Client products

TXSeries for Multiplatforms provides CICS server support for the IBM CICS
Universal Client products. This means that TXSeries for Multiplatforms systems
can provide CICS server function to multiple workstations that are running the
IBM CICS Universal Client products.

The functions that are available to the client include:

* External call interface (ECI). This interface enables a non-CICS application
program that is running in the client workstation, to call a CICS program in the
server, and run it as a subroutine.

* External program interface (EPI). This interface enables an application program
to run in the client, and invoke a CICS transaction on the server that runs as
though it was started from a 3270 terminal. The transaction returns a 3270 data
stream to the client, which can capture it and present it in a graphical user
interface (GUI).

¢ Terminal emulation. This enables the client workstation to function as a 3270
terminal.

CICS Family: Interproduct Communication explains how intercommunication between
CICS family products is documented, and introduces the CICS intercommunication
facilities. This information is necessary for anyone who is involved in the planning
and implementation of communications between different CICS systems. CICS
Universal Client: Client Administration explains the planning, configuration, and
administration of the IBM CICS Universal Clients.

4 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 2. Intercommunication planning and system design

This planning and system design chapter describes the services that are provided
by TXSeries for Multiplatforms and its supporting products that enable it to

communicate with remote systems.

Table 4. Road map

If you want to...

Refer to...

Read about how systems can be connected
together

[“Designing your network configuration”|

Read about intersystem security issues

“Ensuring that the system is still secure” on|
[page 14_L|

Read about the integrity of data that is
distributed across a network

“Ensuring data integrity withl
synchronization support” on page 16

Read about the conversion of data structures

“Converting between EBCDIC and ASCII|

when they are exchanged between systems ||data” on page 1
that use different ASCII or EBCDIC

encoding formats

“Performance issues fo

Read about the performance of intersystem
intercommunication” on page 19|

transactions

“Operational issues for intercommunication”
on page 2

“Bidirectional input and display on AIX” on|

[page 22]

Read about the operation of your network

Read about bidirectional input and display

Together with information about your current systems, users and requirements,
you can use these sections to plan for the implementation of network configuration
and operations. Intercommunication requires cooperation between the
administrators of all of systems in the network. Therefore, it is important that the
administrators of the remote systems are involved in the planning process.

Designing your network configuration

TXSeries for Multiplatforms can communicate with remote systems across the
following connections:

* TCP/IP networks

* Systems Network Architecture (SNA) networks

The following sections introduce the ways that your CICS region can be connected
to other systems:

+ |[“Communicating across TCP/IP connections”]

+ |[“Communicating across SNA connections” on page §|

+ |[“Mixing the communications methods” on page 11|

* |[“Summary of communication methods” on page 13

Communicating across TCP/IP connections

TCP/IP is a simple protocol that requires CICS to provide most of the support for
intercommunications, such as the data formats that are used to send intersystem
requests and the security that is needed to protect system resources.

© Copyright IBM Corp. 1999, 2005 5

TXSeries for Multiplatforms supports two types of communication over TCP/IP
connections:

* CICS family TCP/IP support, which allows connectivity to TXSeries for
Multiplatforms regions, and IBM CICS Universal Clients.

* CICS PPC TCP/IP support, which allows connectivity between CICS regions on
the same machine.

[“Using CICS family TCP/IP”|and [“Using CICS PPC TCP/IP” on page 7] give more
detail on each of these types of TCP/IP communication.

Using CICS family TCP/IP

CICS family TCP/IP supports the following types of intersystem requests between
TXSeries for Multiplatforms and CICS OS/2 regions:

* Function Shipping

¢ Transaction Routing

* Distributed Program Link (DPL)

* Asynchronous Processing

Distributed Transaction Processing (DTP) is not supported.

IBM CICS Universal Clients can also use CICS family TCP/IP to connect to a
TXSeries for Multiplatforms region.

When the first request is made, a TCP/IP connection is acquired between the two
systems. This connection remains acquired while both systems are active and it can
carry many concurrent intersystem requests flowing in either direction.

A TXSeries for Multiplatforms region can be configured to accept TCP/IP
connections on one or more TCP/IP ports in the local machine. It can also receive
connection requests on one or more TCP/IP network adapters.

Note that the CICS family TCP/IP support does not provide the same level of
security that is available with PPC Executive TCP/IP support. This issue is
discussed in [“Ensuring that the system is still secure” on page 14.|

[Figure 1 on page 7 shows a region that is running on a Windows platform and
using CICS family TCP/IP to communicate with a CICS OS/2 system and an IBM
CICS Universal Client.

6 TXSeries for Multiplatforms: CICS Intercommunication Guide

0§/2

CICS CICS
application TERM
| |
CICSfor IBMCICS
0S/2 Client
[|
TCP/IP TCP/IP
product product
TCP/IP
CICSfor
Windows NT
I
CICS
application

Figure 1. Communicating with CICS family TCP/IP support

Synchronization levels: All intersystem requests that are flowed on a CICS family

TCP/IP connection use synchronization level 0 or 1. Synchronization levels are
described in [“Ensuring data integrity with synchronization support” on page 16/

Configuration information: The instructions for configuring your region to use
CICS family TCP/IP are summarized in [“Configuring CICS for CICS family]
[TCP/IP support” on page 26

Using CICS PPC TCP/IP
CICS PPC TCP/IP support allows all types of intercommunication between CICS
regions on the same machine and is simple to configure.

When an intersystem request is made, CICS locates the remote region. Then, a
TCP/IP connection is set up between the two regions. This connection is used
exclusively by the intersystem request, and is closed down when the request has
completed.

[Figure 2 on page § shows the PPC Executive that is being used to connect
applications that are running on two CICS regions on the same machine.

Chapter 2. Intercommunication planning and system design

7

cics
application

cics

RegionA

PPC
Executive

CICS PPC TCP/IP

PPC
Executive

cics
RegionB

ciCcs

application

Figure 2. Communicating with CICS PPC TCP/IP

Synchronization levels: CICS PPC TCP/IP supports synchronization levels 0, 1
and 2. For more information about the different synchronization levels, refer to
[“Ensuring data integrity with synchronization support” on page 16

Configuration information: The instructions for configuring a region to use CICS
PPC TCP/IP are summarized in [‘Configuring CICS for CICS PPC TCP/IH
lsupport” on page 47)

Communicating across SNA connections

TXSeries for Multiplatforms regions can communicate across SNA with any system
that supports advanced program-to-program communications (APPC). This
includes CICS Transaction Server for z/0S, CICS/ESA, CICS/MVS, CICS/400, and
CICS/VSE. They can communicate between all TXSeries for Multiplatforms
regions. SNA can be used to communicate with IBM CICS Universal Clients. (In
SNA, APPC is used synonymously with the term LU Type 6.2, or LU 6.2.)

Two methods of SNA communication are available in TXSeries for Multiplatforms:
* Local SNA support
* SNA support that uses the CICS PPC Gateway server

Both of these methods of providing an SNA connection support all the CICS
intercommunication facilities to other CICS systems, and DTP is supported to
non-CICS systems.

Using local SNA support to communicate across SNA

Local SNA support provides the fastest SNA connectivity that CICS offers. It
enables TXSeries for Multiplatforms applications to communicate with every other
member of the CICS family.

IBM CICS Universal Clients can communicate with TXSeries for Multiplatforms
and use local SNA support.

Local SNA support requires an appropriate SNA product to be installed and
configured on the same machine as is the TXSeries for Multiplatforms region.

TXSeries for Multiplatforms supports the following SNA products:

* On Windows systems: Microsoft Microsoft SNA Server and IBM
Communications Server

* On AIX systems: IBM Communications Server

8 TXSeries for Multiplatforms: CICS Intercommunication Guide

* On Solaris: SNAP-IX
¢ On HP:HP-UX SNAplus2

shows TXSeries for Multiplatforms using local SNA support to
communicate with other CICS systems and with other APPC applications. The
term APPC workstations refers to any small computer that is running APPC
applications.

AIX MVS/ESA
CICS cIcs

application application

I [
CICS forAIX ,algs Ef;r\

APPC Workstafions /
I [
Communications ape ‘ arp app

ServerforAIX VIAM IBM

= =3 B9 CICSClient

SNA Network

SNA
Product
[
CICSfor
Windows NT
|

CICS
application

Figure 3. Using local SNA support to communicate across SNA

Synchronization levels: Local SNA support allows the use of synchronization
levels 0 and 1. If you require synchronization level 2 support, you must use a PPC
Gateway server. This is described in [“Using a PPC Gateway server to communicate]
across SNA.”l For information about the different synchronization levels, refer to
“Ensuring data integrity with synchronization support” on page 16/

Configuration information: The instructions for configuring your region to use
local SNA support are summarized in [“Configuring CICS for local SNA support’]

Using a PPC Gateway server to communicate across SNA

CICS can communicate with an SNA network by using a PPC Gateway server.
CICS communicates uses TCP/IP to communicate with the PPC Gateway server,
and the PPC Gateway server provides a link to the SNA network.

The PPC Gateway server can be on the same machine as is your CICS region, or it
can be on a different machine.

The PPC Gateway server uses an appropriate SNA product to connect to the

remote SNA systems. This SNA product must be installed and configured on the
machine on which the PPC Gateway server is running. For example, if the PPC

Chapter 2. Intercommunication planning and system design 9

Gateway server is running on an RS/6000° machine, the SNA product is IBM
Communications Server for AIX. (Check with your sales representative for full
details of the supported SNA products for your PPC Gateway server machine.)

shows a TXSeries for Multiplatforms region using the PPC Executive to
connect to a PPC Gateway server machine, which in turn connects to an SNA

network.
AIX
CICS
application MVS/ESA
[
CICS
CICS for AIX application
I [
PPC Gateway CICSfor
Server APPCWorkstations MVS/ESA
I [
Communications { app ‘ ’ app ‘ ’ app \ VTAM
< 5 ¢ S ¢
Serverfor AIX e B

SNA Network

SNA
Product

[
PPC Gateway
Server
I
PPC
Executive
I

CICSon
Open Systems

CICS
application

Figure 4. Using a PPC Gateway server to communicate across SNA

Using more than one PPC Gateway server with a CICS region can be useful for the
following:

* To spread the network links from many remote machines across more than one
gateway machine, and therefore across multiple SNA products

* To introduce some redundancy, so that if one PPC Gateway server fails, another
is available as backup

* To spread the processing load across more than one PPC Gateway server

10 TXSeries for Multiplatforms: CICS Intercommunication Guide

A PPC Gateway server can also be shared by a number of CICS regions. This can
be desirable if your CICS regions do not make many SNA intercommunication
requests. However, this setup must be used with care because the PPC Gateway
server is only one operating system process and can become overwhelmed by too
many intercommunication requests. In addition, problem determination can be
more difficult if more than one region uses a PPC Gateway server.

Synchronization levels: A PPC Gateway server gives your region support for
synchronization levels 0, 1, and 2. If you require only synchronization level 0 or 1
and you plan to put the SNA product on the machine on which your CICS region
is running, you can use local SNA support. This is described in section
llocal SNA support to communicate across SNA” on page 8.|For information about
the different synchronization levels refer to [’Ensuring data integrity with|
synchronization support” on page 16.]

Configuration information: The instructions for configuring your region to use a
PPC Gateway server are summarized in [“Configuring CICS for PPC Gateway]
lserver SNA support” on page 89

Mixing the communications methods

You can mix the communication methods that you use to connect your CICS
regions. For example, a TXSeries for Multiplatforms region can use the PPC
Executive to communicate with another TXSeries for Multiplatforms region over
TCP/IP, while also communicating over SNA, by using both local SNA support
and a PPC Gateway server.

[Figure 5 on page 12| shows two CICS on Open Systems regions (Region B and
Region C) that are communicating using CICS PPC TCP/IP with synchronization
level 2. Region A and Region D are communicating with CICS TCP using
synchronization level 1. The regions are also communicating across an SNA
network to a CICS for AIX region, some APPC workstations, and a CICS
Transaction Server for z/OS system. The communications with the CICS for AIX
region and the workstations use local SNA support. Local SNA support was
chosen because the APPC workstations do not support synchronization level 2. The
communications with CICS Transaction Server for z/OS are through a PPC
Gateway server because synchronization level 2 support is required. The PPC
Gateway server is running on the same machine as is the CICS for AIX region and
uses the same SNA product.

Chapter 2. Intercommunication planning and system design 11

AIX MVS/ESA

CICS CICS
application application
I [
CICSforAIX CICS/ESA

APPCWorkstations

Communications
Serverfor AIX e I e e

’ app ‘ ’ app ‘ ’ app \ VTLM

SNA Network

SNA
Product
[[[[

CICSonOpen CICSonOpen CICSonOpen PPC Gat
System Region A |System RegionB| |System RegionC ateway

PPC Executive H PPC Executive

|
TCP/IP

—

CICSonOpen System
RegionD

Figure 5. Communications using TCP/IP, a PPC Gateway server, and SNA

[Figure 6 on page 13| shows a CICS region being used as a client gateway. In this
setup, several IBM CICS Universal Clients are using CICS family TCP/IP to
connect to the region . The region is then routing these requests across an SNA

network to a mainframe CICS system.

12 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICSfor
MVS/ESA

SNA
Product
|

CICSfor
Windows NT

TCP/IP

I
L]

z P 5

e B == EEEb
R S R S R
IBMCICS Clients

Figure 6. CICS region acting as a client gateway

For information about how to configure your region to communicate with remote
systems, refer to|Chapter 3, “Configuring CICS for TCP/IP,” on page 25| and
(Chapter 4, “Configuring CICS for SNA,” on page 67]For information about the
different synchronization levels, refer to|“Ensuring data integrity with|
lsynchronization support” on page 16

Summary of communication methods

The following table summarizes the communication methods that CICS on Open
Systems and CICS for Windows can use:

Table 5. Summary of communication methods across TCP/IP and SNA

Communication Best for: Restrictions:

method

CICS family Communicating at Distributed Transaction

TCP/1P synchronization level 0 or 1 with |Processing (DTP) is not
TXSeries for Multiplatforms, IBM | supported. CICS user security
CICS Universal Clients, and must be configured with care

RPC-only regions across TCP/IP |because it is not possible to
reliably authenticate (identify) the
remote system.

CICS PPC TCP/IP |Communicating at Must be on the same machine.
synchronization level 0, 1 or 2
with other TXSeries for
Multiplatforms regions

Chapter 2. Intercommunication planning and system design 13

Table 5. Summary of communication methods across TCP/IP and SNA (continued)

Communication
method

Best for:

Restrictions:

Local SNA

Fast synchronization level 0 or 1
communication with remote LU
6.2 (APPC) systems. These
connections can be used to
connect to any CICS product.

A supported SNA product must
be installed on the same machine
as is the CICS region.

PPC Gateway

Synchronization level 0, 1, and 2
communication with remote LU
6.2 (APPC) systems. These
connections can be used to
connect to any CICS product.

When using Communications
Server for AIX, Communications
Server for Windows, and HP-UX
SNAplus2, the PPC Gateway
server must be installed on a
machine along with a supported
SNA product.

To make the best use of the information that is given in this chapter, consider your
own installation: the systems you currently have and their capabilities, the
requirements of your users, and the requirements of the systems that you want to

have

If you are planning to connect your CICS region to a non-TXSeries for
Multiplatforms product, refer to |Chapter 3, “Configuring CICS for TCP/IP,” onl

[page 25)and |[Chapter 4, “Configuring CICS for SNA,” on page 67

Additional considerations

After planning your overall network configuration, review the following sections,
which introduce the other factors to consider:

« |“Ensuring that the system is still secure’]

* |“Ensuring data integrity with synchronization support” on page 16|

* [“Converting between EBCDIC and ASCII data” on page 19|

e |“Performance issues for intercommunication” on page 19|

* [“Operational issues for intercommunication” on page 22|

Ensuring that the system is still secure

Connecting your region to other systems enables the users of these systems to
share resources. CICS intercommunication provides extensions to CICS security
that ensure that resources are shared only with authorized users.

The system that is receiving the request performs checking for the following

purposes:

* Identifying the remote system that sent the request

* Identifying the user who initiated the request

* Controlling access to the CICS resources

Identifying the remote system

When systems connect, they pass identification information across the network.
This identification information can be trusted only if the communication method
provides the facilities to verify it. The process of verifying identification
information is called authentication; it is achieved for each of the communication

methods as follows:

14 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICS family TCP/IP
These connections provide no mechanisms for authenticating the remote
system. CICS can extract the Internet Protocol (IP) address and listening
port of the remote system, but no method exists for CICS to determine
whether the connection request is coming from an unauthorized system
that is deliberately trying to impersonate the genuine system. If a network
is private and secure, this might not be a problem for you. If this potential
security risk is a concern, consider using one of the other communication
methods. For further information about authenticating remote systems
when using CICS family TCP/IP connections, see |”Authenticating systems|
lacross CICS family TCP/IP connections” on page 124

CICS PPC TCP/IP
CICS PPC TCP/IP uses an RPC request to set up each intersystem request.
As CICS PPC TCP/IP is used for communication between CICS regions on
the same machine, there is no need to verify the identity of the system that
is sending the request.

Local SNA
When an SNA connection is acquired, sessions are activated by using bind
flows. You can configure SNA to automatically verify the identity of each
system by defining a bind password for the two systems. Sessions are then
activated only if both systems have the same bind password. For further
information about authenticating remote systems when using local SNA
connections, see [“Authenticating systems across SNA connections” on page
125.

PPC Gateway
An SNA connection that uses a PPC Gateway server can be viewed in two
parts. The SNA sessions from the PPC Gateway server to the remote
system can be protected by using bind passwords, and the requests that
flow between your region and the PPC Gateway server are protected
because the region is on the same machine. For further information on
authenticating remote systems when using PPC Gateway connections, see

‘Authenticating systems across PPC Gateway server connections” on page|

126]
Identifying the user that initiated the request

Intersystem requests can also flow with the user ID (and optionally a password).
CICS intercommunication security allows you to define the user ID that is assigned
to the intersystem request, based on your knowledge of the security mechanisms
that are available in the network and the remote system. It can be the user ID
flowed from the remote system or a user ID that is defined locally. Transaction
Security Level (TSL) keys and Resource Security Level (RSL) keys are then
assigned to the request, based on the User Definition (UD) entry for the assigned
user ID. You can also specify a TSL and RSL key mask, which restricts these keys
further so that the intersystem request has less access to the system than does the
local user who has the same user ID.

Intercommunication security is an extension of local security checking. Therefore, it
is important that you understand how CICS implements local security. Refer to the
CICS Administration Guidd for further information about local security. Refer to
Chapter 6, “Configuring intersystem security,” on page 123]and ['CICS use|
security” on page 127] for more information about how to configure CICS
intercommunication security.

Chapter 2. Intercommunication planning and system design 15

Ensuring data integrity with synchronization support

When designing applications that update data on more than one system, it is
important to remember that network or system failures sometimes occur. These
failures are difficult to manage in a distributed environment because the
application is exposed to partial failures that do not occur in a single-system
environment. This is best shown with an example.

Consider the case of a single system in which an application is moving records
between two recoverable files, FILEA and FILEB, as shown in If a

problem occurs, for example, data is corrupted in one of the files, a transaction
abends, or a CICS region fails, CICS backs out the changes that were made before
the problem occurred. Consequently, the files return to the state in which they
were at the time the transaction was initially invoked.

TRN1

Figure 7. A simple transaction

Now consider the case where FILEB resides on a remote system, as shown in

The work of the application is effectively split into two transactions,
TRN1 and TRN2. Because the application is distributed, it is now difficult for
TRN1 (in the local system) to detect problems with adding the record to FILEB (in
the remote system). If TRN1 cannot detect these problems, it might delete a record
from FILEA that has not been added to FILEB, and cause the record to be lost.

CICSA CiCSB

,,,,, - TRN1

TRN2 FILEB

Figure 8. A distributed application

The solution is to use a form of acknowledgment processing so that the two
transactions in the application can ensure that they each complete their task
successfully. The exact form of this acknowledgment depends on the requirements
of the application. For example, the application can be transferring a list of

changed customer addresses between the two systems. As shown in
‘

16 TXSeries for Multiplatforms: CICS Intercommunication Guide

page 17] after TRN2 writes a record to FILEB, it can send a message to TRN1,
indicating that the record can be deleted from FILEA.

CICSA CICsB

77777 - TRN1

read TRN2
record

7y write

delete OK I

Figure 9. Acknowledgment processing

Thus a record can never be lost because TRN1 deletes the record from FILEA only
when it knows that the record is written to FILEB. However, if TRN1 fails after it

receives the message to delete the record, but before the record is actually deleted
from FILEA, the record appears twice, once in FILEA and again in FILEB.

In this application, it probably does not matter whether a customer’s address is
updated once or twice. However, if the data in FILEA represents money in some
form, and the act of transferring it between the systems effectively transfers the
money from one bank account to another, two copies of the record cause the
money to be transferred twice.

A mechanism is required to ensure that the deletion from FILEA always occurs if
the write operation to FILEB is successful and never occurs if the write operation
to FILEB is unsuccessful. This requires a much more sophisticated coordination
between the two systems.

Because applications have different requirements, SNA defines three levels of
support that allow an application to coordinate updates across a number of
systems. These levels of support are called synchronization levels:

* synchronization level 0 (NONE): SNA provides no synchronization support.
The application must code its own.

* synchronization level 1 (CONFIRM): SNA provides the ability to send simple
acknowledgment requests.

 synchronization level 2 (SYNCPOINT): SNA provides the ability for two or
more CICS systems to treat the updates that are made by an application on these
systems as one logical unit of work (LUW). (LUW is a synonym of unit of work
(UOW)). When the application requests a synchronization point (sync point) by
using the EXEC CICS SYNCPOINT command or the final EXEC CICS RETURN
command, the updates on the remote systems are committed (made permanent)
if, and only if, updates to recoverable data that are made locally by the
transaction are also committed. If a failure occurs (for example, the transaction
abends) before all involved systems have agreed to commit, all the updates for
the application on each of the systems are backed out (undone). Alternatively, all
updates are backed out if the application issues the EXEC CICS SYNCPOINT
ROLLBACK command.

When SNA systems first establish contact, they agree the maximum
synchronization that they will use. The synchronization level for each individual
task is then determined either by CICS or by the application program. TXSeries for

Chapter 2. Intercommunication planning and system design 17

Multiplatforms supports all three synchronization levels across both SNA and
TCP/IP. Refer to [‘Designing your network configuration” on page 5 for more
information about these communication methods.

If the remote system and the communication network are able, TXSeries for
Multiplatforms uses synchronization level 2 conversations on function shipping,
asynchronous processing, and distributed program link (DPL) requests. Transaction
routing requests from TXSeries for Multiplatforms always use synchronization
level 1 conversations because they do not update recoverable data on the local
region. However, TXSeries for Multiplatforms can receive synchronization level 2
transaction routing requests from CICS Transaction Server for z/OS, CICS/ESA,
CICS/MVS, and CICS/VSE. Distributed transaction processing (DTP) uses the
synchronization level that is requested on the SYNCLEVEL parameter of the EXEC
CICS CONNECT PROCESS command. For further information on the CONNECT
PROCESS command, refer to the TXSeries for Multiplatforms Application|
[Programming Referencel

Note: For TXSeries for Multiplatforms to use synchronization level 2 with IBM
mainframe-based CICS systems, they must be at these levels:
* CICS/MVS®™: 2.1.2
* CICS/ESA®: 3.3 or higher
« CICS/VSE®: 2.2 or higher

The following table summarizes the synchronization level that is used on
outbound intersystem requests. Refer to the following legend:

ES Function shipping

TR Transaction routing

AP Asynchronous processing

DPL Distributed program link

DTP Distributed transaction processing

NS Not supported

Table 6. Synchronization level used on outbound intersystem requests

Function FS TR AP DPL DTP
Synchronization level chosen by: CICS |CICS |CICS |[CICS |Application
Request to CICS/ESA, CICS/MVS, 1 1 1 1 Oor1
CICS/VSE, or CICS/400 using local

SNA

Request to CICS/ESA, CICS/MVS, 2 1 2 21 0,1, or2

CICS/VSE or CICS/400 using a PPC
Gateway and SNA

Request to CICS OS/2 over SNA 1 1 1 1 Oorl
Request to CICS OS/2, or TXSeries 1 1 1 1 NS

for Multiplatforms over CICS family

TCP/IP

Request to TXSeries for 2 1 2 2! 0,1, or2
Multiplatforms using CICS PPC

TCP/1P

Request to TXSeries for 2 1 2 2! 0,1, or2

Multiplatforms over SNA when both
systems are using a PPC Gateway

Request to TXSeries for 1 1 1 1 Oor1l
Multiplatforms over SNA when one
or both regions are using local SNA

18 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 6. Synchronization level used on outbound intersystem requests (continued)

Function FS TR AP DPL DTP
Request to non-CICS system over NS NS NS NS 0,1, 0r2
SNA

Note: 1. DPL requests specifying SYNCONRETURN option use synchronization level 1 on
all requests.

Converting between EBCDIC and ASCII data

Of the systems to which your region can connect, some store data in different
character encodings. An example of this is that data that is held in the Extended
Binary-Coded Decimal Interchange Code (EBCDIC) format on an IBM
mainframe-based CICS system, and in the American National Standard Code for
Information Interchange (ASCII) format on a TXSeries for Multiplatforms system.
Differences exist also between data in CICS on Windows systems and data in CICS
on Open Systems, where the codes that are used for some characters vary and the
method that is used for representing numbers is different. This means that if data
that is transferred between two systems is to be useful, it must be converted from
the format that is used on the sending system to that which is used by the
receiving system.

CICS converts some data, such as the file names in function shipping requests,
without user setup. For other data, such as file records, users supply resource
definitions that identify the types of conversion that are to be applied to specified
fields in data records. Exits and user-replaceable conversion programs are also
available.

(Chapter 7, “Data conversion,” on page 147 explains how to configure data
conversion when TXSeries for Multiplatforms is doing the conversion. The
following references provide further information:

* When the data is shipped from TXSeries for Multiplatforms to IBM
mainframe-based CICS and the data conversion takes place in IBM
mainframe-based CICS, you also need CICS Family: API Structure.

* When the data is shipped from TXSeries for Multiplatforms to CICS OS/2 and
the data conversion takes place on CICS OS/2, you need CICS for OS/2®
Intercommunication Guide.

* When the data is shipped from TXSeries for Multiplatforms to CICS/400 and the

data conversion takes place on CICS/400, you need Communicating from
CICS/400.

Data conversion is described in detail in|Chapter 7, “Data conversion,” on page|
147.

Performance issues for intercommunication

Sending data through a network takes time, so accessing resources on a remote
system takes longer than accessing resources on a local system. However, the
advantages of not having to replicate data on each system or requiring users to be
signed on to several systems can compensate for the increased response time.

You can minimize the performance impact of distributing a resource by choosing
the intercommunication facility carefully.

Chapter 2. Intercommunication planning and system design 19

Choosing which intercommunication facility to use

The intercommunication facilities that CICS supports are:
* Function shipping

* Transaction routing

* Asynchronous processing

* Distributed program link (DPL)

* Distributed transaction processing (DTP)

These facilities complement one another. This means that for each application, one
of the facilities is probably more efficient and easier to use than the others are. Use
the following descriptions to help you choose the facility that will give you the
best performance.

It is important to consider the level of support that is provided for these facilities
on the remote system. You can find information about the intercommunication
facilities that are supported by each of the CICS products in CICS Family:
Interproduct Communication .

When to use function shipping

Function shipping allows an application to read from, and write to, files,
temporary storage queues, and transient data queues that are on remote CICS
systems. The application issues the standard EXEC CICS commands to access these
data resources, and CICS packages the request and sends it to the required CICS
system. This system then unpackages and executes the request as if it were issued
by one of its local programs. The result of the request is sent back to the
originating system and is returned to your application, again as if the resource
were local.

Function shipping provides an easy way to access remote CICS data resources.
However, as each request is sent separately to the remote system, it can be better
to use distributed program link (DPL) or distributed transaction processing (DTP)
if the application requires many accesses to the remote data. Also, function
shipping is available only for accessing CICS resources, such as files and queues. If
you want to access non-CICS data, such as database records, on a remote system,
you must use another method.

When to use transaction routing

Transaction routing allows a user of your region to run a transaction on a remote
CICS system and see the results of that transaction on a local terminal as if the
transaction were running in your region. This is possible because the remote CICS
system can package up all the screen displays that are generated by the routed
transaction, and send them to your region, where they are unpackaged and
displayed as normal on the terminal screen. Transaction routing is therefore useful
if all the processing for a transaction is to take place on a single remote system.

When to use asynchronous processing

Asynchronous processing allows an application to start a transaction on a remote
CICS system at a particular time. The success or failure of this remotely started
transaction does not affect the application that started it. Therefore, it is useful for
conditions in which it is not necessary, or desirable, to keep a local transaction
waiting while the remote transaction is running.

When to use distributed program link (DPL)

Distributed program link allows an application to issue an EXEC CICS LINK to a
program that resides on another CICS system. Your application passes a
COMMAREA to the linked-to program that can contain instructions on the

20 TXSeries for Multiplatforms: CICS Intercommunication Guide

processing required. The linked-to program then executes and returns the results,
again in a COMMAREA, to the original application. DPL is extremely useful if an
application needs to make a large number of accesses to a remote resource, for
example, to search through a file on a remote CICS system to find a particular data
record, which is then displayed to the user. The local application can use DPL to
connect to a program on the system that owns the data, passing details of which
record is required. The linked-to program can search through the file and return
the required record to the local application. Using DPL in this case is significantly
more efficient that using function shipping to read each record remotely. DPL has
the restriction that the COMMAREA cannot be more than 32700 bytes long. If your
transaction needs to transfer large amounts of data between two CICS regions,
consider using DTP.

When to use distributed transaction processing (DTP)

Distributed transaction processing is the most flexible of all the
intercommunication facilities. It allows an application to send as much data as it
needs, between one or more systems, at any point in its processing. However, this
means it is the most complex to use because the application is responsible for
setting up the communications with the remote system, sending and receiving the
data, and finally closing the communications down when it is finished. It is the
only intercommunication facility that is available to your application if it requires
communication with a non-CICS system.

A checklist of application requirements

This checklist describes possible application requirements and summarizes which
intercommunication facility is likely to be the most efficient:

* A terminal user wants to run a transaction on a remote CICS system. Use
transaction routing.

* A transaction needs to read and write data that is all on a remote CICS system.
Function shipping seems an obvious choice here, but it does have a higher
overhead than transaction routing does. If no processing is required on the local
system, transaction routing is more efficient. If some processing is required
locally, you might consider distributed program link (DPL) or distributed
transaction processing (DTP). As a general rule, it is often best to process data as
close to its source as possible because this is likely to reduce the amount of data
that is sent across the network.

* A transaction needs to read and write a small amount of data from several CICS
systems. Function shipping is a good choice here. It is easy to use and it is
unlikely that much scope exists for pruning the amount of data that is sent
across the network by having a transaction run in each system that owns a
particular piece of data.

* A transaction needs to read or write data that is stored on a remote database
that is accessible by another CICS system. Use distributed program link (DPL) or
distributed transaction processing (DTP) if function shipping is not supported
for these data resources.

* A transaction needs to start one or more transactions in a remote CICS system
and does not need to wait for the results. Use asynchronous processing.

* An application needs to search through a file on a remote CICS system and
retrieve particular pieces of information. Use distributed program link (DPL).

* An application needs to transfer a large amount of data from one system to
another. Use distributed transaction processing (DTP).

* An application needs to coordinate a number of related updates on several
systems. Use distributed transaction processing (DTP).

Chapter 2. Intercommunication planning and system design 21

* An application needs to communicate with a non-CICS system. Use distributed
transaction processing (DTP).

For more information, see |Part 4, “Writing application programs for|
fintercommunication,” on page 245.|

Operational issues for intercommunication

Below is a list of some of the issues that can affect you. It is worth investing some
time on these issues to prevent problems when your system is in production.

* Backup of remote data: Ensure that site of the remote data that is used by the
users of your region is backed up frequently enough and that disaster recovery
procedures are in place to restore the data in the event of a failure.

* Problem determination support: Ensure you have a contact at the remote
system site to help you track down problems with distributed applications. You
need to arrange for the remote system to save transaction dumps and other
problem determination aids for failed applications that are started by
intersystem requests from your region.

* System availability: Ensure that the remote system will be available when your
users require it.

* Network monitoring: Ensure that a clear understanding exists of who is
responsible for monitoring the throughput and availability of the network.

* Compensation for resources used: If the remote systems that will be connecting
to your region are owned by a different organization, some negotiation can be
required to agree on a charging scheme for the resources that are used by
remote users at each site on a day-to-day basis.

For more information, see [“Performance issues for intercommunication” on page|

Bidirectional input and display on AIX

CICS is enabled for bidirectional input and display on local CICS terminals.
Customers who are using data fields that include information expressed in
Hebrew, Arabic, or other right-to-left languages can enter and display information
as they normally do.

22 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 2. Configuring for intercommunication

Before two systems can communicate, they need to know something about the
identity and characteristics of each other, and they need information about the
method that they will use to communicate. They also need to understand the
resources that they will share, and the security checks that they will impose. This
part describes these configuration requirements:

Table 7. Road map

If you want to...

Refer to...

Read about configuring CICS to support
TCP/IP

Chapter 3, “Configuring CICS for TCP/IP,”|
on page 25

Read about configuring CICS to support
SNA

Chapter 4, “Configuring CICS for SNA,” on|

[page 62]

Read about configuring the CICS resources
that will be shared with other systems

Chapter 5, “Configuring resources for]
intercommunication,” on page 109|

Read about configuring CICS to enable only
authorized systems and users to gain access
its resources

Chapter 6, “Configuring intersystem|
security,” on page 123

Read about configuring CICS to support
data conversion when other systems
represent data in a different format

|Chapter 7, “Data conversion,” on page 147

© Copyright IBM Corp. 1999, 2005

23

24 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 3. Configuring CICS for TCP/IP

TXSeries for Multiplatforms offers you a choice of two ways of using TCP/IP
protocols:

* CICS family TCP/IP support, which allows connectivity to other TXSeries for
Multiplatforms, CICS OS/2 regions, and IBM CICS Universal Clients

¢ CICS PPC TCP/IP support, which allows connectivity to other TXSeries for
Multiplatforms regions

For introductory information on these two ways of using TCP/ID, refer to
ICICS family TCP/IP” on page 6)and [“Using CICS PPC TCP/IP” on page 7|

To configure CICS for TCP/IP, perform the following steps:

For CICS family TCP/IP connections:
1. Identify a local name for your region.
2. Set up a Listener Definitions (LD) entry for your region.

3. Set up a Communications Definitions (CD) entry for each remote system with
which your region is to communicate.

For CICS PPC TCP/IP connections:
1. Identify a local name for your region.

2. Set up a Communications Definitions (CD) entry for each remote system with
which your region is to communicate.

The information that follows describes how each of these steps is accomplished.
The references in the road map tables guide you from one step to the next.

— When using CICS on AIX or Windows systems:
CICS commands are used to configure the CICS LD and CD entries.
However, if you are using CICS on an AIX system, you can also use the
System Management Interface Tool (SMIT) to configure these resources. If you
are using CICS on a Windows system, you can use the IBM TXSeries
Administration Tool.

Naming your region for a TCP/IP intercommunication environment

In an intercommunication environment, remote systems need to know the name of
your CICS region in order to:

* Send your region intersystem requests

* Apply security checks and data conversion to intersystem requests that are
received from your region

The name by which remote systems identify your region depends upon the
communication method. The one- through eight-character name that you specify
when you create your region is referred to as the region name, or the APPLID.

A remote TXSeries for Multiplatforms region or a CICS OS/2 Version 3 (or later)
region that is communicating over CICS family TCP/IP also knows your region by

© Copyright IBM Corp. 1999, 2005 25

its APPLID. However, a Version 2 CICS OS/2 region builds a name for your region
based on its network adapter address and port number. For example, if your
region is using the TCP/IP host name cicsopen.cicsland.com or
aix5.cicsland.com and port number 1435, your region would be known as
“05G20XPN”. This name is returned by the cicstcpnetname command, as follows:

cicstcpnetname -a aix5.cicsland.com -p 1435
05G20XPN

For further information about the cicstcpnetname command, refer to the
ffor Multiplatforms Administration Referencel

Your CICS region also has a name that is available to local applications and
resource definitions. CICS applications and resource definitions use a one- through
four-character name called the SYSID to specify the name of the system where a
resource resides. If the resource is remote, the SYSID is the one- through
four-character name of a Communications Definitions (CD) entry. If the resource is
local, the application or resource definition can either not specify a SYSID, or use
the local SYSID. The local SYSID is defined in the LocalSysld attribute of your
region’s Region Definitions (RD) entry. The default value is ISC0, and you can
change this value when you create your region or restart it. Whatever value your
region uses, ensure that it is different from the names of all CD entries and
Terminal Definitions (WD) entries that are used by your CICS region’s local
transactions.

When using CICS for AIX: If you are using SMIT to configure the RD entry, the
SMIT field name for the LocalSysld command
attribute is Region system identifier (short name).

Table 8. Where to next

If you want to... Refer to...

Use CICS family TCP/IP support “Configuring CICS for CICS family TCP/IP|
support”|

Use PPC TCP/IP support “Configuring CICS for CICS PPC TCP/IP|
support” on page 47|

Configuring CICS for CICS family TCP/IP support

CICS family TCP/IP support is enabled in your region by configuring:
* A Listener Definitions (LD) entry with Protocol=TCP

A TCP LD entry is required for each TCP/IP port that CICS regions and IBM
CICS Universal Clients can use to contact the region. While the maximum
number of simultaneous connections through a single port is virtually unlimited,
the system configuration must be adjusted to deal with the load effectively. As a
general rule, a single listener process should not be handling more than about
500 connections (and even this might be restricted by file descriptor limits or
thread limits that are imposed by operating system configuration). Above this
number of connections for a single port, the TCPProcessCount attribute should
be used to adjust the number of operating system processes that CICS uses to
listen for connections. Determining the optimum number of connections that are
simultaneously active to a single listener is dependent on workload profiles, and
cannot be exactly predicted, but the above general rule should help. Configuring
a LD entry is described in|“Configuring LD entries for CICS family TCP/IP” on|
-_ae 27.

26 TXSeries for Multiplatforms: CICS Intercommunication Guide

¢ A Communications Definitions (CD) entry for each remote system with
ConnectionType=ppc_tcp

The CD entries can be defined to the region by using the standard CICS RDO
commands such as cicsadd, or the IBM TXSeries Administration Tool (in CICS
for Windows), or they can be autoinstalled when a remote system acquires the
connection. The RDO technique is described in |“Configuring CD entries for|
|CICS family TCP/IP(CICS on Open Systems only)” on page 34)and the
autoinstall method is described in [’Configuring for autoinstallation of CD|
lentries” on page 55

Examples of CICS family TCP/IP connections are shown in [‘CICS family TCP /IP|
Configuration examples” on page 43

Configuring LD entries for CICS family TCP/IP

This section describes how to configure LD entries for your system. For CICS on
Open Systems, see [“Configuring LD entries for CICS family TCP/IP (CICS on|
Open Systems)”} for CICS for Windows, see [“Configuring LD entries for CICY
family TCP/IP (CICS for Windows only)” on page 28

Configuring LD entries for CICS family TCP/IP (CICS on Open
Systems)

CICS family TCP/IP support requires at least one Listener Definitions (LD) entry
with Protocol=TCP. The TCPAddress and TCPService attributes are used to define
the network adapters and port number on which CICS is to accept connection
requests.

TCPAddress defines the network adapter addresses. It can be specified in the

following ways:

* The Internet Protocol (IP) address in dotted decimal notation. For example,
1.23.45.67. Do not use leading zeros when specifying an address in dotted
decimal notation. CICS interprets such an entry as octal.

* The Internet Protocol (IP) address in dotted hexadecimal notation. For example,
0x01.0x17.0x2D.0x43.

¢ The host name defined in the Internet name service. For example,
aix5.cicsland.com.

The TCPService attribute specifies a TCP/IP service name. This service name is
configured in the TCP/IP configuration file called /etc/services and defines a
TCP/IP port number. How to add entries to /etc/services is described in
lservice name to the TCP/IP configuration” on page 30,

The following example shows TCPAddress and TCPService in a CICS family
TCP/IP LD entry called CICSTCP. Notice also that ActivateOnStartup=yes as CICS
will activate listeners only during region start up. Any LD entries that are added
while the region is running will be used by the CICS region only when the region
is restarted.

CICSTCP: ActivateOnStartup=yes
Protocol=TCP
TCPAddress="aix5.cicsTand.com"
TCPService="cicstcp"

The command to add LD entry CICSTCP to the CICS region’s permanent database
is:

Chapter 3. Configuring CICS for TCP/IP 27

cicsadd -r cics -P -c 1d CICSTCP TCPAddress ="aix2.cicsland.com"
TCPService="cicstcp"

The ActivateOnStartup and Protocol attributes are not specified because the
default values are being used. (The command cicsget -r regionName -c 1d ""
will display the default attributes for the LD entries).

Alternatively, the TCPAddress and TCPService attributes can be left blank. A
blank TCPAddress indicates that CICS can use the address of any of the TCP/IP
network adapters on the machine. A blank TCPService attribute means that CICS
will listen for connections on port 1435.

CICSTCP: ActivateOnStartup=yes
Protocol=TCP
TCPAddress=""
TCPService=""

CICS does not need an entry in /etc/services if TCPService="". However, it is
recommended that you add an entry for the 1435 port to document that your
region is using it.

Note: If you have multiple network adapters, and you configure a LD entry with
TCPAddress=""), that listener cannot be used for CICS family TCP/IP
connections with other CICS server regions. However, such a listener can be
used to support CICS family TCP/IP connections from the CICS server to
IBM CICS Universal Clients. If you want to use CICS family TCP/IP
support between CICS regions, you must ensure that your LD entry defines
only one network adapter address.

Configuring LD entries for CICS family TCP/IP (CICS for
Windows only)

A Listener Definitions (LD) entry describes how your CICS region should connect
to a network. For CICS family TCP/IP support, a LD entry is required for each
TCP/IP port that will be used to receive requests.

To define a LD entry for CICS family TCP/IP, you select your region name from
the main panel of the IBM TXSeries Administration Tool. Then select the Listener
resource from the Resources option of the Subsystem menu.

This action displays the list of LD entries that you have already defined.

Select the New option of the Listeners menu, and the properties notebook window
is displayed, as shown in [Figure 10 on page 29

28 TXSeries for Multiplatforms: CICS Intercommunication Guide

VIBM TXSenes - TYTREG - Listener Definition - Default Stanza Entry

General [[IOP attributes

Listener name: |"'

Description: |Listener Definition

Group: |
¥ Activate on startup
[Protect resource
—Listener attributes
Protocol: |TCPAP =]
IP Address

Named pipe name

H

TCP/IP service: |
H

!

IP Listener Process Count:

Mumber of updates: 0

Permanent | Both I Beset Cancel Help

Figure 10. Listener Definitions (LD) entry

Enter a name for the LD entry in Listener name. This can be up to eight characters
in length, and is a local name that your CICS region uses to identify the LD entry
in CICS messages. It must be different from the names of all other LD entries that
are in your region. However, it does not have to be unique within the network and
does not have to relate to any other names that are used in the network.

The Protocol should be TCP/IP.

The IP address is the TCP/IP address of the machine on which your CICS region
is running. It can be expressed in any of the following ways:

* The Internet Protocol (IP) address in dotted decimal notation. For example,
1.23.45.789. Do not use leading zeros when specifying an address in dotted
decimal notation. CICS interprets such an entry as octal.

* The Internet Protocol (IP) address in dotted hexadecimal notation. For example,
0x01.0x17.0x2D.0x315.

* The host name defined in the Internet name service. For example,
cicsopen.cicsland.com. If a host name is used, it must map to only one IP
address.

Alternatively, the IP address can be left blank to indicate that CICS can use any of
the TCP/IP network adapters that are on the machine.

The TCP/IP service attribute specifies a TCP/IP service name that, in turn, defines
a TCP/IP port number. Adding service entries is described in[“Adding a service]
name to the TCP/IP configuration” on page 30

Chapter 3. Configuring CICS for TCP/IP 29

The default value for the TCP/IP service attribute is blank, which requests that
CICS uses the 1435 port that is the port assigned to CICS by the Internet Assigned
Number Authority (IANA).

When you have filled in all the attributes, select either Permanent or Both to create
the LD entry.

If Permanent is selected, the CICS command that the IBM TXSeries Administration
Tool will issue for the example shown above is:

C:\ cicsadd -r cicswint -P -c 1d CICSTCP \
Protocol=TCP \
TCPAddress="wint127.cicsland.com" \
TCPService="cicstcp"

The cicsadd command is passed the name of each attribute with its required value.
This attribute name can be displayed by placing the mouse pointer over the
description of the attribute on the IBM TXSeries Administration Tool page.

You must restart your region in order to use this listener. You should perform a
cold start if you selected Permanent, or auto start if you selected Both.

Refer to the [[XSeries for Multiplatforms Administration Referencd for a description of
the cicsadd command.

Adding a service name to the TCP/IP configuration

The service name that is specified in the CICS family TCP/IP Listener Definitions
(LD) entry is defined in the TCP/IP configuration file /etc/services. The example
below shows three service name entries from /etc/services. Each entry begins with
a service name (cicstcpl). This is followed by the TCP/IP port number (8595) and
/tcp. You can also add a comment to the end of the line. This must begin with a
hash character (#).

cicstepl 8595/tcp # TCP Tistenerl for region regionName
cicstcp2 8596/tcp # TCP Tistener2 for region regionName
cicstep3 8597/tcp # TCP Tistener3 for region regionName

Note: The allocation of port number to services is not enforced. System
administrators can set up the /etc/services file as they choose, including
using port 1435 for a service other than CICS. Therefore always check
whether you have chosen a port number that is unique to your machine,
and that is not being used by any other CICS region, listener, or TCP
application. If your region is using the CICS default port number 1435, it is
recommended that you add an entry to /etc/services for this port number
to document that it is in use. This might prevent the systems administrator
from configuring another application or CICS region with this port. For
example:

cicstep 1435/tcp # TCP Listener used by region regionName

Increasing the size of the mbuf pool (AIX only)

If your local machine is managing many TCP/IP connections, it might run out of
space in the mbuf pool. This is an area of memory that TCP/IP allocates when AIX
is initialized. The default size is 2 MB, which will manage up to about 800 CICS
family TCP/IP connections.

30 TXSeries for Multiplatforms: CICS Intercommunication Guide

You can display size of the mbuf pool, along with other network options, by using
the no -a command. The mbuf pool size is called thewall. It is expressed in
multiples of 1024 bytes, so in the example below, the mbuf pool size is 2048 x 1024
bytes (2 MB).

% no -a | grep thewall
thewall = 2048

The no -o thewall command allows you to change the mbuf pool size. The
example below sets the mbuf pool size to 4096 x 1024 bytes (4 MB). (You will need
to be the root user to issue this command.)

% no -o thewall 4096

The no command operates only on the current running kernel, so it must be rerun
each time your machine is started up. To configure your machine to run this
command automatically on startup, add the command to the /etc/rc.net file.

Attention: Be careful when you use the no command because it performs no
range checking on the parameters that you specify. If used incorrectly, the no
command can cause your system to become inoperable.

Using SMIT to configure LD entries (AIX only)

When using CICS for AIX, you can use SMIT to configure the Listener Definitions
(LD) entries. To support CICS family TCP/IP, you must configure an LD entry
with the Protocol type field set to TCP. You will need an LD entry for each
TCP/IP port that CICS regions and IBM CICS Universal Clients use to contact the
region. The optimum number of connections simultaneously active through a
single port is about 200 and the maximum is around 450 connections.

To add an LD entry for CICS family TCP/IP to your region:

* Ensure that you are logged on to AIX with enough privileges to change the
region database. (For example, log onto AIX as the root user.)

* Optionally set the environment variable CICSREGION to the name of your
CICS region. For example:

0

% export CICSREGION=cics
* Enter smitty cicsregion to start SMIT.

* Use option Change Working CICS Region to select your CICS region. (This is
required only if you have not set up CICSREGION before starting SMIT.)

* Select options:

» Define Resources for a CICS Region
» Manage Resource(s)
» Listeners
> Add New
This displays the Add Listener panel. Enter a model Listener Definition (LD)
entry name. This could be the name of an LD entry that you have defined
already. Alternatively, press the Enter key to use the default.

[Figure 11 on page 33 shows an example of a SMIT Add Listener panel.

¢ Type in the name of the LD entry in the Listener Identifier field, and the values
that you require for TCP adapter address and TCP service name.

— The TCP adapter address field defines the network adapter addresses of your
machine. It can be specified in the following ways:

Chapter 3. Configuring CICS for TCP/IP 31

- The Internet Protocol (IP) address in dotted decimal notation. For example,
1.23.45.67. Do not use leading zeros when specifying an address in dotted
decimal notation. CICS interprets such an entry as octal.

- The Internet Protocol (IP) address in dotted hexadecimal notation. For
example, 0x01.0x17.0x2D.0x43.

- The host name that is defined in the Internet name service. For example,
aix5.cicsTand.com.

— The TCP service name field specifies the service name that CICS uses when
starting TCP/IP. This service name is configured in the TCP/IP configuration
file called /etc/services and defines a TCP/IP port number.

This is described further in|“Adding a service name to the TCP/IP|
fconfiguration” on page 30

The TCP adapter address and TCP service name attributes can remain blank. A
blank TCP adapter address indicates that CICS can use the address of any of the
TCP/IP network adapters that are on the machine. A blank TCP service name
attribute means that CICS will listen for connections on port 1435.

CICS does not need an entry in /etc/services if TCP service name="". However,
it is recommended that you add an entry for the 1435 port to document that
your region is using it.

Note: If you have multiple network adapters, and you configure a LD entry
with TCP adapter address=""), that listener cannot be used for CICS
family TCP/IP connections with other CICS server regions. However,
such a listener can be used to support CICS family TCP/IP connections
from the CICS server to IBM CICS Universal Clients. If you want to use
CICS family TCP/IP support between CICS regions, you must ensure that
your LD entry defines only one network adapter address.

* Then press the Enter key to create the LD entry.

[Figure 11 on page 33|shows an example of the SMIT panel for adding a new LD
entry.

32 TXSeries for Multiplatforms: CICS Intercommunication Guide

4 N

Add Listener

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...1] [Entry Fields]

* Model Listener Identifier "

* Region name [vijn] +
Add to database only OR Add and Install Add +
Group to which resource belongs [

Activate resource at cold start? yes +
Resource description [Listener Definition]

* Number of updates 0
Protect resource from modification? no +
Protocol type TCP +
TCP adapter address 0
TCP service name [l
Number of TCPIP listener processes to use [1] #
local SNA Server Protocol Type TCP +

[MORE. . .10]

Fl=Help F2=Refresh F3=Cancel F4=List

Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image

Esc+9=Shell Esc+0=Exit Enter=Do

o J

Figure 11. SMIT panel for adding an LD entry for CICS family TCP/IP support

Tuning TCP/IP on the Windows platform

The default settings for the KeepAliveTime and TepTimedWaitDelay registry
settings can cause delays if a network failure occurs. This section discusses what
you must consider for these registry settings when you are connecting Windows
Client terminals (cicslterm.exe) that are hard-named to a Windows region over
TCP/IP. A terminal or a connection is hard-named when you give it a specific
name in the DFHCCINX (for connections), or in the DFHCHATX (for terminals).

TCP/IP’s KeepAliveTime registry setting

The KeepAliveTime value sets the time that can elapse without a communication
from an endpoint connection before the system checks whether the endpoint
connection is still active. The default value is 7,200,000 milliseconds (2 hours). If a
network failure occurs while this registry setting is set to this default setting, two
hours can elapse before the failed endpoint connection is cleared and able to be
reused.

You can lower the value for the KeepAliveTime registry setting, which increases
network activity on idle connections, but the activity on active connections is not
affected. However, if the KeepAliveTime value is set too low, active connections
can terminate incorrectly because of latency on the network. The appropriate value
for the KeepAliveTime registry setting differs for each installation. Some
installations run efficiently by using a value as low as five seconds.

You can change the KeepAliveTime registry setting in the following Windows
registry location:

HKEY _LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters

Microsoft SNA Server’'s KeepAlive registry setting: If you are using the
Microsoft SNA Server over encapsulated IP and you have applied the

Chapter 3. Configuring CICS for TCP/IP 33

KeepAliveTime registry setting change in the Windows registry, you possibly need
to configure the Microsoft SNA Server not to use TCP/IP’s KeepAlive facility.

For example, suppose that the implementation has a Local Area Network (LAN)
with IBM Universal Clients connecting to a local server that is using SNA Server to
connect to a mainframe. In this configuration, if the value for TCP’s
KeepAliveTime registry setting is set low (to detect terminal disconnections
quickly), configure the SNA Server not to use TCP/IP’s KeepAlive facility.
However, if the value of TCP’s KeepAliveTime registry setting is set high enough
to allow the external link to be correctly registered, the SNA Server can be
configured to use the SNA KeepAlive registry setting.

To configure the Microsoft SNA Server not to use TCP/IP’s KeepAlive facility, set
the value for SNA’s KeepAlive registry setting to NO in the Windows Registry.

You can change the registry settings for the Microsoft SNA Server configuration in
the following Windows registry location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\SnaBase\Parameters\SnaTcp

TcpTimedWaitDelay settings

The Microsoft Windows implementation of TCP/IP uses a default value for the
TepTimedWaitDelay registry setting of 240 seconds (four minutes). If a network
failure occurs, it is possible that CICS will not detect the failure of an active session
(as opposed to an idle session) for four minutes. The TcpTimedWaitDelay setting is
by Microsoft SNA Server with encapsulated IP.

The value for the TepTimedWaitDelay is derived from the Maximum Segment
Length (MSL), which is the maximum time that an IP packet can exist. The setting
for the TepTimedWaitDelay registry setting must be twice the value of the MSL to
allow enough time for the final packet to be delivered and the response to be
received. For example, if a TCP/IP implementation has an average of 30 seconds
for an MSL, set the TcpTimedWaitDelay value at 1 minute to allow enough time
for packet delivery and response.

Attention: Reducing the value of the TepTimedWaitDelay registry setting on a
congested network can result in spurious failures. Before making any changes to
this registry setting, ensure that the packet delivery times for your implementation
are stable.

You can change the TepTimedWaitDelay registry setting in the following Windows
registry location:

HKEY _LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters

Configuring CD entries for CICS family TCP/IP
This section describes how to configure CD entries for your system. For CICS on
Open Systems, see |“Conﬁguring CD entries for CICS family TCP/IP(CICS on|
Open Systems only)”} for CICS for Windows, see [“Configuring Communication:
Definitions (CD) entries for CICS family TCP/IP (CICS for Windows only)” o

page 36.|

Configuring CD entries for CICS family TCP/IP(CICS on Open
Systems only)

To define a CICS family TCP/IP connection in your region, configure a
Communications Definitions (CD) entry that has ConnectionType=ppc_tcp.

34 TXSeries for Multiplatforms: CICS Intercommunication Guide

To configure the location of the remote system in a CICS family TCP/IP CD entry,
use the RemoteTCPAddress and RemoteTCPPort attributes.

RemoteTCPAddress specifies the machine, or more specifically the network
adapter card on the machine, on which the remote system is running. It can be
specified in the following ways:

* The Internet Protocol (IP) address in dotted decimal notation. For example,
1.23.45.67. Do not use leading zeros when specifying an address in dotted
decimal notation. CICS interprets such an entry as octal.

* The Internet Protocol (IP) address in dotted hexadecimal notation. For example,
0x01.0x17.0x2D.0x43.

* The host name that is defined in the Internet name service. For example,
aix5.cicsland.com. If a host name is used, it must map to only one IP address.
You can check this by using the host command. For example:

$ host aix5.cicsland.com
aix5.cicsland.com is 1.23.45.67

The RemoteTCPPort attribute must be set to the port number that the remote
system is using to listen for connection requests. The default value for
RemoteTCPPort is 1435, which is the port that is assigned to CICS by the Internet
Assigned Number Authority (IANA).

The ListenerName attribute must be set to the name of a Listener Definitions (LD)
entry that is defined in the local region that has Protocol=TCP. This LD entry
defines the IP address and port number that the remote system must use to contact
the local region. CICS requires the ListenerName attribute to be correctly
configured, even if this connection is to be used only for outbound requests,
because a cicsip process, which is started as a result of the LD entry, is required to

open the TCP/IP connection. {“Configuring LD entries for CICS family TCP/IP’]

n page 27| describes how to set up an LD entry.)

The RemoteLUName attribute should be set to the remote region name (that is, the
APPLID), unless the remote system is a version 2 CICS OS/2 or version 2 CICS for
Windows system, when it should be the netname that is returned by the
cicstcpnetname command:

cicstcpnetname -a <RemoteTCPAddress> -p <RemoteTCPPort>

The subiject of how regions are named is discussed further in[“Naming your region|
ffor a TCP/IP intercommunication environment” on page 25/ For further
information about the cicstcpnetname command, see the [TXSeries for Multiplatforms|
[Administration Referencel

The following attributes are not required for a CICS family TCP/IP connection and
can remain as the default value:

* RemoteNetworkName

* SNAConnectName

* GatewayName

* AllocateTimeout

* RemoteSysEncrypt

Refer to|“Data conversion for transaction routing” on page 164 for information
about how to configure the RemoteCodePageTR attribute.

Chapter 3. Configuring CICS for TCP/IP 35

The following example shows a command to add a CD entry called TOSF to the
CICS region’s permanent database. Only some of the attributes are specified. The
attributes that are not specified are set to their default values. You can view the
default values for a CD entry for your region by using cicsget -r regionName -c
cd n “'

cicsadd -r cics -P -c cd TOSF \
ConnectionType=ppc_tcp \
RemoteLUName="cicsosfl" \
RemoteTCPAddress="digital.cicsland.com" \
RemoteTCPPort=1435 \
ListenerName="CICSTCP" \
LinkUserId="LINKTOSF"

Refer to|Chapter 6, “Configuring intersystem security,” on page 123| for
information about how to configure the following security attributes:

* OutboundUserlds

* RemoteSysSecurity

* LinkUserld

* TSLKeyMask

* RSLKeyMask

Configuring Communications Definitions (CD) entries for CICS
family TCP/IP (CICS for Windows only)

A Communications Definitions (CD) entry describes details of a remote system and
how your local region should communicate with it. To define a CD entry for a
remote system, select your region name from the main panel of the IBM TXSeries
Administration Tool. Then select the Communication resource from the Resources
option of the Subsystem menu.

This displays the list of CD entries that you have already defined.

Select the New option of the Communications menu. The properties notebook
window is displayed.

The attributes for a CD entry are grouped into four pages:

General
Attributes that are required by all CD entries.

SNA Attributes that describe how the remote system communicates over a SNA
network. Attributes on this page are not applicable to a CICS family
TCP/IP CD entry.

TCP/TP
Attributes that describe how the remote system connected to the TCP/IP
network.

Security
Attributes that define how security will be managed.

The General page is shown in IFigure 12 on page 371

36 TXSeries for Multiplatforms: CICS Intercommunication Guide

IBM Transaction Server - cicsnt - Communication Definition - Untitled n-
General |sNA | TCPNP| Security |

SYSID: [TosF |

Description: |Tn cicsosfl region |

Group: | |
[Activate on startup [Protect resource from modification
B In service
Connection type: |CICS TCPHIP |£I

Code page for transaction routing:
[1s08859-1 |

Number of updates: 000

|Eermanent| | Both I | Reset I |§ance|| ‘ Help I

Figure 12. General Communications Definitions (CD) panel

Enter the four-character SYSID for this CD entry. This is the CD entry’s key and
must be different from that which is used by other CD entries in your region.
However, the name is used only by local resources and applications. It does not
have to be unique within the network, and it does not relate to any other values in
the remote system.

The Connection type should be changed to CICS TCP/IP. The Code page for
transaction routing should be the code page that is used to flow transaction
routing data across the network. The correct code page depends on the national
language of your local region and the type of the remote system. [Chapter 7, “Data|
fconversion,” on page 147| describes how to determine the value.

Select the TCP/IP tab to display the TCP/IP attributes, which is shown in
Figure 13| This panel is used to describe the remote CICS region and its location in
the TCP/IP network.

IBM Transaction Server - cicsnt - Communication Definition - Untitled nu
GEnEraIl SNA TCP{IP | SE[:urityl

rPPC TCPHIP
Remote APPLID:

Remote network name:
Remote DCE cell:

Timeout on allocate:

 CICS TCP/IP
Remote APPLID:
Remote network name:

Remote IP address: |digital.cicsland.com

Remote IP port: | 1435

Wl

Local listener: | LINKTOSF

|Eermanenl| I Both I | Reset I ‘Qancell | Help I

Figure 13. TCP/IP Communications Definitions (CD) panel

Chapter 3. Configuring CICS for TCP/IP 37

For most CD entries the Remote APPLID is the name of the remote CICS region.
The exceptions are when the remote system is either:

e CICS OS/2 version 2

* CICS for Windows

For these systems the APPLID must be generated by using the cicstcpnetname
utility. This is described in the [TXSeries for Multiplatforms Administration Reference|

The Remote IP address is the TCP/IP address of the machine on which the remote
CICS region is running. It can be expressed in one of the following ways:

* The Internet Protocol (IP) address in dotted decimal notation. For example,
1.23.45.67. Do not use leading zeros when specifying an address in dotted
decimal notation. CICS interprets such an entry as octal.

* The Internet Protocol (IP) address in dotted hexadecimal notation. For example,
0x01.0x17.0x2D.0x43.

* The host name that is defined in the Internet name service. For example,
aix5.cicsland.com. If a host name is used, it must map to only one IP address.

The Remote IP port attribute must be set to the port number that the remote
system will be using to listen for TCP/IP connection requests. The default value is
1435, which is the port that is assigned to CICS by the Internet Assigned Number
Authority (IANA).

The Local Listener attribute must be set to the name of a TCP Listener Definitions
(LD) entry that is defined in the local region. This LD entry defines the IP address
and port number that the remote system must use to contact the local region. CICS
requires the Local Listener attribute to be correctly configured even if this CD
entry is only to be used for outbound requests, because the cicsip process, which is
started as a result of the LD entry, is required to open the TCP/IP connection.
Further information about how to configure the LD is given in [“Configuring LD}
fentries for CICS family TCP/IP” on page 27

Select the Security tab to display the security attributes, which are shown in
Figure 14f These attributes describe the security checking that applies to all
intersystem requests that use this CD entry.

| IBM Transaction Server - cicsnt - Communication Definition - Untitied Rl
General | SNA | TCRiP Security |

rTransmission Inbound request security
encryption level
@ None ® Local
O Control O Verify
2 Al data 2 Trusted

[Send user ID with outbound requests

UserlD for inbound requests: | LINKTOSF

rKey masks

Transaction level security key masks:

none

Resource level security key masks:

none

‘Eermanentl | Both I ‘ Reset I |Qance|| | Help I

Figure 14. Security Communications Definitions (CD) panel

38 TXSeries for Multiplatforms: CICS Intercommunication Guide

Selecting the Local option for Inbound request security indicates that CICS should
run all incoming intersystem requests from the remote system under the user ID
that is specified in UserID for inbound requests. The User Definitions (UD) entry
for this user ID determines which resources these intersystem requests can access.
This type of security is called Link Security, and is described in

Isecurity” on page 126.|

Selecting either Verify or Trusted causes CICS to apply User Security to incoming
intersystem requests. This means CICS uses the security information (such as user
ID and password) that is sent with the intersystem request. CICS also uses the user
ID that is specified in UserID for inbound requests to restrict the resources that
inbound intersystem requests can access. For more information about User
Security, see [CICS user security” on page 127 |

Security information that is sent with outbound requests is controlled by the Send
user ID with outbound requests options. [“Setting up a CICS region to flow user
[Ds” on page 130 and [“Setting up a CICS region to flow passwords” on page 131
describe how these options work.

After you have filled in all the attributes, select either Permanent or Both to create
the CD entry.

If Permanent is selected, the CICS command that the IBM TXSeries Administration
Tool will issue for the example shown above is:

cicsadd -r cics -P -c cd TOSF \
ConnectionType=ppc_tcp \
RemoteLUName="cicsosf1l" \
RemoteTCPAddress="aix.cicsland.com" \
RemoteTCPPort=1435 \
ListenerName="CICSTCP" \
LinkUserId="LINKTOSF"

The cicsadd command is passed the name of each attribute with its required value.
You can display this attribute name by placing the mouse pointer over the
description of the attribute on the IBM TXSeries Administration Tool panel. Any
attribute that is not specified on the cicsadd command is set to its default value.
How to view and change the default values for CD entry attributes is described in
[“Configuring the default CD entry (CICS on Open Systems)” on page 56,

Refer to the [TXSeries for Multiplatforms Administration Reference for a description of
the cicsadd command.

Using SMIT to configure CD entries (AIX only)

When using CICS for AIX, you can use the AIX System Management Interface Tool
(SMIT) to configure the Communications Definitions (CD) entries. To support CICS
family TCP/IP, you must configure a CD entry with the Connection type field set

to ppc_tcp.

To add a CD entry for CICS family TCP/IP to your region:

* Ensure that you are logged on to AIX with enough privileges to change the
region database. (For example, log onto AIX as the root user.)

* Optionally set the environment variable CICSREGION to the name of your
CICS region. For example:

Chapter 3. Configuring CICS for TCP/IP 39

$ export CICSREGION=cics
$

e Enter smitty cicsregion to start SMIT.

* Use option Change Working CICS Region to select your CICS region. (This is
required only if you have not set up CICSREGION before starting SMIT.)

* Select options:

» Define Resources for a CICS Region
» Manage Resource(s)
» Communications
> Add New
This displays the Add Communication panel. Enter a model Communications
Definition (CD) entry name. This could be the name of a CD entry that you have
defined already. Alternatively, press the Enter key to use the default.

[Figure 15 on page 41|shows an example of a SMIT Add Communication panel.

¢ The Communication Identifier field is the name of the CD entry. This name is
used in the SYSID option of CICS commands.

* The Connection type field specifies ppc_tcp to indicate that this is a CD entry
for CICS family TCP/IP.

* You configure the location of the remote system by using the TCP address for
the remote system and TCP port number for the remote system fields.

— The TCP address for the remote system specifies the machine, or more
specifically the network adapter card on the machine, on which the remote
system is running. It can be specified in the following ways:

- The Internet Protocol (IP) address in dotted decimal notation. For example,
1.23.45.67. Do not use leading zeros when specifying an address in dotted
decimal notation. CICS interprets such an entry as octal.

- The Internet Protocol (IP) address in dotted hexadecimal notation. For
example, 0x01.0x17.0x2D.0x43.

- The host name that is defined in the Internet name service. For example,
aix5.cicsland.com. If a host name is used, it must map to only one IP
address. You can check this by using the host command.

— The TCP port number for the remote system field must be set to the port
number that the remote system is using to listen for connection requests. The
default value for TCP port number for the remote system is 1435, which is
the port assigned to CICS by the Internet Assigned Number Authority
(IANA).

* The Listener Definition (LD) entry name field must be set to the name of an
LD entry that is defined in the local region that has Protocol type of TCP. This
LD entry defines the IP address and port number that the remote system is to
use to contact the local region. CICS requires the Listener definition (LD) entry
name field to be correctly configured, even if this connection is to be used only
for outbound requests, because a cicsip process, which is started as a result of
the LD entry, is required to open the TCP/IP connection. (]“Using SMIT to|
[configure LD entries (AIX only)” on page 31| describes how to set up a LD
entry.)

* The security levels that your CICS region will use are configured with:
— Send userids on outbound requests?
— Security level for inbound requests
— Userld for inbound requests
— Transaction Security Level (TSL) Key Mask
— Resource Security Level (RSL) Key Mask

[Chapter 6, “Configuring intersystem security,” on page 123| describes how CICS
security is configured.

40 TXSeries for Multiplatforms: CICS Intercommunication Guide

* Refer to[“Data conversion for transaction routing” on page 164| for information
about how to configure the Code page for transaction routing field.

* The following fields are not required for CICS family TCP/IP connections, and
can remain as the default value:
— SNA network name for the remote system
— SNA profile describing the remote system
— Gateway Definition (GD) entry name
— Timeout on allocate (in seconds)
— Transmission encryption level
— Default modename for a SNA connection

shows an example of the SMIT panel for adding a new CD entry.

4 . . N\
Add Communication
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

* Communication Identifier [TOSF]

* Model Communication Identifier "

* Region name [cics] +
Add to database only OR Add and Install Add +
Group to which resource belongs 0
Activate the resource at cold start? yes +
Resource description [Connection

to cicsosfl]

* Number of updates 0
Protect resource from modification? no +
Connection type ppc_tcp

+
Name of remote system [cicsosfl]
SNA network name for the remote system 0
SNA profile describing the remote system [
Default modename for a SNA connection 0
Gateway Definition (GD) entry name
Listener Definition (LD) entry name [CICSTCP]
TCP address for the remote system [digital.cicsland.com]
TCP port number for the remote system [1435] #
Timeout on allocate (in seconds) [o] #
Code page for transaction routing [1S08859-1]
Set connection in service? yes +
Send userids on outbound requests? sent +
Security Tevel for inbound requests Tocal +
UserId for inbound requests [LINKTOSF]
Transaction Security Level (TSL) Key Mask [none]
Resource Security Level (RSL) Key Mask [none]
Transmission encryption Tevel none +

Fl=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

NG /

Figure 15. SMIT panel for adding a CD entry for CICS family TCP/IP support

Table 9. Road map

If you want to... Refer to...

Review examples and a summary of CICS “CICS family TCP/IP Configuration|

configurations examples” on page 43 [and ["Summary off
CICS attributes for TCP/IP resourc

definitions” on page 54|

Chapter 3. Configuring CICS for TCP/IP 41

Table 9. Road map (continued)

If you want to... Refer to...

Read about configuring CICS resources Chapter 5, “Configuring resources for
intercommunication,” on page 109|

Read about intercommunication security Chapter 6, “Configuring intersystem|
security,” on page 123

Read about data conversion |Chapter 7, “Data conversion,” on page 147

Configuring an IBM CICS Client to use CICS family TCP/IP

This section describes how to configure an IBM CICS Client to connect to a CICS
region through CICS family TCP/IP. For detailed information about how to
configure a CICS Client, refer to CICS Universal Client: Client Administration.

The client initialization file needs a Server section for each region it will
communicate with, and a Driver section for each Protocol used. Example Server
and Driver sections are shown in

Server = cicsopen
NetName = cicsopen.cicsland.com
Protocol = TCPIP
Description = CICS on cicsopen region
UpperCaseSecurity = N
InitialTransid = CESN
ModelTerm = ibm-cics-client
Port = 1435
Driver = TCPIP
DriverName = CCLIBMIP

Figure 16. IBM CICS Client Server and Driver examples

The parameters are as follows:

Server
The name that the Client uses for the region.

NetName
The character or numeric TCP/IP identifier for the host. This can be an IP
address (like 1.23.45.67), or a hostname (for example, cicsopen, or
cicsopen.cicsland.com). A hostname is looked up in the Client’s HOSTS file, or
its name server.

Protocol
This must match a Driver entry in the Client’s Driver section.

Description
An optional description of the server that is returned in some programming
functions on the Client.

UpperCaseSecurity
It is recommended that this be set to N for a TXSeries for Multiplatforms
region. This prevents user IDs and passwords being converted to uppercase by
the Client (which it does by default). Unless all the user IDs and passwords on
the region are in uppercase only, this conversion could cause errors.

InitialTransid
This parameter is optional. If present, it is used as the first transaction (with
any parameters following it) run when the client terminal emulator connects to
the server.

42 TXSeries for Multiplatforms: CICS Intercommunication Guide

ModelTerm
This parameter is optional. When a Client terminal is autoinstalled into a
TXSeries for Multiplatforms region, the model Terminal Definition used will
have a DevType of this value. See the|TXSeries for Multiplatforms Administration|
for further details. The default value is ibm-cics-client.

Port
The port on which the CICS for Windows region listens for connections. If the
parameter is omitted (or set to 0), the Client’s TCP/IP SERVICES file is
searched for a CICS entry. If this is not found, the default of 1435 is used.

Driver
Any 1- through 8-character name.

DriverName
The client device driver for the TCP/IP product that the Client uses.

Timeouts supported on TCP/IP connections between a
TXSeries for Multiplatforms region and a Universal Client V3.1
or higher

A TXSeries for Multiplatforms region can time out transactions that are running
over TCP/IP connections to an IBM CICS Universal Client V3.1 and higher based
on the value that is specified in the region’s Transaction Definitions (TD) Timeout
attribute. When a Universal Client V3.1 or higher connects to a TXSeries for
Multiplatforms region, it identifies itself as a client that can support timeout
functions. In this case, the value that is set in the region’s Transaction Definitions
(TD) Timeout attribute automatically overrides any value that is set in the Region
Definitions (RD) XPRecvTimeout attribute. If the region waits for a response from
the client longer than the time that is specified in its Transaction Definitions (TD)
Timeout attribute, the region abends the transaction and flows the abend to the
client.

The following conditions can then occur:

¢ If the region receives a response from the client, the connection is maintained
and the client can submit further transactions.

* If the region receives no response from the client, the TCP/IP connection to the
client is checked. If still no response is received from the client, the connection
closes and all transactions that are running over it are terminated.

e If the region cannot contact the client, the connection closes and all transactions
that are running over it are terminated.

An IBM CICS Universal Client V3.1 and higher can time out External Call Interface
(ECI) programs based on the value that is in the eci_timeout field in the ECI
parameter block. If the client times out a transaction in this case, the transaction is
purged on the server, and returns an A147 abend code.

CICS family TCP/IP Configuration examples

The examples that follow show a CICS for Windows region called cicswint
communicating with a CICS on Open Systems region, called cics, and with a CICS
OS/2 region called CICSOS2. ITable 8 on page 26| shows the TCP/IP host names and
ports that the CICS regions use, and [Figure 17 on page 44/ summarizes the
configuration that is discussed in this section.

Chapter 3. Configuring CICS for TCP/IP 43

Table 10. CICS family TCP/IP configuration example

cicswint cics CICSOS2
Local TCP/IP host wint127.cicsland.com aix.cicsland.com warp3.cicsland.com
Listening port 1435 1435 5566

When using CICS for AIX
The examples in this section show CICS commands being used to configure
the resources. If you are using CICS for AIX, you could use the System
Management Interface Tool (SMIT) to configure the resources.

/etc/services

cicstcp 1435/tcp
cicsosf1
Protocol=TCP CICS0S2
TCPAddress=digital.cicsland.com
TCPService=cicstcp System Initialization Table (SIT)

TCP/IPlocal hostname: WARP3.CICSLAND.COM
|| CICS TCP/IPlocal host port: 5566

ConnectionType=cics_tcp Appl
RemoteLUName=cicswint ConnectionandSession Table
RemoteTCPAddress=wint127.cicsland.com Localhostname: WARP3.CICSLAND.COM
RemoteTCPPort=1435 Remote hostname: WINT127.CICSLAND.COM
ListenerName=CICSTCP Remote hostport: *

TCP/IP

\etc\services

cicstcp 1435/tcp

cicswint

Listener Definition (LD) CICSTCP:
Protocol=TCP
TCPAddress=wint127.cicsland.com
TCPService=cicstcp

CICS
ConnectionType=cics_tcp Appl
RemoteLUName=05G1HSOM
RemoteTCPAddress=warp3.cicsland.com
RemoteTCPPort=5566
ListenerName=CICSTCP

ConnectionType=cics_tcp
RemoteLUName=cicsosf1

Remote TCPAddress=digital.cicsland.com
RemoteTCPPort=1435
ListenerName=CICSTCP

Figure 17. CICS family TCP/IP example

CICS 0OS/2 configuration

You define the CICS OS/2 listener in the System Initialization Table (SIT) by using
the CEDA transaction. The host name of the local machine, warp3.cicsland.com
and the listening port of 5566 is shown in [Figure 18 on page 45

44 TXSeries for Multiplatforms: CICS Intercommunication Guide

Update Add View Delete Exit Help
FAASIT3 System Initialization Table-2
More : - +
Group Name : FAASYS
System Communications
Local System ID. : C0S2
Local System Appl ID . . . : CICSOS2

Default Remote System ID . :
NETBIOS Support

NETBIOS Listener Adapter . : (0, 1, or B)
Maximum NETBIOS Systems. . : 0 (0-255)
TCP/IP Support
TCP/IP Local Host Name . . : WARP3.CICSLAND.COM
TCP/IP Local Host Port . . : 5566 (* or 1-65535)
Maximum TCP/IP Systems . . : 25 (0-255)
PNA Support
Load PNA Support M (Y or N)
PNA Model Terminal : MPNA

Enter Fl=Help F3=Exit F7=Bkwd F8=Fwd F10=Actions F12=Cancel

Figure 18. CICS OS/2 System Initialization Table

shows the CICS OS/2 definition of the connection from the CICS0S2
region to the cics region. You define it in the Connection and Session Table (TCS®)

by using the CEDA transaction. Note that CICS OS/2 expands the Remote host
port value of ™" to 1435.

Update Add View Delete Exit Help h
FAATCS5 Connection and Session Table
Connection Name. : 6000
Group Name : COMMS
Connection Type. : TCP (APPC, NETB or TCP)
Connection Priority. : 086 (0-255)
Description. : CONNECTION TO CICS
Session Details
Session Count. : 10 (1-99)
Session Buffer Size. . . : 40000 (512-40000)
Attach Security. : L (L=Local, V=Verify)
Partner Code Page. . . . : 00037
TCP/IP Details
Local host name. : WARP3.CICSLAND.COM
Remote host name : AIX5.CICSLAND.COM
Remote host port : * (1-65535, OR *)
\Fnter Fl=Help F3=Exit F10=Actions F12=Cancel)

Figure 19. CICS OS/2 Connection and session table

Configuration for region cicsopen

shows the Listener Definitions (LD) entry that enables cicsopen to
receive CICS family TCP/IP connection requests from remote systems.

CICSTCP:
ActivateOnStartup=yes
Protocol=TCP
TCPAddress="cicsopen.cicsland.com"
TCPService="cicstcp"

Figure 20. Listener Definitions (LD) entry

Chapter 3. Configuring CICS for TCP/IP 45

The TCPService name is configured in the /etc/services file.
cicstcp 1435/tcp # TCP Listener used by region cicsopen

shows the Communications Definitions (CD) entry for the connection
from cicsopen to CICS0S2. The CICS OS/2 region is version 2, so you set the
RemoteLUName attribute by using the cicstcpnetname command:

0

% cicstcpnetname -a warp3.cicsland.com -p 5566
05G1HSQM

T0S2:
ConnectionType=cics_tcp
RemotelLUName="05G1HSQM"
RemoteTCPAddress="warp3.cicsland.com"
RemoteTCPPort=5566
ListenerName="CICSTCP"
RemoteCodePageTR="1BM-037"

Figure 21. Communications Definitions (CD) entry

shows the CD entry for the connection from cicsopen to cics. Note that
CICS on Open Systems regions use their region name for the RemoteLUName
attribute.

TOSF:
ConnectionType=ppc_tcp
RemoteLUName="cics"
RemoteTCPAddress="aix.cicsland.com"
RemoteTCPPort=1435
ListenerName="CICSTCP"
RemoteCodePageTR="1S08859-1"

Figure 22. Communications Definitions (CD) entry

Configuration for region cics

shows the Listener Definitions (LD) entry that enables cicsosfl to
receive CICS family TCP/IP connection requests from remote systems.

CICSTCP:
ActivateOnStartup=yes
Protocol=TCP
TCPAddress="aix.cicsland.com"
TCPService="cicstcp"

Figure 23. Listener Definitions (LD) entry
The TCPService name is configured in the /etc/services file as follows:

cicstep 1435/tcp # TCP Listener used by region cics

[Figure 24 on page 47 shows the Communications Definitions (CD) entry for the
connection from cics to cicswint.

46 TXSeries for Multiplatforms: CICS Intercommunication Guide

TWIN:
ConnectionType=ppc_tcp
RemotelLUName="cicswint"
RemoteTCPAddress="wint127.cicsTand.com"
RemoteTCPPort=1435
ListenerName="CICSTCP"
RemoteCodePageTR="1S08859-1"

Figure 24. Communications Definitions (CD) entry

Configuring CICS for CICS PPC TCP/IP support
To configure a connection for CICS PPC TCP/IP support you must:

* Configure a Communications Definitions (CD) entry for each remote region with
the attribute ConnectionType=ppc_tcp.

This is described in|“Configuring CD entries for CICS PPC TCP/IP.”]|

Configuring CD entries for CICS PPC TCP/IP

A Communications Definitions (CD) entry describes details of a remote system and
how your local region should communicate with it. To define a CD entry for a
remote system, select your region name from the main panel of the IBM TXSeries
Administration Tool. Then select the Communication resource from the Resources
option of the Subsystem menu.

This displays the list of CD entries that you have already defined.

Select the New option of the Communications menu. The properties notebook
window will be displayed.

The attributes for a CD entry are grouped into four pages:

General
Attributes that are required by all CD entries.

SNA Attributes that describe how the remote system communicates over an
SNA network. Attributes on this page are not applicable to an CICS PPC
TCP/IP CD entry.

TCP/IP
Attributes that describe how the remote system is connected to the TCP/IP
network.

Security
Attributes that define how security is to be managed.

The General page is shown in [Figure 25 on page 48

Chapter 3. Configuring CICS for TCP/IP 47

General |SNA | TCPAIP | Security |

SYSID: [AMTE \

Description: ‘Tu cics9000 region ‘

Group: ‘ ‘
B4 Activate on startup [Protect resource from modification
E In service
Connection type: [PPC TCPIP 2]

Code page for transaction routing:
[1508859-1| |

Number of updates: 000

|EErmanEnl| I Both I | Reset I ‘ Cancel I | Help I

Figure 25. General Communications Definitions (CD) panel

Enter the four-character SYSID for the CD entry. This is the CD entry’s key, so it
must be different from that which is used by all other CD entries in your region.
However, the name is used only by local resources and applications, and does not
have to be unique within the network. It does not have to relate to any other
names in the remote system.

The Connection type should be changed to be PPC TCP/IP, and the Code page
for transaction routing should be the code page that is used to flow transaction
routing data across the network. The correct code page depends on the national
language of your local region and the type of the remote system. [Chapter 7, “Data|
fconversion,” on page 147| describes how to determine this value.

Select the TCP/IP tab to display the TCP/IP attributes, as shown in
These attributes describe the remote system.

IBM Transaction Server - cicsnt - Communication Definition - Untitled H!
Generall SNA TCPAP |Securily|

[PPC TCPHIP
Remote APPLID: | cics3000

Remote network name: | MYSNANET
Remote DCE cell:

Timeout on allocate:

rCICS TCPAIP
Remote APPLID: |cicsS000

Remote network name: | MYSNAMNET

Remote IP address:

Remote IP port: (1435

[T

Local listener:

|Eermanent| | Both I |

Figure 26. TCP/IP Communications Definitions (CD) panel

48 TXSeries for Multiplatforms: CICS Intercommunication Guide

If the remote system is a CICS region, the Remote APPLID is the name of this
CICS region.

Select the Security tab to display the security attributes, which are shown in
Figure 27} These attributes describe the security checking that is applied to all
intersystem requests that use this CD entry.

| IBM Transaction Server - cicsnt- Communication Definition - Untitled _ Ralie)
General | SNA | TCPAR Security

rTransmission Inbound request security
encryption level
@ None O Local
< Control O Verify
O All data @ Trusted

B4 Send user ID with outbound requests

UserlD for inbound requests: | LINKRMTE

rKey masks

Transaction level security key masks:

none i

Resource level security key masks:

none g

|Eermanent| | Both I | Beset I | Cancel I ‘ Help I

Figure 27. Security Communications Definitions (CD) panel

Selecting the Local option for Inbound request security indicates that CICS should
run all incoming intersystem requests from the remote system under the user ID
that is specified in UserID for inbound requests. The User Definitions (UD) entry
for this user ID will determine which resources these intersystem requests can
access. This type of security is called Link Security, and is described in
lsecurity” on page 126.|

Selecting either Verify or Trusted results in CICS applying User Security to
incoming intersystem requests. This means that CICS uses the security information
(such as user ID and password) that is sent with the intersystem request. CICS also
uses the user ID that is specified in UserID for inbound requests to restrict the
resources that inbound intersystem requests can access. For more information
about User Security, see [“CICS user security” on page 127.|

Security information that is sent with outbound requests is controlled by the Send
user ID with outbound requests options. [“Setting up a CICS region to flow user
[Ds” on page 130 and [“Setting up a CICS region to flow passwords” on page 131
describe how these options work.

After you have filled in all the attributes, select either the Permanent or Both
button to create the CD entry.

If Permanent is selected, the CICS command that the IBM TXSeries Administration
Tool will issue for the example shown above is:

Chapter 3. Configuring CICS for TCP/IP 49

cicsadd -r cicsopen -P -c cd RMTE \
ConnectionType=ppc_tcp
RemoteLUName="cics9000"
LinkUserid="LINKRMTE"
RemoteSysSecurity=trusted

—

The cicsadd command is passed the name of each attribute with its required value.
You can display this attribute name by placing the mouse pointer over the
description of the attribute on the IBM TXSeries Administration Tool page. Any
attribute that is not specified on the cicsadd command is set to its default value.
How to view and change the default values for CD entry attributes is described in
[“Configuring the default CD entry (CICS on Open Systems)” on page 56,

Refer to the [TXSeries for Multiplatforms Administration Reference for a description of
the cicsadd command.

illustrates how the RD and CD attributes in two CICS regions should
correspond if they are to communicate.

TCP/IP
PPC PPC
Executive Executive
| |

cicswint cics?000
Region Deﬂr:tinns(RD)\\ Region Definitions (RD)
LocalSysld=LOCL e LocalSysId=9000
LocalNetworkName="" \ LocalNetworkName=MYSNANET
Communications Definitions (CD):RMTE T Communications Definitions (CD)WINT
ConnectionType=ppc_tcp ConnectionType=ppc_tcp
RemoteLUName=CICS9000] RemoteLUName=CICSWINT
RemoteNetworkName=MYSNANET —| RemoteNetworkName=""
AllocateTimeout=60 AllocateTimeout=60

Figure 28. Two regions communicating across TCP/IP

Note that the RemoteNetworkName is given a value in one of the regions. This
attribute is not required for a CICS PPC TCP/IP connection. However, if it is
specified, it must match the LocalNetworkName value that is in the other region.

For CICS on Open Systems only:

You define a CICS PPC TCP/IP connection in your region by using a
Communications Definitions (CD) entry that has ConnectionType=ppc_tcp.

The location of the remote system is configured in the CD entry with the
RemoteLUName and RemoteNetworkName attributes.

If the remote system is a CICS on Open Systems and CICS for Windows region,
you should set the RemoteLUName attribute to the name of the remote region,
and the RemoteNetworkName to the value that is coded in the remote region’s
Region Definitions (RD) attribute LocalNetworkName.

50 TXSeries for Multiplatforms: CICS Intercommunication Guide

The AllocateTimeout attribute defines, in seconds, how long CICS should wait for
the remote system to accept an intersystem request. The default value is 0, which
means “wait forever”. You should set this timeout attribute to a value such as 60 in
order to activate the timeout process. Then, if the remote system becomes
overloaded, or fails while accepting an intersystem request, the CICS transaction
that is issuing the intersystem request is not left hanging.

The following attributes are not required for a CICS PPC TCP/IP connection and
can be left as the default value:

* SNAConnectName

* GatewayName

* ListenerName

* RemoteTCPAddress

* RemoteTCPPort

* RemoteSysEncrypt

* DefaultSNAModeName

Refer to[“Data conversion for transaction routing” on page 164 for information
about how to configure the RemoteCodePageTR attribute.

Refer to|Chapter 6, “Configuring intersystem security,” on page 123 for
information about how configure the following security attributes:

* OutboundUserlds

* RemoteSysSecurity

* LinkUserld

* TSLKeyMask

* RSLKeyMask

shows a CICS on Open Systems or a CICS for Windows region named
cicsopen communicating with a CICS on Open Systems region named cics9000,
and shows the attributes that their CD entries use to define the connection between
them.

TCP/IP
PPC PPC
Executive Executive
| |

cicsopen cics?000
Region Definitions (RD) || Region Definitions (RD)
LocalSysld=LOCL T LocalSysld=9000
LocalNetworkName="" <\ LocalNetworkName=MYSNANET
Communications Definitions (CD):RMTE BEEE Communications Definitions (CD):OPEN
ConnectionType=ppc_tcp ConnectionType=ppc_tcp
RemoteLUName=CICS9000] RemoteLUName=CICSOPEN
RemoteNetworkName=MYSNANET —| RemoteNetworkName=""
AllocateTimeout=60 AllocateTimeout=60

Figure 29. Two regions communicating across TCP/IP

The command shown below adds the RMTE CD entry to the region cicsopen’s
permanent database:

Chapter 3. Configuring CICS for TCP/IP 51

cicsadd -r cicssopen -P -c cd RMTE \

ConnectionType=ppc_tcp \
RemotelLUName="cics9000" \
RemoteNetworkName="MYSNANET" \
AllocateTimeout=60

The attributes that are not specified on the cicsadd command are set to their
default values. You can view the default values for a CD entry by using the
command cicsget -r regionName -c cd "" .

Using SMIT to configure CD entries (AIX only)

When using CICS for AIX, you can use the AIX System Management Interface Tool
(SMIT) to configure the Communications Definitions (CD) entries. To add a CD
entry for CICS PPC TCP/IP to your region, you must:

Ensure you are logged on to AIX with enough privileges to change the region
database. (For example, log onto AIX as the root user.)

Optionally set the environment variable CICSREGION to the name of your
CICS region. For example:

0

% export CICSREGION=cics

)
%

Enter smitty cicsregion to start SMIT.

Use option Change Working CICS Region to select your CICS region. (This is
required only if you have not set up CICSREGION before starting SMIT.)

Select options:

» Define Resources for a CICS Region
» Manage Resource(s)
» Communications
> Add New
This displays the Add Communication panel. Enter a model Communications
Definition (CD) entry name. This could be the name of a CD entry that you have
defined already. Alternatively, press the Enter key to use the default.

[Figure 30 on page 53| shows an example of a SMIT Add Communication panel.

Communication Identifier is the name of the CD entry.

Name of remote system is the LU name of the remote system, and SNA
network name for the remote system is the name of the network that to which
the remote system is attached.

If the remote system is a CICS on Open Systems or CICS for Windows region,
you should set the Name of remote system attribute to the name of the remote
region, and the SNA network name for the remote system to the value that is
coded in the remote region’s Region Definitions (RD) attribute Network name to
which local region is attached.

Timeout on allocate (in seconds) defines how long your CICS region should
wait for the remote system to accept requests. A value of 60 seconds is
suggested. The default value is 0, which means "wait forever". You should set
this timeout field to a value such as 60 in order to activate the timeout process.
Then, if the remote system becomes overloaded, or fails while accepting an
intersystem request, the CICS transaction that is issuing the intersystem request
is not left hanging.

The security levels that your CICS region will use are configured with:
— Send userids on outbound requests?

— Security level for inbound requests

— Userld for inbound requests

— Transaction Security Level (TSL) Key Mask

— Resource Security Level (RSL) Key Mask

52 TXSeries for Multiplatforms: CICS Intercommunication Guide

[Chapter 6, “Configuring intersystem security,” on page 123| describes how CICS

security is configured.

* Refer to[‘Data conversion for transaction routing” on page 164 for information
about how to configure the Code page for transaction routing field.

* The following fields are not required for a CICS PPC TCP/IP connection and
can remain as the default value:
— SNA profile describing the remote system
— Gateway Definition (GD) entry name
— Listener Definition (LD) entry name
— TCP address for the remote system
— TCP port number for the remote system
— Transmission encryption level
— Default modename for a SNA connection

* DPress the Enter key to create the CD entry.
shows an example of the SMIT panel for adding a new CD entry.

4 . . N\
Add Communication
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]
% Communication Identifier [OPEN]
* Model Communication Identifier "
* Region name [cics] +
Add to database only OR Add and Install Add +
Group to which resource belongs [
Activate the resource at cold start? yes +
Resource description [Connection
to cicsopen]
* Number of updates 0
Protect resource from modification? no +
Connection type ppc_tcp +
Name of remote system [cicsopen]
SNA network name for the remote system 0
SNA profile describing the remote system 1
Default modename for a SNA connection 0
Gateway Definition (GD) entry name 0
Listener Definition (LD) entry name 0
TCP address for the remote system 0
TCP port number for the remote system [1435] #
Timeout on allocate (in seconds) [60] #
Code page for transaction routing [1S08859-1]
Set connection in service? yes +
Send userids on outbound requests? sent +
Security level for inbound requests trusted +
UserId for inbound requests [LINKOPEN]
Transaction Security Level (TSL) Key Mask [none]
Resource Security Level (RSL) Key Mask [none]
Transmission encryption Tevel none +
Fl=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
NG /
Figure 30. SMIT panel for adding a CD entry for CICS PPC TCP/IP support
Chapter 3. Configuring CICS for TCP/IP 53

For more information, see the [TXSeries for Multiplatforms Administration Reference

Table 11. Road map

If you want to...

Refer to...

Read a summary of CICS configurations

“Summary of CICS attributes for TCP/IP|

resource definitions”]

Read about configuring CICS resources

Chapter 5, “Configuring resources for|

intercommunication,” on page 109

Read about controlling intersystem security

Chapter 6, “Configuring intersystem|

security,” on page 123

Read about intersystem data conversion

|Chapter 7, “Data conversion,” on page 147

Summary of CICS attributes for TCP/IP resource definitions

lists the important resource definition attributes that are used for
intersystem communications for TCP/IP connections.

Table 12. Comparison of CICS resource definitions TCP/IP connections

Resource Definition

CICS family TCP/IP
connections

CICS PPC TCP/IP
connections

Communications Definition
(CD) AllocateTimeout

Not applicable.

Wait time in seconds for an
intersystem request to be
started in the remote system.

Communications Definition
(CD) ConnectionType

Set to ppc_tcp.

Communications Definition
(CD) GatewayName

Not required.

Not required.

Communications Definition
(CD) ListenerName

Set to the name of a locally
defined Listener Definition
(LD) entry that has
Protocol=TCP.

Set to blank ().

Communications Definition
(CD) RemoteLUName

Set to the region name
(APPLID) of the remote
system, or netname returned
by the cicstcpnetname
command.

Set to the region name
(APPLID) of the remote
system.

Communications Definition
(CD) RemoteNetworkName

Not required. Set to blank
")

Not required. Set to blank
("") or the value from the
LocalNetworkName attribute
in the remote system’s
Region Definition (RD) entry.

Communications Definition
(CD) RemoteTCPAddress

Set to the host name or
Internet address of the
remote network adapter.

Not required.

Communications Definition
(CD) RemoteTCPPort

Set to the number of the port
that the remote system is
listening on.

Not required.

Communications Definition
(CD) SNAConnectName

Not required.

Not required.

Region Definition (RD)
LocalLUName

Not required.

Not required.

54 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 12. Comparison of CICS resource definitions TCP/IP connections (continued)

Resource Definition CICS family TCP/IP CICS PPC TCP/IP
connections connections
Region Definition (RD) Not required. Set to blank Not required. Set to blank
LocalNetworkName ("") or the name of the local | (") or the name of the local
SNA network. SNA network.
Transaction Definition (TD) | Not required. Not required.
TPNSNAProfile
Listener Definition (LD) At least one LD entry is Not required.
entry required with Protocol=TCP.
The TCPAddress and
TCPService attributes must
also be configured.
Gateway Definition (GD) Not required. Not required.
entry

Configuring for autoinstallation of CD entries

Note on network protocols
CICS can autoinstall CD entries for IBM CICS Universal Clients that are
connected over either TCP/IP or SNA networks. The information in this
section applies to both network protocols.

CICS automatically creates (autoinstall) a Communications Definitions (CD) entry
for an IBM CICS Client when it connects to your region. It also autoinstalls a CD
entry if a remote CICS region acquires a CICS family TCP/IP connection to your
local region and a suitable CD entry is not already defined in your region.

Irrespective of whether the remote system is an IBM CICS Client or a CICS region,
the attributes that are assigned to an autoinstalled CD entry are set from:

¢ Information that is extracted from the network.

* Information that is received from the remote system. This information is
received by the CICS transaction CCIN.

* Information from the CICS supplied program DFHCCINX. This program is
called each time an autoinstall takes place. It is passed information about the
remote system and can veto the install or change some of the attributes that are
assigned to the CD entry. You can customize this program.

* Information that is configured in the default CD entry called ™.

shows how this information is used to set each of the CD attributes.

Table 13. How CD attributes are set in an autoinstalled CD entry
CD attribute Value

SYSID (key of the CD entry) An initial value is proposed by CICS that is unique in
the region. The DFHCCINX program can override
this. However, the autoinstall fails if DFHCCINX
changes the SYSID to the name of an existing CD
entry.

Chapter 3. Configuring CICS for TCP/IP 55

Table 13. How CD attributes are set in an autoinstalled CD entry (continued)

CD attribute

Value

RemoteLUName An initial value is extracted from the network. The
DFHCCINX program can override this. However,
DFHCCINX should not change it when the network
is between two CICS regions because this causes
some intersystem requests to fail.

RemoteNetworkName Values for these attributes are extracted from the

SNAConnectName network and from information that is received by the

GatewayName CCIN transaction.

ListenerName

RemoteTCPAddress

RemoteTCPPort

InService Values for these attributes are retrieved from the

AllocateTimeout default CD entry called ™.

OutboundUserlds

RemoteSysEncrypt

DefaultSNAModeName

RemoteCodePageTR An initial value can be received by the CCIN
transaction and this is passed to DFHCCINX.
DFHCCINX can use the received code page name,
the RemoteCodePageTR attribute from the default
CD entry ("), or supply a new value.

RemoteSysSecurity Initial values for these attributes are taken from the

LinkUserId default CD entry called "". DFHCCINX can override
these values. DFHCCINX can also control how
passwords that are received from CICS Clients are
managed. This is explained further in |"C0ntrolling|
[the management of passwords” on page 64.|

TSLKeyMask These attributes are always set to all in an

RSLKeyMask autoinstalled CD entry. Therefore, if you want to

restrict access to your region for autoinstalled CD
entries, use the LinkUserld attribute.

The sections that follow describe how to configure your region so that
autoinstalled CD entries have the correct attributes.

Configuring the default CD entry (CICS on Open Systems)

As shown in [Table 13 on page 55 the default CD entry, "™, is used as a template for

autoinstalled CD entries. Therefore, it is important that it contains the attributes
that you want to be assigned to autoinstalled CD entries. You can view the current
settings of the default CD entry by using the cicsget command.

56 TXSeries for Multiplatforms: CICS Intercommunication Guide

cicsget -c cd -r cicsunix ""

GroupName=""
ActivateOnStartUp=yes
ResourceDescription="Communications Definition"
AmendCounter=0
Permanent=no
ConnectionType=local_sna
RemotelLUName=""
RemoteNetworkName=""
SNAConnectName=""
GatewayName=""
ListenerName=""
RemoteTCPAddress=""
RemoteTCPPort=""
AllocateTimeout=0
RemoteCodePageTR="1S08859-1"
InService=yes
OutboundUserIds=sent
RemoteSysSecurity=Tocal
LinkUserId=""
TSLKeyMask=none
RSLKeyMask=none
RemoteSysEncrypt=none
DefaultSNAModeName=""

Use the information that is given in [Table 13 on page 55 and [“What the supplied|
version of DFHCCINX does” on page 58 to determine which attributes need
changing. The RemoteCodePageTR attribute often needs changing in a DBCS
environment. The following sections explain which CD attributes are important for
each type of connection:

+ |“Configuring CD entries for CICS family TCP/IP(CICS on Open Systems only)”]
on page 34,

+ |“Configuring CD entries for CICS PPC TCP/IP” on page 47|

+ |“Configuring CICS for PPC Gateway server SNA support” on page 89

When you have determined which values you require for the default CD entry, use
the cicsupdate command to change the attributes. For example, to change the
LinkUserld attribute in the default CD entry:

0

% cicsupdate -c cd -r cicsunix "" LinkUserId="LINKAUTO"

When the required attributes are set in the default CD entry, restart your region to
allow it to read the new values.

Configuring the default CD entry (CICS for Windows)

To view and possibly change the default attributes for a Communications
Definitions (CD) entry, select your region name from the main panel of the IBM
TXSeries Administration Tool. Then select the Communication resource from the
Resources option of the Subsystem menu.

This displays the list of CD entries that you have already defined.

Select the Defaults option of the Communications menu. A properties notebook
window is displayed showing the existing default values.

From this window you can change any of the default values. For example, if your
region is running in a DBCS environment, you might want to change the Code

Chapter 3. Configuring CICS for TCP/IP 57

page for transaction routing to the code page that is used by your CICS clients, so
that the supplied version of DFHCCINX sets up the correct code page when these
clients connected.

Select Permanent to save any changes that you have made.

Configuring region database table sizes

The Region Definitions (RD) attribute ClassTableSize indicates how much storage
is assigned to the internal hash tables that are used to access each resource
definition entry. For maximum efficiency, the value that is supplied for each type
of resource definition entry is normally twice the number of entries that are
defined in the region database. So, for example, if you had five Communications
Definitions (CD) entries defined in the region database, you would code a value of
10 for the CD.

When you are using autoinstall, the number of CD entries in the region database is
changing. Therefore, when you code ClassTableSize, remember to include the
number of expected autoinstall CD entries in your calculation.

Note: The hash table storage is allocated from the region pool size. Therefore, if
you increase the amount of storage that is used by the hash tables, you
might also need to increase the size of region pool that is configured in the
RD attribute MaxRegionPool.

What the supplied version of DFHCCINX does

The supplied version of DFHCCINX accepts all installation requests. In addition, it
does the following:

* Uses the values that are supplied by CICS for the CD entry name (SYSID) and
RemoteLUName

* Checks the code page that is received from the remote system. If the remote
system requested a code page, DFHCCINX checks whether a iconv conversion
template is between the local code page and the remote code page. If a
conversion template exists, the received code page is used for the
RemoteCodePageTR attribute in the autoinstalled CD entry. If no conversion
template exists, or if the remote system did not supply a code page, the code
page from the RemoteCodePageTR attribute in the default CD entry "' is used.

* Sets up client security. If the CD entry is for an IBM CICS Client that is using a
CICS family TCP/IP connection ECI request, or a cicslterm on Windows,
RemoteSysSecurity is set to verify and passwords are checked and discarded.
Otherwise RemoteSysSecurity is set to the value from the default CD entry. The
LinkUserId is set to the value from the default CD entry for all autoinstalled CD
entries.

* Log a message to the CCIN log. DFHCCINX writes a message to the Transient
Data queue, CCIN, which is defined to write to a file called:

/var/cics_regions/regionName/data/CCIN.out
For example:

date time CD entry 'TNO3' for CICS server 'TNX43W03' has been
installed with code page 'IS08859-1'

58 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHCCINX cannot prevent an uninstall (delete) of a CD entry. So for an uninstall
request, DFHCCINX only logs a message to the CCIN log. For example:

date time CD entry '@RP1' for CICS client '@RP1AAAA' has been deleted

DFHCCINX can be changed. If the default version of DFHCCINX does not match

the needs of your region, refer to[“The parameters passed to DFHCCINX”| and

[“Writing your own version of DEFHCCINX” on page 62)which describe the

information that is passed to DFHCCINX, and how to use this information to write

your own version.

The parameters passed to DFHCCINX

The parameters for DFHCCINX are passed a COMMAREA structure called
CICS_CCINX_Parameters, which contains fields shown in [Table 14

Table 14. Fields in the DFHCCINX COMMAREA structure, CICS_CCINX_Parameters

C datatype Field name Size

cics_sshort_t Length 2-byte signed integer
cics_ubyte_t RequestType 1-byte unsigned integer
cics_ubyte_t SystemType 1-byte unsigned integer
cics_sshort_t ApplldLength 2-byte signed integer
cics_char_t Applld 9-byte character array
cics_sshort_t SysldLength 2-byte signed integer
cics_char_t Sysld 5-byte character array
cics_sshort_t RemoteCodePageLength 2-byte signed integer
cics_char_t RemoteCodePage 80-byte character array
cics_sshort_t LocalCodePageLength 2-byte signed integer
cics_char_t LocalCodePage 80-byte character array
cics_sshort_t DefaultCodePageLength 2-byte signed integer
cics_char_t DefaultCodePage 80-byte character array
cics_ubyte_t RemoteSysSecurity 1-byte unsigned integer
cics_sshort_t LinkUserIdLength 2-byte signed integer
cics_char_t LinkUserld 9-byte character array
cics_ubyte_t ConnectionType 1-byte unsigned integer
cics_ulong_t RemoteTCPAddress 4-byte unsigned integer
cics_ushort_t RemoteTCPPort 2-byte unsigned integer
cics_char_t RemoteSNALUName 9-byte character array
cics_ubyte_t ReturnCode 1-byte unsigned integer
cics_ulong_t ConnectionProtection 4-byte unsigned integer

The fields in the COMMAREA for an install request are:

Length

The size of the CICS_CCINX_Parameters structure.

RequestType

Indicates whether it is an install or an uninstall request. For an install
request this would be set to 0.

Chapter 3. Configuring CICS for TCP/IP

59

SystemType
Indicates whether the install request is for a client or a server. For a client,
this field is set to 0; for a server, its value is 1.

ApplldLength
Length of the NETNAME in the Netname field.

Applld
NETNAME of the remote system padded on the right with NULLs (0x00).
The value that is returned in this field is set in the RemoteLUName
attribute of the installed CD entry. Do not change this value if the CD
entry is for a CICS server.

SysIdLength
The length of the SYSID in the Sysld field.

Sysld The four-character key for the CD entry padded on the right with NULLs
(0x00).

RemoteCodePageLength
The length of the code page in RemoteCodePage.

RemoteCodePage
This is the code page that is received from the remote system, padded on
the right with NULLSs (0x00). The value in this field when DFHCCINX
returns to CICS is used to set the RemoteCodePageTR attribute in the
installed CD entry.

LocalCodePageLength
The length of the code page in LocalCodePage.

LocalCodePage
This is the code page for the local region, padded on the right with NULLs
(0x00).

DefaultCodePageLength
The length of the code page in DefaultCodePage.

DefaultCodePage
This is the code page from the RemoteCodePageTR attribute of the default
CD entry ", padded on the right with NULLs (0x00).

RemoteSysSecurity
This indicates the type of security that CICS should use when receiving
requests from the remote system. This is the value from the
RemoteSysSecurity attribute of the default CD entry, "". The value that
DFHCCINX returns in this field is used to set the RemoteSysSecurity field
in the installed CD entry. Use:
* 0 for RemoteSysSecurity=local
* 1 for RemoteSysSecurity=verify
* 2 for RemoteSysSecurity=trusted

If the remote system is an IBM CICS Client, this field is used to determine

whether the password should be kept or discarded. Possible values of this

field are:

* 0x00 to indicate that the password should be checked, then discarded

* 0x10 to indicate that the password should not be checked, and should be
discarded

* 0x20 to indicate that the password should be checked, then kept

* 0x30 to indicate that the password should not be checked, but should be
kept

60 TXSeries for Multiplatforms: CICS Intercommunication Guide

The use of this field is explained in[“Controlling the management of]
passwords” on page 64,|and [“Setting up a CICS region to flow passwords’]

on page 131.|

LinkUserIdLength
The length of the user ID in LinkUserld.

LinkUserld
When DFHCCINX is called, this field contains the LinkUserld attribute
(padded on the right with NULLs (0x00)) from the default CD entry, "
The value that is returned to CICS by DFHCCINX is set in the LinkUserld
attribute of the installed CD entry.

ConnectionType
This indicates the type of connection on which the CCIN request was
received. It is set to:
* 1 for ConnectionType=local_sna
¢ 2 for ConnectionType=cics_tcp or for a local client (cicslterm)
* 4 for ConnectionType=ppc_gateway
* 8 for ConnectionType=ppc_tcp
* 10 for ConnectionType=cics_ipc

RemoteTCPAddress
If ConnectionType=2 (cics_tcp, or a cicslterm), this field contains the
TCP/IP address of the TCP connected client or system. Alternatively, if it is
set to "12345678" (network order), it is a cicslterm.

RemoteTCPPort
If ConnectionType=2 (cics_tcp, or cicslterm), this field contains the TCP
port number of the remote system. If it is set to zero (0), it is a cicslterm.

RemoteSNALUName
If ConnectionType=1 (local_sna) or if ConnectionType=4 (ppc_gateway),
this field contains the SNA logical unit (LU) name of the remote system.

ReturnCode
Set this field to indicate whether CICS is to proceed with the installation
request. Use:

* 0 to indicate that the install can proceed.

* 1 to indicate that the install can proceed, but a response is to be sent to
the remote system to indicate that a problem exists with the code page.

* 0x10 to veto the install.

The fields in the COMMAREA for an uninstall request are:

Length
The size of the CICS_CCINX_Parameters structure

RequestType
Indicates whether it is an install or an uninstall request. For an uninstall
request, this field is set to 1.

SystemType
Indicates if the install request is for a client or a server. For a client, this
field is set to 0; for a server, it is set to 1.

ApplldLength
Length of the NETNAME in the Netname field.

Chapter 3. Configuring CICS for TCP/IP 61

Applld
The value that is returned in this field is from the RemoteLUName
attribute of the CD entry.

SysIdLength
The length of the SYSID in the Sysld field.

Sysld The four-character key for the CD entry.

The remainder of the fields in the uninstall COMMAREA are set to NULLs (Ox00).

Writing your own version of DFHCCINX

The source for the supplied version of DFHCCINX (cics_ccinx.ccs), along with a
Makefile to build it, are in directory:

prodDir/samples/ccinx

In addition, a header file that describes the parameters that are passed to
DFHCCINX, is provided in file prodDir/include/cics_ccinx.h. cics_ccinx.ccs is
written in the C programming language, so the program begins at the main
function. [“What the supplied version of DFHCCINX does” on page 58| describes
what this program does. The sections below suggest some changes to the supplied
version. When you have created your own version, [“Installing your version of]
[DFHCCINX into the region” on page 65|describes how to install it in your region.

Note: If you want to change the functions in the supplied cics_ccinx.ccs file, copy
cics_ccinx.ccs to your own directory before modifying it so that you can
refer to the original version if necessary. In CICS on Open Systems, if you
want to use the sample Makefile, copy that to you own directory also, and
modify the PROGRAM. variable to the path name to which your compiled
DFHCCINX should be written. The value of PROGRAM in the supplied
Makefile overwrites the supplied DFHCCINX in prodDir/bin.

What DFHCCINX can do

DFHCCINX is passed a parameter structure in a COMMAREA that contains
information about the CD entry that is to be installed or uninstalled.
[parameters passed to DEHCCINX” on page 59| describes this parameter structure.

For an install request, the parameter structure contains the values that CICS is
using for some of the CD attributes. It also contains information about the remote
system and the type of connection that is used to contact the region.
shows the values that can be changed by DFHCCINX. Alternatively, DFHCCINX
can veto the installation request by setting the ReturnCode field to 0x10.
DFHCCINX can also use EXEC CICS commands to perform any additional set up
for the remote system. However, it must not access the principal facility because
this is reserved for the use of CICS only.

Table 15. CD attributes that can be changed by DFHCCINX

COMMAREA field names Corresponding CD attribute Restrictions

Sysld (and SysIdLength) CD entry key If this is changed to the name of a CD entry
that is already defined in the region, the install
fails.

Applld (and ApplldLength) RemoteLUName Do not change this field if the remote system is

a CICS region. Otherwise, transaction routing
and asynchronous processing requests that
involve the remote region might fail.

62 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 15. CD attributes that can be changed by DFHCCINX (continued)

COMMAREA field names Corresponding CD attribute Restrictions
RemoteCodePage (and RemoteCodePageTR None
RemoteCodePageLength)

RemoteSysSecurity RemoteSysSecurity None
LinkUserld (and LinkUserld None
LinkUserIdLength)

DFHCCINX cannot prevent an uninstall (delete) of a CD entry. It is called so that it
can maintain private data or log messages.

Logging messages to the CCIN log

The supplied version of DFHCCINX logs information to the CCIN transient data
queue each time it is called. This allows you to keep track of the remote systems
that are connecting to your region. The function in the supplied version of
DFHCCINX that writes the log messages is called CCINX_LogMessage. You can
change this routine to log different information. Alternatively, if you do not need
this information, you could remove the calls to CCINX_LogMessage from the main
function of DFHCCINX. Removing this logging enables DFHCCINX to run faster,
and saves disk space, especially if you have many IBM CICS Clients connecting to
the region.

Assigning a value to RemoteCodePageTR

The supplied version of DFHCCINX validates the code page that is received from
the remote system, by attempting to access the data conversion template that
translates between the local code page and the code page that is requested by the
remote system. This method works in all environments. However, it is an
inefficient method for a particular installation in which the conversion templates
available are static. Therefore, you can improve the performance of DFHCCINX by
hardcoding the code page that is assigned to an autoinstall CD entry. For example,
if all remote systems were to use the code page that was configured in the default
CD entry, ", the function CCINX_CheckCodePage in the supplied DFHCCINX
could be changed to copy the DefaultCodePage into the RemoteCodePage field.
Alternatively, DFHCCINX could have a static table that assigns code pages based
on the information about remote system, or the received code page.

Preventing autoinstall

For security reasons, you might want to prevent some or all CD entries from
autoinstalling in your region. For example, you might want to disable autoinstall
completely, or for a particular connection type. Alternatively, you might choose to
allow autoinstall only for particular remote systems.

CICS does not autoinstall a CD entry if DFHCCINX returns ReturnCode=0x10 in its
parameter structure. Therefore, you can use the information that is passed to
DFHCCINX to restrict when autoinstall is to proceed. In the example below,
DFHCCINKX is preventing all autoinstall requests for CICS family TCP/IP
connections. This would mean that IBM CICS Clients could not connect to your
region by using CICS family TCP/IP because they require an autoinstalled CD
entry. A remote CICS region could connect across CICS family TCP/IP only if you
had explicitly defined a CD entry for it.

Chapter 3. Configuring CICS for TCP/IP 63

EXEC CICS ADDRESS COMMAREA(Parameters);

if ((Parameters->RequestType == CICS_CCINX REQUESTTYPE INSTALL) &&;amp;
(Parameters->ConnectionType == CICS_CCINX_CTYPE_CICSTCP))

Parameters->ReturnCode = CICS_CCINX_RETURNCODE_REJECT;
}

Note: The constants that begin CICS_CCINX_ are defined in the C language header
file cics_ccinx.h, which is supplied with DFHCCINX.

Controlling the management of passwords

In some conditions, it might be necessary for the local CICS region to send a
password and user ID to a remote system. This can occur if, for example, your
CICS region is acting as a client gateway to a CICS for MVS/ESA™ host and you
want to control all security with RACF® at the host. It is also needed when your
SNA product does not support sending already_verified userids (such as the
Microsoft Microsoft SNA Server for Windows), and you want to implement user
security.

CICS does not normally save passwords that it receives when a user signs on.
However, if you require CICS to pass the password on to a remote system, it must
save it. The DFHCCINX exit supplies options that can be used to override entries
in the default CD entry so that passwords that are received from CICS on Open
Systems client ECI requests, or from CICS for Windows cicslterm, are kept so that
they can later be passed on to a remote system.

Note: When CICS saves the password in storage, the password is encrypted.
However when passwords are sent over an SNA network, they are sent in
plain text. This is a requirement of the SNA architecture. Creating a
DFHCCINX to save passwords does mean the overall system security is
lowered. The default DFHCCINX, which does not save passwords, should
therefore be used wherever possible.

The sending of passwords between clients and the local CICS region is controlled
by the RemoteSysSecurity field in the DFHCCINX COMMAREA. The client can
send a password when this field is set to CICS_CCINX_SECURITYTYPE_VERIFY.
You can control whether CICS should save the password with the following values
in the RemoteSysSecurity:

CICS_CCINX_PSWD_CHECK_AND_DROP (0x00)
Indicates that when CICS has verified a user ID and a password that it has
received from the client or remote system, it should discard it. This means
that if the request is routed on to another system, the password cannot
accompany the request.

This value is used either of it is set explicitly, or if
CICS_CCINX_SECURITYTYPE_VERIFY is not set (regardless of the
setting of other values of the CICS_CCINX_PSWD_ field).

CICS_CCINX_PSWD_CHECK_AND_KEEP (0x20)
Indicates that when CICS has successfully verified a user and a password
that it has received from the client or remote system, it should save it. This
means that both the user ID and the password can accompany the request
if it is routed on to another system. (The attribute OutboundUserlds in the
CD entry for the system to which the request is routed is used to
determine whether the password is actually sent.)

64 TXSeries for Multiplatforms: CICS Intercommunication Guide

This value is ignored unless CICS_CCINX_SECURITYTYPE_VERIFY is also
requested.

CICS_CCINX_PSWD_IGNORE_AND_DROP (0x10)
Indicates that when CICS has received a user ID and a password with a
request, it is not to verify the password but should handle the user ID as if
it were accompanied by a valid password. The password is discarded,
which means that if the request is later routed on to another system, the
password cannot accompany the request.

This value is ignored unless CICS_CCINX_SECURITYTYPE_VERIFY is also
requested.

When this option is chosen, password validation for the client is disabled,
including signon with the CESN transaction.

CICS_CCINX_PSWD_IGNORE_AND_KEEP (0x30)
Indicates that if CICS receives a user ID and a password with a request, it
is not to verify the password but should handle the user ID as if it were
accompanied by a valid password. The password should be saved so it is

available to be forwarded to another system in that same way as the
CICS_CCINX_PSWD_CHECK_AND_KEEP option is.

This value is ignored unless CICS_CCINX_SECURITYTYPE_VERIFY is also
requested.

When this option is chosen password validation for the client is disabled,
including signon with the CESN transaction.

If the passwords are kept, they can be sent from the local CICS region to a remote
CICS region. This is set in the OutboundUserlds attribute in the CD. Relevant
values of the OutboundUserlds attribute are:

sent_only_with_pswd
Send user ID with its password. If the password is not available, do not
send a user ID.

sent_maybe_with_pswd
Send user ID with its password. If the password is not available, send the
user ID already verified.

For examples of the use of these parameters, refer to|“Setting up a CICS region to|
fflow passwords” on page 131]

Installing your version of DFHCCINX into the region

The location of DFHCCINX is specified in the DFHCCINX Program Definition
(PD) entry. The PathName attribute of this entry is set to DFHCCINX, which
means that CICS uses the first version of the file DFHCCINX that it finds in the

directories that are specified in the region’s PATH. To install your own version of
DFHCCINX either:

* Copy your version of DFHCCINX to a directory that is specified before
prodDir/bin in your region’s PATH. For example,
/var/cics_regions/regionname/bin. This means that CICS finds your version of
DFHCCINX before the supplied version in prodDir/bin.

* Alternatively, change the PD entry for DFHCCINX so that it specifies the
location of your version of DFHCCINX in the PathName attribute. This PD
entry is protected (Permanent=yes), so you must switch it to unprotected
(Permanent=no) while you update it. The example below shows the PD entry
for DFHCCINX being updated in both the permanent and running database of

Chapter 3. Configuring CICS for TCP/IP 65

CICS region cicsopen. The existing version is deleted from the running region.
Then, the new value of PathName is set along with Permanent=no. Finally, the
process is repeated to switch the PD entry back to Permanent=yes.

cicsdelete -c pd -r cicsopen -R DFHCCINX

cicsupdate -c pd -r cicsopen -B DFHCCINX PathName=cicshin/DFHCCINX \
Permanent=no

cicsdelete -c pd -r cicsopen -R DFHCCINX

cicsupdate -c pd -r cicsopen -B DFHCCINX Permanent=yes

When the PD entry points to the location of your version of DFHCCINX, either
restart your region, or use CEMT SET PROGRAM(DFHCCINX) NEW to bring the
new DFHCCINX into use.

For more information, see the following sections:

“IBM CICS Universal Client products” on page 4|

“Summary of CICS attributes for TCP /IP resource definitions” on page 54|

Also refer to the description of Communications Definitions in

Multiplatforms Administration Referencd

66 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 4. Configuring CICS for SNA

This chapter describes how to configure a CICS region to use the Systems Network
Architecture (SNA) protocol. TXSeries for Multiplatforms regions can use SNA to
communicate with any other system that supports this protocol, including CICS
Transaction Server for z/0S, CICS/ESA, CICS/MVS, CICS/400, CICS/VSE, and
CICS 0S/2.

To enable SNA communications, you must first identify your CICS region in the
SNA network. The various names that identify a CICS region in the network are
discussed in ["Naming CICS regions in an SNA intercommunication environment.”|
Because the underlying SNA services are provided by a separate SNA product, you
must then configure the SNA product. For information about how to configure a
SNA product for CICS, see one of the following documents:

o |TXSeries for Multiplatforms Using IBM Communications Server for AIX with CICS|

» |TXSeries for Multiplatforms Using IBM Communications Server for Windows Systems|
with CICS|

o |TXSeries for Multiplatforms Using Microsoft SNA Server with CICS|

o |TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICS|

o |TXSeries for Multiplatforms Using SNAP-IX for Solaris with CICS|

Each of these documents presents example configurations of TXSeries for
Multiplatforms regions that are communicating with mainframe CICS and other
TXSeries for Multiplatforms regions.

After your region is named and the SNA product is configured, you can configure

your CICS region to implement SNA communications in two ways:

* Through local SNA support, discussed in|’Configuring CICS for local SNA|
[support” on page 70|

+ Through PPC Gateway server SNA support, discussed in [“Configuring CICS for]
[PPC Gateway server SNA support” on page 89

To use either of these implementation scenarios, you must configure various CICS
resource definitions from the command line, by using the IBM TXSeries
Administration Tool on Windows systems, or by using the AIX System
Management Interface Tool (SMIT). Configuring resource definitions by using each
of these configuration methods is outlined within both implementation scenario
sections.

— Autoinstallation of Communications Definitions (CD) entries
CICS can automatically install a Communications Definitions (CD) entry in
the local region for an IBM CICS Client that is connected over an SNA
network. CICS uses the same process to do this task as it does to install CD
entries automatically for clients that are connected over a TCP/IP network.
See [“Configuring for autoinstallation of CD entries” on page 55| for more
information.

Naming CICS regions in an SNA intercommunication environment

A CICS region can be known by several names in a SNA network. The following
list identifies some of the most common:

© Copyright IBM Corp. 1999, 2005 67

Region name This one- through eight-character name is specified when you
create the region. It is the name that is used in administrative
commands. It is also known as the APPLID.

Local Logical Unit (LU) name
This one- through eight-character name is specified in the local
region’s Region Definitions (RD) LocalLUName attribute. It
identifies the local region to remote systems that are
communicating with it through local SNA support. It must be
unique within the SNA network. The first character of this name
must be an uppercase alphabetic character (A through Z), and the
subsequent characters must be either uppercase alphabetic or
numeric characters.

For example, the following values are valid for the LocalLUName
attribute:

s A

+ CICSs1

» CICSAIX

* MYLU

The following values are not valid:

* 9: Begins with a number

* 1CICS: Begins with a number

* CICSaix: Contains lowercase alphabetic characters
* MY-LU: Contains the unsupported character "’

If this attribute is left blank ("), CICS sets it to the region name
and translates it to uppercase characters.

Gateway LU name
This one- through eight-character name is specified in the local
region’s Gateway Definitions (GD) GatewayLUName attribute. It
identifies the local region to remote systems that are
communicating with the region through a PPC Gateway server. It
must be unique within the SNA network. The first character of the
this name must be an uppercase alphabetic character (A through
Z), and the subsequent characters must be either uppercase
alphabetic or numeric characters.

For example, the following values are valid for the
GatewayLUName attribute:

L\

» CICS1

» CICSAIX

* MYLU

The following values are not valid:

* 9: Begins with a number

* 1CICS: Begins with a number

* CICSaix: Contains lowercase alphabetic characters
* MY-LU: Contains the unsupported character "~

If this attribute is left blank ("), CICS sets it to the value that is in
the Region Definitions (RD) LocalLUName attribute. If the Region
Definitions (RD) LocalLUName attribute is blank, CICS sets it to
the region name and translates it to uppercase characters.

Local system identifier
This one- through four-character name is specified in the Region

68 TXSeries for Multiplatforms: CICS Intercommunication Guide

Definitions (RD) LocalSysld attribute. It is referred to as the
SYSID. Transactions that are running on the local system can
obtain this name or use it to perform functions on the local region.
By convention, a remote system can also use this same value as a
Communications Definitions (CD) entry to identify the local region.
Because this name can be used as a Communications Definitions
(CD) entry in a remote system, ensure that it is different from the
names of all CD entries that are used by your CICS region’s local
transactions.

Local network name
This one- through eight-character value for the Region Definitions
(RD) LocalNetworkName attribute defines the network to which
the region belongs. Although the local network name is not a name
for the region, it can be combined with the value for the
LocalLUName attribute to uniquely identify the region. The
resulting name is referred to as the region’s network-qualified or fully
qualified LU name. For example, if a region that has CICSA as its
value for the LocalLUName attribute belongs to a network called
NETWORKTI1 (that is, the value for the region’s Region Definitions
(RD) LocalNetworkName attribute is NETWORK1), the region’s
fully qualified name is NETWORKI1.CICSA. Typically, this name is
used to refer to the region in the SNA communications product.

When assigning the values of the LocalLUName and GatewayLUName attributes
to the region, ensure that these LU names are unique within the SNA network. The
LU namesthat are used within the region also cannot conflict with one another.
Some networks use naming conventions that help prevent name clashes. Consult
your network administrator for help in choosing LU names.

shows a CICS region that is using both local SNA support and a PPC
Gateway server.

CICS forWindows NT region SNA Product SNA Product
cieswint | LUName=CICSWINT LUName=CICSNTGW

. . Fully qualified LU Name= Fully qualified LU Name=
Region Definitions (RD): MYSNANET.CICSWINT MYSNANET.CICSNTGW
LocalLUName=CICSWINT
LocalNetworkName=MYSNANET
LocalSysld=WINT
Gateway Definitions (GD):
GWY:
GatewayLUName=CICSNTGW PPC Gatewa

: y
PPC Executive Server
TCP/IP

Figure 31. An example network

In remote systems that contact the region by way of local SNA support
identify the CICS region by its Region Definitions (RD) LocalLUName attribute

Chapter 4. Configuring CICS for SNA 69

value CICSWINT. A remote system that contacts the region by way of a PPC
Gateway server identifies the CICS region by its Gateway Definitions (GD)
GatewayLUName attribute value CICSNTGW.

Note: If a GatewayLUName value is not specified, CICS uses the LocalLUName
attribute value as the region identifier for remote systems. However, the
same LocalLUName attribute value cannot be shared between local SNA
support and a PPC Gateway server or among multiple PPC Gateway
servers. Be sure to create a unique Gateway Definitions (GD) entry for each
system that is connecting through a PPC Gateway server.

Each LU name that is used in your region must also be configured in the SNA
product. Refer to that product’s documentation for more information. If the system
to which your region connects uses VTAM®, the name must be configured as a
local LU name in VTAM.

Configuring CICS for local SNA support

Local SNA support lets TXSeries for Multiplatforms regions communicate with
every other member of the CICS family. Synchronization levels 0 and 1 are
supported. If you require synchronization level 2, you must use PPC Gateway
server SNA support, as described in [“Configuring CICS for PPC Gateway server]
SNA support” on page 89.|(For descriptions of synchronization levels, see
“Ensuring data integrity with synchronization support” on page 161

Local SNA support requires that an appropriate SNA product is installed and
configured on the same machine as is the local TXSeries for Multiplatforms region.
Such products are shown in [Table 16

Table 16. Communications products for various platforms to enable local SNA support

Platform Communications product

Windows IBM Communications Server or Microsoft SNA Server
AIX IBM Communications Server

Solaris SNAP-IX

HP-UX SNAplus2

To use local SNA support, you must configure the following:

* A Listener Definitions (LD) entry, which describes how a CICS region connects
to a network. An SNA LD entry indicates that a CICS region uses local SNA.
The Listener Definition causes a Listener process to be started at region startup.

* Two Region Definitions (RD) attributes, LocalLUName and LocalNetworkName,
which identify the LU name of the local CICS region and the network to which
it belongs, respectively. Optionally, it is recommended that a short name for the
local region be specified by using the LocalSysld attribute.

* A Communications Definitions (CD) entry for each remote system with which
the local region is to communicate.

Note: You possibly need to configure the Transaction Definitions (TD)
TPNSNAProfile attribute if both of the following conditions apply:

* The local CICS region is a CICS for AIX region.
¢ Remote systems will request transactions that reside in the local region.

70 TXSeries for Multiplatforms: CICS Intercommunication Guide

See the [T XSeries for Multiplatforms Administration Reference| for more
information.

shows the key configuration attributes. It shows a CICS region that has a
local LU name of CICSWINT connected through local SNA to a remote system that
has a local LU name of CICS0S2.

08/2

CICS
application

I
CICSfor0S/2
LUName=CICSOS2

Communications

Manager/2
I
o SNA

CICS forWindows NTregion cicswint Product
Region Definitions (RD):
LocalSysld=WINT
LocalNetworkName=MYSNANET
LocalLUName=CICSWINT
Listener Definitions (LD) SNA: Ap;c);l!((::astion
Protocol=SNA

Communications Definitions (CD) COS2:

ConnectionType=local_sna
RemoteLUName=CICSOS2
RemoteNetworkName=MYSNANET
GatewayName=""
SNAConnectName=""

Figure 32. An example network using local SNA support

The CICS region has a Region Definitions (RD) entry that has the LocalSysId
attribute identifying the short name for the local region, the LocalNetworkName
attribute defining the name of the network to which the local region belongs, and
the LocalLUName attribute defining the LU name of the local region. It has a
Listener Definitions (LD) entry that has the Protocol attribute set to SNA to define
local SNA support. It also has a Communications Definitions (CD) entry called
C0S2, which defines the remote CICS OS/2 system to the local region. The
Communications Definitions (CD) ConnectionType attribute identifies the
connection as local _sna, the RemoteLUName attribute defines the LU name of the
remote region, and the RemoteNetworkName attribute defines the name of the
network to which the remote region belongs. Leaving the GatewayName attribute
blank ("") indicates that no PPC Gateway server is involved in the
communications. Leaving the SNAConnectName attribute blank (") indicates that
no alias exists for the partner LU name in the remote system.

Chapter 4. Configuring CICS for SNA 71

Note: The values of the attributes GatewayName and SNAConnectName are
ignored when the region’s Communications Definitions (CD)
ConnectionType attribute identifies the connection as local_sna.

[Figure 32 on page 71| shows just a few of the resource definition attributes that can
be configured for SNA communications. For more complete lists of attributes that
are commonly used in communications, see [Table 17} [Table 18 on page 73| [Table 19
lon page 74} and [Table 20 on page 74l They list and define the resource definition
attributes that are used for local SNA communications that are covered in this
chapter. Command-line attribute names are given, along with their equivalent
names in the IBM TXSeries Administration Tool and SMIT. The |TXSeries fo;i
Multiplatforms Administration Referencd and the [CICS Administration Guide| provide
complete information about all CICS commands and definitions.

Note: The terminology in this chapter uses the attribute names of the CICS
resource definitions that are referenced when CICS commands are used to
configure a region. If you are using a CICS on Windows platform, you can
use the IBM TXSeries Administration Tool instead of the CICS commands to
configure the resources. Likewise, if you are using CICS for AIX, you can
use SMIT to configure the resources.

Table 17. Comparison of CICS Communications Definitions (CD) for local SNA connections

Communications Definitions
(CD) attributes

Equivalent IBM
TXSeries
Administration Tool
resource definition
attributes

Equivalent SMIT resource
definition attributes

Use in local SNA
connections

<Key> SYSID Communication Identifier |Specifies the name of the
Communications
Definitions (CD) entry.
ConnectionType Connection type Connection type Specifies the type of the
connection.
DefaultSNAModeName Default SNA mode Default modename for a Specifies the SNA
name SNA connection modegroup that is to be
used for intersystem
requests when an SNA
modename is not specified
in either the PROFILE
option of the EXEC CICS
ALLOCATE command or in
the SNAModeName
attribute of the Transaction
Definitions (TD) entry.
LinkUserld UserID for inbound Userld for inbound Specifies a locally defined
requests requests user ID to associate with
inbound requests.
ListenerName The value is taken Listener Definition (LD) Specifies the name of the
from the Listener entry name Listener Definition.
Name attribute value.
OutboundUserlds Sent user ID Send user IDs on outbound |Specifies whether a user ID

requests?

with or without a password
is sent with outbound
requests.

72 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 17. Comparison of CICS Communications Definitions (CD) for local SNA connections (continued)

Communications Definitions
(CD) attributes

Equivalent IBM
TXSeries
Administration Tool
resource definition
attributes

Equivalent SMIT resource
definition attributes

Use in local SNA
connections

RemoteCodePageTR Code page for Code page for transaction | Specifies the code page for
transaction routing routing transaction-routing data
that is flowing between the
local and remote regions.
RemoteLUName Remote LU name Name of remote system Specifies the LU name of

the remote system.

RemoteNetworkName

Remote network
name

SNA network name for the
remote system

Specifies the network name
of the remote system.

RemoteSysSecurity Inbound request Security level for inbound | Specifies how CICS is to
security requests process security
information received with
inbound requests.
RSLKeyMask Resource level Resource Security Level Contains the list of resource
security key masks (RSL) Key Mask link security keys that CICS
uses to control access to
resources from transactions.
SNAConnectName SNA LU alias SNA profile describing the |Specifies the name of the
remote system remote system’s partner LU
alias.
TSLKeyMask Transaction level Transaction Security Level |Contains the list of

security key masks

(TSL) Key Mask

transaction link security
keys that CICS uses to
control access to
transactions.

Table 18. Comparison of CICS Listener Definitions (LD) for local SNA connections

Listener Definitions (LD)
attributes

Equivalent IBM

TXSeries resource definition
Administration |attributes

Tool resource

definition

attributes

Equivalent SMIT

Use in local SNA
connections

<Key>

Listener name

Listener Identifier

Specifies the name of
the Listener
Definitions (LD)
entry. At least one
LD entry is required
with Protocol=SNA.

Protocol

Protocol

Protocol type

Specifies the
communications
protocol.

Chapter 4. Configuring CICS for SNA 73

Table 19. Comparison of CICS Region Definitions (RD) for local SNA connections

Region Definitions (RD) |Equivalent IBM |Equivalent SMIT Use in local SNA
attributes TXSeries resource definition connections
Administration |attributes
Tool resource
definition
attributes

LocalLUName Local LU name |Local LU name Specifies the local LU

name of the region.

LocalNetworkName Local network Network name to Specifies the name of

name which local region is |the local SNA
attached network.

LocalSysId Local SYSID Region system Specifies the short
identifier (short name of the CICS
name) region (as used in the

SYSID option of
several CICS
commands).

Table 20. Comparison of CICS Transaction Definitions (TD) for local SNA connections

Transaction Definitions

Equivalent IBM

Equivalent SMIT

Use in local SNA

(TD) attributes TXSeries resource definition connections
Administration |attributes
Tool resource
definition
attributes
SNAModeName SNA mode name | SNA modename for |Specifies the
this transaction modename on an
allocate request to a
remote system that is
connected by SNA.
TPNSNAProfile Not applicable | SNA TPN profile for |(AIX SNA only)

APPC listener
program

Specifies the name of
an AIX SNA TPN
profile that is
configured in an
SNA communications
product, for example,
CICSTPN.

For information about how to configure these attributes, see the following sections.
Each section presents an example local SNA system configuration:

“Configuring CICS for local SNA from the command line” on page 75| configures

a local CICS region that is running on a Windows system to communicate with a
remote CICS OS/2 region.

« [“Configuring CICS for local SNA support by using the IBM TXSeries|

Administration Tool (CICS on Windows platforms only)” on page 77 configures

a local CICS region that is running on a Windows system to communicate with a
remote CICS OS/2 region.

+ [“Configuring CICS for local SNA support by using SMIT (CICS for AIX only)’|

remote CICS OS/2 region.

74 TXSeries for Multiplatforms: CICS Intercommunication Guide

on page 82|configures a local CICS for AIX region to communicate with a

Many attribute values must match associated values that are used in related
communications products, such as IBM Communications Server for Windows or
IBM Communications Server for AIX. See the communications product’s
administration documentation for more information.

Configuring CICS for local SNA from the command line

This section uses the CICS commands cicsadd and cicsupdate to add or update
intercommunication resources. For more information about the use of these
commands, see the [TXSeries for Multiplatforms Administration Reference]

To configure CICS for local SNA, perform the following procedure (assume that
default values are accepted for any attributes that are not discussed):

1.

Configure a Listener Definitions (LD) entry by issuing the cicsadd command, as
shown in the following example:

cicsadd -r cicswint -P -c 1d LOCALSNA Protocol=SNA

In this example, a Listener Definitions (LD) entry called LOCALSNA with the
attribute Protocol1=SNA is added to the permanent database of the region
cicswint. (If you add an LD entry to the region while it is running, local SNA
support is not enabled until the region is reinitialized by either an autostart or
a cold start. In this example, because the entry is added only to the permanent
database, the region must be cold-started.)

Update the LocalLUName, LocalNetworkName, and LocalSysld Region
Definitions (RD) attributes by issuing the cicsupdate command, as shown in
the following example:

cicsupdate -r cicswint -P -c rd LocallLUName="CICSWINT" \

LocalNetworkName="MYSNANET" \
LocalSysId="WINT"

In this example, the Region Definitions (RD) attribute LocalLUName is set to
CICSWINT, the LocalNetworkName attribute is set to MYSNANET, and the
LocalSysld attribute is set to WINT. These values are added to the permanent
database of region cicswint. (If you update RD attributes in a region while it is
running, the changes are not enabled until the region is reinitialized by either
an autostart or a cold start. In this example, because the attributes are updated
only in the permanent database, the region must be cold-started.)

Configure a Communications Definitions (CD) entry for each remote system
with which the local system is to communicate by issuing the cicsadd
command, as shown in the following example:

cicsadd -r cicswint -P -c cd C0S2 \
ConnectionType=Tocal_sna \
RemotelUName="CICS0S2" \

RemoteNetworkName="MYSNANET" \
RemoteCodePageTR="1S08859-1" \
LinkUserId="LINKCOS2"

In this example, a Communications Definitions (CD) entry called C0S2 is added
to the cicswint region’s permanent database. (If you add a CD entry to a region
while it is running, the changes are not enabled until the region is reinitialized
by either an autostart or a cold start. In this example, because the entry is
added only to the permanent database, the region must be cold-started.)

The attributes listed in this example configure the region as follows:

* The ConnectionType attribute value Tocal_sna specifies that local SNA is to
be used.

Chapter 4. Configuring CICS for SNA 75

¢ The RemoteLUName attribute value CICSOS2 specifies the LU name of the
remote system.

* The RemoteNetworkName attribute value MYSNANET defines the SNA
network to which the remote system is connected.

* The RemoteCodePageTR attribute value (in this case, I1S08859-1) determines
which character set flows across the network during transaction routing. The
correct code page depends on the national language of your local region and
the remote system type. See [“Data conversion for transaction routing” on|
for information about how to choose this value.

* The LinkUserld attribute value LINKCOS2 identifies a locally defined user ID
that can be associated with inbound requests. Its value is related to the value
of the RemoteSysSecurity attribute, which, in this case, is left at the default
value of Tocal.

The following attributes can also be specified:

¢ The SNAConnectName attribute specifies the name of the partner LU alias
that is defined in the SNA product. It is required only if the partner LU alias
is different from the partner LU name. (The partner LU is the SNA
communication product’s term for the remote region’s LU name. The partner
LU alias is an associated name for the partner LU; it is configured in the SNA
communications product.)

e The DefaultSNAModeName attribute specifies the SNA modegroup that is
to be used for intersystem requests when an SNA modename is not specified
either in the PROFILE option of the EXEC CICS ALLOCATE command, or in
the SNAModeName attribute of the Transaction Definitions (TD) entry. (A
modegroup, or modename, is defined in the SNA communications product. It
defines the number of sessions that are associated with a connection, and the
characteristics of those sessions.) See one of the following documents for
more information, depending on your SNA communications product:

— [T XSeries for Multiplatforms Using IBM Communications Server for AIX with|

CICS|

— [XSeries for Multiplatforms Using IBM Communications Server for Windowg

Systems with CICS|

— [T XSeries for Multiplatforms Using Microsoft SNA Server with CICS)|

— [TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICSY

— [T XSeries for Multiplatforms Using SNAP-IX for Solaris with CICS|

If the DefaultSNAModeName attribute is set to " (its default value), and the
transaction has not provided a modename, the modename that is configured
for the SNA product is used. Refer to ["Default modenames” on page 110| for
more information about the use of this attribute.

¢ The OutboundUserlds attribute determines the security information that is
sent with outbound requests. [“Settine up a CICS region to flow user IDs” onl
[page 130|and [“Setting up a CICS region to flow passwords” on page 131]
describe how this option works.

* The RemoteSysSecurity attribute specifies the type of security that is
required:

— Using the default value of local causes CICS to run all incoming
intersystem requests from the remote system under the user ID value that
you specify in the LinkUserld field. The User Definitions (UD) entry for
this user ID determines which resources these intersystem requests can
access. This type of security is called link security and is described in
[“CICS link security” on page 126/

— Choosing the verify or trusted values causes CICS to use the security
information (such as the user ID and password) that is sent with the

76 TXSeries for Multiplatforms: CICS Intercommunication Guide

intersystem request. CICS also uses the user ID that you specify in the
LinkUserld field to restrict the resources that inbound intersystem
requests can access. This type of security is called user security and is
described in [“CICS user security” on page 127/

+ See|Chapter 6, “Configuring intersystem security,” on page 123| for more
information about how CICS security is configured, including descriptions of
the TSLKeyMask and RSLKeyMask attributes.

Configuring CICS for local SNA support by using the IBM
TXSeries Administration Tool (CICS on Windows platforms

only)

To configure CICS for local SNA by using the IBM TXSeries Administration Tool,
you must configure a Listener Definitions (LD) entry, update the Local network
name, Local SYSID, and Local LU name Region Definitions (RD) attributes, and
configure a Communications Definitions (CD) entry for each remote system with
which your system is to communicate. Perform the following procedures to set
these definitions (assume that default values are accepted for any attributes that
are not discussed):

First, configure a Listener Definitions (LD) entry by doing the following:

1.

w

In the IBM TXSeries Administration Tool Administration window, click the
region name.

Click Subsystem>Resources>Listener. The Listeners window opens.
Click Listeners>New. The Listener Definition window opens.

In the Listener name field, type a name for the Listener Definitions (LD) entry.
This name can be up to eight characters in length and must be different from
the names of all other LD entries that are in your region. It does not have to be
unique within the network and does not relate to any other names in the
network.

Enter a description if desired.

Click the SNA option from the Protocol menu. An example configuration
window is shown in [Figure 33 on page 78|

Chapter 4. Configuring CICS for SNA 77

i IBM TXS5eries - CICSWINT - Listener Definition - Untitled

General

Listener name: |LOCALSNA

Description: |Tu receive SMNA requests

Group: |
¥ Activate on startup
[Protect resource
— Listener attributes
Protocol: ISNA j
IP Address: |

TCP{IP service: |

MNamed pipe name: |

Number of updates: 0

Permanent |

Figure 33. Listener Definition window

Beset Cancel Help

7. Click the Permanent button to add the Listener Definitions (LD) entry to the
permanent database, or click the Both button to add the entry to the permanent
and runtime databases.

Next, update the Local network name, Local SYSID, and Local LU name Region
Definitions (RD) attributes by doing the following:

1. In the IBM TXSeries Administration Tool Administration window, click the
region name.

Click Subsystem>Properties. The Properties window opens.
Enter a description if desired.

Type the region’s network name in the Local network name field.
Type the region’s short name in the Local SYSID field.

ook~ 0D

Type the region’s local LU name in the Local LU name field. An example
configuration window is shown in [Figure 34 on page 79|

78 TXSeries for Multiplatforms: CICS Intercommunication Guide

In"ﬁ.-E IBM TXSernes - CICS Hegion CICSWINT - Properties

General | File Server | Queue Filesl Scheduling | AT Intervals Sturagel Int 4 | *l

Region name: |CICSWINT

Description: |CIC5 on Windows NT region

™ Protect resource

Start type: |c:u||:| E
Date format: Iddmmy‘y E

I¥ Use map name suffices

HTML help browser: I Browse... |

~Inter System Communication

Local network name: |MYSNANET

Local SYSID: [WINT

Local LU name: |CICSWINT

Release number: 0430
Number of updates: 3

Beset | Cancel | Help |

Figure 34. Region Definition Properties window

7.

Click OK to add the updated Region Definitions (RD) attributes to the
permanent database. (If you update RD attributes in a region while it is
running, the changes are not enabled until the region is reinitialized by either
an autostart or a cold start. In this example, because the attributes are being
updated only in the permanent database, the region would have to be
cold-started.)

Finally, configure a Communications Definitions (CD) entry for each remote system
with which your system is to communicate by doing the following:

1.

Click the region name in the IBM TXSeries Administration Tool Administration
window.

Click Subsystem>Resources>Communication. The Communications window
opens.

Click Communications>New. The Communication Definition window opens.
The attributes for a Communications Definitions (CD) entry are grouped on
four tabs:

* General: Contains attributes that are required by all CD entries.

* SNA: Contains attributes that describe how the remote system communicates
over an SNA network.

e TCP/IP: Contains attributes that describe how the remote system is
connected to a TCP/IP network. Attributes on this page are not applicable to
a local SNA CD entry.

* Security: Contains attributes that define how security is managed.

Chapter 4. Configuring CICS for SNA 79

4. On the General tab:

a. In the SYSID field, type a four-character name for the Communications
Definitions (CD) entry. This name must be different from the names of all
other CD entries that are in your region. However, it does not have to be
unique within the network and does not relate to any other names in the
network.

Type a description if desired.
c. Select the CICS Local SNA option from the Connection type menu.

d. Accept the default value, or type the appropriate value in the Code page
for transaction routing field. This value determines which character set
flows across the network during transaction routing. The correct code page
depends on the national language of your local region and the remote
system type. See [Chapter 7, “Data conversion,” on page 147 for information
about how to choose this value. An example configuration window is

shown in

i+ IBM TXS5eries - CICSWINT - Communication Definition - Untitled

General |SNA |TCP,I'IP| St:curilyl

SYSID: [COS2

Description: [To CICSOS2 region

Gruup:|
¥ Activate on startup
[Protect resource
M In service
Connection type: |CICS Local SNA |

Code page for transaction routing:

[IBM-850

Number of updates: 0

Permanent |

Figure 35. Communication Definition window: General tab

Beset Cancel Help

5. Click the SNA tab. On this tab:
a. Type the LU name of the remote system in the Remote LU name field.

b. Optionally, in the SNA LU alias field, type the LU alias that is configured
in your local SNA product for the remote system. (In this example, this field
remains empty.)

c. Type the SNA network to which the remote system is connected in the
Remote network name field.

d. In the Default SNA mode name field, type the name of the SNA
modegroup that is to be used for intersystem requests when an SNA
modename is not specified in either the PROFILE option of the EXEC CICS

80 TXSeries for Multiplatforms: CICS Intercommunication Guide

ALLOCATE command or in the SNAModeName attribute of the
Transaction Definitions (TD) entry. Refer to [‘Default modenames” on page
for more information about the use of this attribute. An example
configuration window is shown in

i IBM TXSenes - CICSWINT - Communication Defimition - Unhitled

General SNA | TCPAP| Security |

—Common SNA attributes

Remote LU name: IW

SNA LU alias: I
Hemote network name: Im
Default SNA mode name: Im

—PPC Gateway attributes

Gateway: I 'l
Timeout on allocate: IEU

Reset Cancel | Help

Permanent |

Figure 36. Communication Definition window: SNA tab

6. Click the Security tab. These attributes describe the security checks that are
applied to all intersystem requests that use this CD entry. On this tab:

a. In the Inbound request security area, click the type of security that you
require:

* Accepting the default Local option causes CICS to run all incoming
intersystem requests from the remote system under the user ID value that
you specify in the UserID for inbound requests field. The User
Definitions (UD) entry for this user ID determines which resources these
intersystem requests can access. This type of security is called link
security, and is described in [“CICS link security” on page 126.]

¢ Choosing the Verify or Trusted options causes CICS to use the security
information (such as the user ID and password) that is sent with the
intersystem request. CICS also uses the user ID that you specify in the
UserID for inbound requests field to restrict the resources that inbound
intersystem requests can access. This type of security is called user security
and is described in [CICS user security” on page 127

b. Security information that is sent with outbound requests is determined by
the value that is selected in the Send user ID field. [‘Setting up a CICS|
region to flow user IDs” on page 130 and [“Setting up a CICS region to flow]
passwords” on page 131| describe how this option works.

c. See [Chapter 6, “Configuring intersystem security,” on page 123 for more
information about how CICS security is configured, including descriptions

Chapter 4. Configuring CICS for SNA 81

of the Transaction level security key masks and Resource level securit
key masks fields. An example configuration window is shown in

i IBM TXSeries - CICSWINT - Communication Definition - Untitled

General | SNA | TCPHIP Security

Transmission encryption Inbound request security
= None * Local
& Control ' Verify
1 Al data Trusted
Send user ID: ISent j
UserlD for inbound requests: ILlNKCOS2
—Key masks
Transaction level security key masks:
none =
=
Resource level security key masks:
none =
[-
Permanent | Reset Cancel | Help |

Figure 37. Communication Definition window: Security tab

7. Click the Permanent button to add the Communications Definitions (CD) entry
to the permanent database, or click the Both button to add the entry to the
permanent and runtime databases.

8. Repeat this process for any other Communications Definitions (CD) entries.

Configuring CICS for local SNA support by using SMIT (CICS

for AIX only)
To configure CICS for local SNA by using SMIT, perform the following procedure
(assume that default values are accepted for any attributes that are not discussed):

1. Ensure that you are logged into AIX with enough privileges to change the
region database. (For example, log into AIX as the root user.)

2. Optionally, set the environment variable CICSREGION to the name of your
CICS region. For example:
export CICSREGION=cicsaix

Note: In this procedure, the local region is called cicsaix to reflect a CICS for
AIX system. Also, this example assumes that you are using the Korn
shell; if you are using a different shell, change the export command
accordingly.

3. Enter smitty cicsregion to start SMIT.

4. 1If you have not set the CICSREGION environment variable as described in step
@ select the option Change Working CICS Region.

82 TXSeries for Multiplatforms: CICS Intercommunication Guide

5. Sel

ect your CICS region from the list that is displayed, and press the Enter key.

The COMMAND STATUS screen verifies your selection.
6. Press the F3 key.

7. Co

nfigure a Listener Definitions (LD) entry by performing the following

procedure:

a.

Select options:

» Define Resources for a CICS Region
» Manage Resource(s)
» Listeners
» Add New

The Add Listener panel is displayed.

Enter a value for the Model Listener Identifier attribute. Use the name of
an LD entry that you have defined previously, or press the Enter key to use
the default value ("").

Enter the name of the LD entry in the Listener Identifier field.
Add a description in the Resource description field if desired.

Select the SNA option from the Protocol type field. shows an
example Add Listener SMIT panel. (Only the panel that shows updated
attributes is shown.)

4] N
Add Listener
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[ToP] [Entry Fields]
* Listener Identifier [LOCALSNA]
* Model Listener Identifier "
* Region name [cicsaix] +
Add to database only OR Add and Install Add 4
Group to which resource belongs 0
Activate resource at cold start? yes +
Resource description [Listener Definition]
* Number of updates 0
Protect resource from modification? no ¥
Protocol type SNA +
TCP adapter address 1
TCP service name 0
local SNA Server Protocol Type TCP +
[MORE. . . 10]
Fl=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
o J
Figure 38. Add Listener SMIT panel
f. Press the Enter key to create the LD entry. (If you add an LD entry to a
region while it is running, the changes are not enabled until the region is
reinitialized by either an autostart or a cold start. In this example, because
the entry is being added only to the permanent database, the region would
have to be cold-started.) The COMMAND STATUS screen verifies successful
creation of the definition.
g. Press the F3 key three times to return to the Manage Resource(s) menu.

8. Update the Region system identifier (short name), Network name to which

loc

al region is attached, and Local LU name Region Definitions (RD)

attributes, by performing the following procedure:

a.

From the Manage Resource(s) menu, select the options:

Chapter 4. Configuring CICS for SNA 83

> Region
» Show/Change

The Show/Change Region panel is displayed.
b. Enter a description in the Resource description field if desired.

c. Enter a four-character name for the CICS region, known as the SYSID, in the
Region system identifier (short name) field.

d. Enter the network name in the Network name to which local region is
attached field.

e. Enter the region’s local LU name in the Local LU name field.

|Figure 39 on page 85| and |Figure 40 on page 86| show example
Show /Change Region SMIT panels. (Only those panels showing updated
attributes are shown.)

84 TXSeries for Multiplatforms: CICS Intercommunication Guide

-

Show/Change Region
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[TOP] [Entry Fields]
* Region name cicsaix
Resource description [Region Definition]
* Number of updates 1
Protect resource from modification? no ¥
Startup type cold +
Startup groups (]
Programs to execute at startup 0
Programs to execute at phase 1 of shutdown 1
Programs to execute at phase 2 of shutdown 0
Name of the default user identifier [CICSUSER]
Type of RSL checking for Files external 4
Type of RSL checking for TDQs external +
Type of RSL checking for TSQs external +
Type of RSL checking for Journals external +
Type of RSL checking for Programs external +
Type of RSL checking for Transactions external +
Do you want to use an External Security Manager? no +
Name of ESM Module [
Min protect Tevel used when accepting RPCs none +
Min protect Tevel for logical TDQs none +
Min protect level for physical TDQs none +
Min protect Tevel for non-recoverable TDQs none +
Min protect Tevel for recoverable TSQs none +
Min protect Tevel for non-recoverable TSQs none +
Min protect Tevel for locally queued PROTECT ATIS none +
Min protect level for locally queued ATIs none +
CICS Release Number 0430
Region system identifier (short name) [CAIX]
Network name to which local region is attached [MYSNANET]
Common Work Area Size [512] #
Minimum number of Application Servers to maintain [1] #
Maximum number of Application Servers to maintain [5] #
Maximum number of running transactions per class ([1,1,1,1,1,1,1,1,1,1]
10 entries)
Purge threshold for transaction requests above Cla [0,0,0,0,0,0,0,0,0,0]
ssMaxTasks
Time before Application Servers terminate (secs) [300] #
Level of protection against user corruption none i
Number of threads for RPC requests [e] #
Format date for FORMATTIME ddmmyy {F
Hash sizes CD,FD,PD,RD,TSD,WD,TD,TDD,XAD,UD,MD,JD, [5,50,50,1,50,50,50,20,>
LD,GD,0D
Region Pool Storage Size (bytes) [2097152] #
Task-private Storage Size (bytes) [1048576] #
Task Shared Pool Storage Size (bytes) [1048576] #
Threshold for Region Pool short on storage (%age) [90] #
[MORE. . .62]
Fl=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
o %

Figure 39. Show/Change Region SMIT panel (Part 1)

Chapter 4. Configuring CICS for SNA 85

4 N

Show/Change Region

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE. . .46] [Entry Fields]
Threshold for TSH Pool short on storage (%age) [90] #
Number of Task Shared Pool Address Hash Buckets [512] #
Number of LOADed data Address Hash Buckets [512] #
System dump on shutdown, SNAP dumps, ASRx abends? no +
Should CICS system be dumped for ASRA abends? yes +
Should CICS system be dumped for ASRB abends? yes +
Directory in which dump output is written [dumps]
Directory in which Core Dump output is written [dirl]
Modules to trace all +
Module list for partial trace [o]
External trace facility required? no +
File or path (A) for system trace [trace.a]
File or path (B) for system trace [trace.b]
Maximum system trace file size [3276800] #
System trace buffer size [163840] #
User trace directory [/tmp]
User Trace file or path for guest logins [cicspubl]
Interval between region consistency checks (mins) [10] #
Level of checking to perform on region minimal +
Retransmission interval for queued ATIs (mins) [10] #
Rescheduling interval for blocked ATIs (mins) [5] #
ATI purge interval (hours) [8] #
Purge delay period for PROTECT requests (hours) [8] #
Purge delay period for no PROTECT requests (hours) [8] #
Should stats be recorded at every interval? yes +
File or path for statistics [statsfile]
Should map names be suffixed? yes +
Number of records logged between checkpoints [1000] #
Expiry 1imit for unaccessed TSQs (days) [20] #
Maximum number of C or IBM COBOL programs that can [0] #
be cached
Local LU name [CICSAIX]
Region Pool base register [2684354560] #
Task Shared Pool base register [2952790016] #
Server side transactions only ? no +
Allow use of the application debugging tool no +
HTML Browser for help text 1

[MORE. . .18]

Fl=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

\FQ=SheH F10=Exit Enter=Do

Figure 40. Show/Change Region SMIT panel (Part 2)

f. Press Enter to update the Region Definitions (RD) attributes. (If you update
RD attributes in a region while it is running, the changes are not enabled
until the region is reinitialized by either an autostart or a cold start. In this
example, because the attributes are being updated only in the permanent
database, the region would have to be cold-started.) The COMMAND
STATUS screen confirms successful completion of the process.

g. Press the F3 key three times to return to the Manage Resource(s) menu.

9. Configure a Communications Definitions (CD) entry for each remote system
with which your system is to communicate, by performing the following
procedure:

a. Select options:

» Communications
» Add New

The Add Communication panel is displayed.

86 TXSeries for Multiplatforms: CICS Intercommunication Guide

-0 a0

Enter a value for the Model Communication Identifier attribute. Use the
name of a CD entry that you have defined previously, or press the Enter
key to use the default value ("").

Enter the name of the CD entry in the Communication Identifier field.
Add a description in the Resource description field if desired.
Select local_sna in the Connection type field.

Enter the LU name of the remote system in the Name of remote system
field.

Enter the name of the network to which the remote system is attached in
the SNA network name for the remote system field.

In the Default modename for a SNA connection field, enter the name of
the SNA modegroup that is to be used for intersystem requests when an
SNA modename is not specified either in the PROFILE option of the EXEC
CICS ALLOCATE command, or in the SNAModeName attribute of the
Transaction Definitions (TD) entry. If the Default modename for a SNA
connection attribute is set to "" (its default value), and the transaction has
not provided a modename, the modename that is configured in the AIX
SNA communications product’s side information profile for the local LU
name is used. Refer to [“Default modenames” on page 110| for more
information about the use of this attribute.

Accept the default value or enter the appropriate value in the Code page for
transaction routing field. This value determines which character set flows
across the network during transaction routing. The correct code page
depends on the national language of your local region and the remote
system type. See [‘Data conversion for transaction routing” on page 164 for
information about how to choose this value.

Accept the default value or select the appropriate value for the Send userids
on outbound requests? attribute to determine the type of security
information (if any) that is sent with outbound requests. |“Setting up a CICS

region to flow user IDs” on page 130|and |“Setting up a CICS region to flow]

passwords” on page 131|describe how this attribute works.

In the Security level for inbound requests field, select the type of security
that you require:

* Accepting the default local option causes CICS to run all incoming
intersystem requests from the remote system under the user ID value that
you specify in the UserID for inbound requests field. The User
Definitions (UD) entry for this user ID determines which resources these
intersystem requests can access. This type of security is called link security
and is described in[’CICS link security” on page 126.]

* Choosing the verify or trusted options causes CICS to use the security
information (such as the user ID and password) that is sent with the
intersystem request. CICS also uses the user ID that you specify in the
UserID for inbound requests field to restrict the resources that inbound
intersystem requests can access. This type of security is called user security
and is described in [“CICS user security” on page 127,

See [Chapter 6, “Configuring intersystem security,” on page 123|for more
information about how CICS security is configured, including descriptions of
the Transaction Security Level (TSL) Key Mask and Resource Security
Level (RSL) Key Mask attributes. [Figure 41 on page 8§ shows an example
Add Communication SMIT panel.

Chapter 4. Configuring CICS for SNA 87

4 N

Add Communication

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[Entry Fields]

% Communication Identifier [cos2]

* Model Communication Identifier "

* Region name [cicsaix] +
Add to database only OR Add and Install Add +
Group to which resource belongs 0
Activate the resource at cold start? yes +
Resource description [Connection to CICS0S2]

* Number of updates 0
Protect resource from modification? no +
Connection type local_sna i
Name of remote system [c1CS0S2]

SNA network name for the remote system [MYSNANET]

SNA profile describing the remote system 1

Default modename for a SNA connection [cICcSISco]

Gateway Definition (GD) entry name [

Listener Definition (LD) entry name [

TCP address for the remote system 0

TCP port number for the remote system [1435] #
Timeout on allocate (in seconds) [60] #
Code page for transaction routing [1S08859-1]

Set connection in service? yes +
Send userids on outbound requests? sent +
Security level for inbound requests local it
UserId for inbound requests [LINKCOS2]

Transaction Security Level (TSL) Key Mask [none]

Resource Security Level (RSL) Key Mask [none]

Transmission encryption level none +

F1=Help F2=Refresh F3=Cancel Fa=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

N J

Figure 41. Add Communication SMIT panel

m. Press Enter to create the CD entry. (If you add a CD entry to a region while
it is running, the changes are not enabled until the region is reinitialized by
either an autostart or a cold start. In this example, because the entry is
being added only to the permanent database, the region would have to be
cold-started.) The COMMAND STATUS screen verifies the definition
creation.

n. Press the F3 key three times to return to the Manage Resource(s) menu.

0. Repeat this process for any other Communications Definitions (CD) entries.

SNA Receive Timeout feature (For CICS on AIX only)

A timeout process now exists for use by SNA receive processes. A CICS application
server that is waiting on a SNA receive from a remote CICS region can deallocate
the conversation and force an abend in the CICS Application Server (cicsas)
process. This abend triggers a controlled shutdown of the application server and
the automatic startup of a new one. The newly started application server is then
available to run any of the scheduled transactions that are in the queue. Abend
message AB61 describes the expiration of the SNA timeout period:

AB61

EXPLANATION: Local transaction aborted due to SNA timeout waiting on receive.
SYSTEM_ACTION: CICS abnormally terminates the application server.

USER_RESPONSE: Either reissue the transaction or increase the receive timeout
value and reissue the transaction.

88 TXSeries for Multiplatforms: CICS Intercommunication Guide

The message that is associated with this abend is ERZ59999E. It states that the
time-out period has expired. In this example, 'TRAN' is the local transaction name,
'n' is the specified timeout value, and 'SYS1' is the system definition to which the
transaction was communicating;

ERZ59999E

"Transaction 'TRAN' has exceeded the allowed timeout='n' seconds on SNA

session to SysId='SYyS1'"

EXPLANATION: The remote region with this SysID has not replied to a request

sent over SNA within the specified receive timeout value.

SYSTEM_ACTION: The local transaction will be abended with AB61 after the

SNA conversation has been deallocated with the remote region.

USER_RESPONSE: Retry the same transaction later or increase the timeout

value and retry.
Possible MSN values: 0097

When a region is configured for SNA Receive Timeout, conversations that are
established to a remote host for Distributed Program Link (DPL), Distributed
Transaction Processing (DTP), Transaction Routing, and CRTE hosted transactions
are subject to it.

Configuration is through the environment variable
CICS_SNA_RECEIVE_TIMEOUT. The contents of the string in this environment
variable trigger and control the timing-out of SNA conversations to the specified
systems in the string. To set this environment variable, add the following line to
the environment file that is in the /var/cics_regions/ region_name directory:

CICS_SNA_RECEIVE_TIMEOUT="SYS1,N1,SYS2,N2,SYS3,N3,SYS5,N5,. . .SYSn,Nn"

where SYS1 to SYSn are the Communications Definitions in the CD stanza of the
CICS region that are subject to the forced timeout. Each of these is a remote system
identifier with a maximum size of four alphanumeric characters. N1 through Nn are
the actual timeout values in seconds. Each is the timeout value for the preceding
system identifier, and is an integer value greater than, or equal to, 0.

The environment variable string cannot exceed 1024 characters in length, and must
strictly follow the above format with a comma ”,” separating each timeout value
from its preceding system identifier. After it is configured, the region must be cold
started to allow the new timeout values to be associated with the system

definitions in the CD stanza.

Configuring CICS for PPC Gateway server SNA support

PPC Gateway server SNA support lets TXSeries for Multiplatforms regions
communicate with SNA systems with synchronization level 2 support. (For
descriptions of synchronization levels, see [‘Ensuring data integrity with|
lsynchronization support” on page 16.) The CICS region is connected to a TCP/IP
network through the PPC Gateway server, which provides a link to the SNA
network.

Note: For information about how to create a PPC Gateway server, refer to
Chapter 8, “Creating and using a PPC Gateway server in a CICY
environment,” on page 175

PPC Gateway server SNA support requires that an appropriate SNA product be
installed and configured on the same machine as is the PPC Gateway server. Such
products are shown in [Table 21 on page 90|

Chapter 4. Configuring CICS for SNA 89

Table 21. Communications products for various platforms to enable PPC Gateway server
SNA support

Platform Communications product

Windows IBM Communications Server or
Microsoft SNA Server

AIX IBM Communications Server
Solaris SNAP-IX
HP-UX SNAplus2

The PPC Gateway server can be on the same machine as is the CICS region, or on
a different machine.

Note: CICS does not support the use of a PPC Gateway server on Solaris.
However, a CICS for Solaris region can use a PPC Gateway server that is
running on a non-Solaris platform.

A CICS region can use more than one PPC Gateway server. This type of
configuration provides the following performance benefits:

* Network links from many remote machines are spread across more than one
gateway machine, and, as a result, across multiple SNA products.

* If one PPC Gateway server fails, another is available as a backup.
* The processing load is spread across more than one PPC Gateway server.

A PPC Gateway server can also be shared by several CICS regions. This can be an
economical alternative if your CICS regions do not make many SNA
intercommunication requests. However, such a configuration can overload a PPC
Gateway server and make problem determination difficult.

To enable your CICS region to use a PPC Gateway server, you must configure the

following:

* A Gateway Definitions (GD) entry for each PPC Gateway server that the region
uses. A GD entry is a one- through four-character name, whose attributes
describe:

— The name of the PPC Gateway server (specified in the GatewayCDSName
attribute).

— The SNA LU name that the PPC Gateway server is to use for the region
(specified in the GatewayLUName attribute).

Note: If a GatewayLUName value is not specified, CICS uses the LocalLUName
attribute value as the region identifier for remote systems. However, the
same LocalLUName attribute value cannot be shared between local SNA
support and a PPC Gateway server or among multiple PPC Gateway
servers. Be sure to create a unique Gateway Definitions (GD) entry for
each system that is connecting through a PPC Gateway server.

* A Communications Definitions (CD) entry for each remote system with which
the region is to communicate.

Note: Although no Region Definitions (RD) attributes must be configured to
enable PPC Gateway server SNA communications, it is recommended that
you specify a short name for the local region by using the LocalSysId
attribute.

90 TXSeries for Multiplatforms: CICS Intercommunication Guide

You also possibly need to configure the Transaction Definitions (TD)
TPNSNAProfile attribute if both the following conditions apply:

* The local CICS region is a CICS for AIX region.
* Remote systems will request transactions that reside in the local region.

See the [TXSeries for Multiplatforms Administration Referencel for more
information.

A Listener Definitions (LD) entry is not required because the PPC Gateway
server sends requests to the region by using CICSIPC Remote Procedure
Calls (RPCs). RPCs flow through the RPC Listener process, which is always
present in a CICS region.

[Figure 42 on page 92| shows the key configuration attributes. It shows a CICS
region with a Gateway LU name of CICSNTGW connected through a PPC Gateway
server to a remote system that is named CICSESA.

Chapter 4. Configuring CICS for SNA 91

ESA

CICS
application

CICS/ESA
LUName=CICSESA

VTAM

SNA Network

CICS forWindows NT region cicswint cics SNA

Application Product

Region Definitions (RD):
LocalSysld=WINT

Gateway Definitions (GD) GWY:
GatewayLUName=CICSNTGW

Communications Definitions (CD) CESA:
ConnectionType=ppc_gateway
RemoteLUName=CICSESA
RemoteNetworkName=MYSNANET
GatewayName=GWY
SNAConnectName=""
AllocateTimeout=60

PPC PPC Gateway
Executive Server

Figure 42. An example network using PPC Gateway server SNA support

The CICS region has a Region Definitions (RD) entry with the LocalSyslId attribute
identifying the short name for the local region. It has a Gateway Definitions (GD)
entry with the GatewayLUName attribute set to CICSNTGW, which is the LU name
that the PPC Gateway server uses to communicate with the local region. It also has
a Communications Definitions (CD) entry called CESA, which defines the remote
CICS/ESA system to the local region. The Communications Definitions (CD)
ConnectionType attribute identifies the connection as a ppc_gateway, the
RemoteLUName attribute defines the LU name of the remote region, and the
RemoteNetworkName attribute defines the name of the network to which the
remote region belongs. The GatewayName attribute is set to GWY, which is the
name of the Gateway Definitions (GD) entry for the connection, the
SNAConnectName attribute is left blank (""), which indicates that no alias exists
for the partner LU name in the remote system, and the AllocateTimeout attribute
is set to 60, which indicates the wait time in seconds for an intersystem request to
be started in the PPC Gateway server.

92 TXSeries for Multiplatforms: CICS Intercommunication Guide

[Figure 42 on page 92| shows a few of the resource definition attributes that can be

configured for SNA communications. For more complete lists of attributes
commonly used in communications, see [Table 22} [Table 23 on page 94} [Table 24 on|

[page 95, and [Table 25 on page 95| They list and define the resource definition

attributes that are used for PPC Gateway server SNA communications that are
covered in this chapter. Command-line attribute names are given, along with their
equivalent names in the IBM TXSeries Administration Tool and SMIT. The |TXSeries|

ffor Multiplatforms Administration Referenceland the [CICS Administration Guidd

provide complete information about all CICS commands and definitions.

Note: The terminology in this chapter uses the attribute names of the CICS
resource definitions that are referenced when CICS commands are used to
configure a region. If you are using CICS on a Windows platform, you can
use the IBM TXSeries Administration Tool rather instead of CICS commands
to configure the resources. Likewise, if you are using CICS for AIX, you can
use SMIT to configure the resources.

Table 22. Comparison of CICS Communications Definitions (CD) for PPC Gateway server SNA connections

Communications Definitions
(CD) attributes

Equivalent IBM
TXSeries
Administration Tool
resource definition
attributes

Equivalent SMIT resource
definition attributes

Use in PPC Gateway
server connections

<Key>

SYSID

Communication Identifier

Specifies the name of the
Communications
Definitions (CD) entry.

AllocateTimeout

Timeout on allocate

Timeout on allocate (in
seconds)

Specifies the wait time in
seconds for an intersystem
request to be started in the
PPC Gateway server.

ConnectionType

Connection type

Connection type

Specifies the type of
connection.

DefaultSNAModeName

Default SNA mode
name

Default modename for a
SNA connection

Specifies the SNA
modegroup that is to be
used for intersystem
requests when an SNA
modename is not specified
in either the PROFILE
option of the EXEC CICS
ALLOCATE command or in
the SNAModeName
attribute of the Transaction
Definitions (TD).

GatewayName

Gateway

Gateway Definition (GD)
entry name

Specifies the name of a
locally defined Gateway
Definitions (GD) entry for
the PPC Gateway server.

LinkUserld

UserID for inbound
requests

Userld for inbound
requests

Specifies a locally defined
user ID to associate with
inbound requests.

OutboundUserlIds

Sent user ID

Send user IDs on outbound
requests?

Specifies whether a user ID
with or without a password
is sent with outbound
requests.

Chapter 4. Configuring CICS for SNA 93

Table 22. Comparison of CICS Communications Definitions (CD) for PPC Gateway server SNA

connections (continued)

Communications Definitions
(CD) attributes

Equivalent IBM
TXSeries
Administration Tool
resource definition
attributes

Equivalent SMIT resource
definition attributes

Use in PPC Gateway
server connections

RemoteCodePageTR Code page for Code page for transaction |Specifies the code page for
transaction routing | routing transaction-routing data
that is flowing between the
local and remote regions.
RemoteLUName Remote LU name Name of remote system Specifies the LU name of

the remote system.

RemoteNetworkName

Remote network
name

SNA network name for the
remote system

Specifies the network name
of the remote system.

security key masks

(TSL) Key Mask

RemoteSysSecurity Inbound request Security level for inbound | Specifies how CICS is to
security requests process security
information that is received
with inbound requests.
RSLKeyMask Resource level Resource Security Level Contains the list of resource
security key masks (RSL) Key Mask link security keys that CICS
uses to control access to
resources from transactions.
SNAConnectName SNA LU alias SNA profile describing the |Specifies the name of the
remote system remote system’s partner LU
alias.
TSLKeyMask Transaction level Transaction Security Level |Contains the list of

transaction link security
keys that CICS uses to
control access to
transactions.

Table 23. Comparison of CICS Gateway Definitions (GD) for PPC Gateway server SNA connections

Gateway Definitions (GD)
attributes

Equivalent IBM
TXSeries
Administration Tool
resource definition
attributes

Equivalent SMIT resource
definition attributes

Use in PPC Gateway
server connections

<Key>

Gateway name

Gateway Identifier

Specifies the name of the
Gateway Definitions (GD)
entry. At least one entry
must be defined that
specifies the PPC Gateway
server that the CICS region
is to use for the connection.

GatewayLUName

Gateway LU name

SNA LU name of the
gateway

Specifies the SNA LU name
that the PPC Gateway
server uses to communicate
with the local region.

94 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 24. Comparison of CICS Region Definitions (RD) for PPC Gateway server SNA connections

Region Definitions (RD)
attribute

Equivalent IBM
TXSeries
Administration Tool
resource definition
attribute

Equivalent SMIT resource
definition attribute

Use in PPC Gateway
server connections

LocalSysId

Local SYSID

Region system identifier
(short name)

Specifies the short name of
the CICS region (as used in
the SYSID option of several
CICS commands).

Table 25. Comparison of CICS Transaction Definitions (TD) for PPC Gateway server SNA connections

Transaction Definitions (TD)
attributes

Equivalent IBM
TXSeries
Administration Tool
resource definition
attributes

Equivalent SMIT resource
definition attributes

Use in PPC Gateway
server connections

SNAModeName SNA mode name SNA modename for this Specifies the modename on
transaction an allocate request to a
remote system that is
connected by SNA.
TPNSNAProfile Not applicable SNA TPN profile for APPC | (AIX SNA only) Specifies

listener program

the name of an AIX SNA
TPN profile that is
configured in an SNA
communications product,
for example, CICSTPN.

For information about how to configure these attributes, see the following sections.
Each section presents an example PPC Gateway server SNA configuration:

+ |“Configuring CICS for PPC Gateway server SNA support from the command)

line”| configures a local CICS for Windows region to communicate with a remote
CICS/ESA region.

« |"Configuring CICS for PPC Gateway server SNA support by using the IBM|

TXSeries Administration Tool (CICS on Windows platforms only)” on page 98|

configures a local CICS for Windows region to communicate with a remote
CICS/ESA region.

communicate with a remote CICS/ESA region.

* |“Configuring CICS for PPC Gateway server SNA support by using SMIT (CIC
for AIX only)” on page 103|configures a local CICS for AIX region to

Many attribute values must match associated values that are used in related
communications products, such as IBM Communications Server for Windows or
IBM Communications Server for AIX. See the communications product’s
administration documentation for more information.

Configuring CICS for PPC Gateway server SNA support from
the command line

This section uses the CICS commands cicsadd and cicsupdate to add or update
intercommunication resources. For more information about the use of these
commands, see the|[TXSeries for Multiplatforms Administration Reference|

Chapter 4. Configuring CICS for SNA 95

To configure CICS for PPC Gateway server SNA, perform the following procedure
(assume that default values are accepted for any attributes that are not discussed):

1. Configure a Gateway Definitions (GD) entry by issuing the cicsadd command,
as shown in the following example:
cicsadd -r cicswint -P -c gd GWY GatewayCDSName="cicsgwy" \

GatewayLUName="CICSNTGW"

In this example, a Gateway Definitions (GD) entry called GWY is added to the
permanent database of region cicswint. (If you add a GD to a region while it is
running, PPC Gateway server support is not enabled until the region is
reinitialized by either an autostart or a cold start. In this example, bcause the
entry is being added only to the permanent database, the region would have to
be cold-started.)

The GatewayCDSName attribute is set to cicsgwy. If the value for the
GatewayCDSName attribute does not begin with a slash character (/), CICS
inserts the string /.:/cics/ppc/gateway in front of the supplied name. Therefore,
the GD entry that GWY describes is a PPC Gateway server named:
/.:/cics/ppc/gateway/cicsgwy.

Because the GatewayLUName attribute is set to CICSNTGW, CICS notifies the
PPC Gateway server to use the LU name CICSNTGW to communicate with the
local region.

2. Update the LocalSysId Region Definitions (RD) attribute by issuing the
cicsupdate command, as shown in the following example:

cicsupdate -r cicswint -P -c rd LocalSysId="WINT"

In this example, the Region Definitions (RD) attribute LocalSysId is set to WINT.
This value is added to the permanent database of region cicswint. (If you
update an RD attribute in a region while it is running, the change is not
enabled until the region is reinitialized by either an autostart or a cold start. In
this example, because the attribute is being updated only in the permanent
database, the region would have to be cold-started.)

3. Configure a Communications Definitions (CD) entry for each remote system
with which the local system is to communicate by issuing the cicsadd
command, as shown in the following example:
cicsadd -r cicswint -P -c cd CESA

ConnectionType=ppc_gateway
RemoteLUName="CICSESA"
RemoteNetworkName="MYSNANET"
GatewayName="GWY"
AllocateTimeout=60
RemoteCodePageTR="1BM-037"
RemoteSysSecurity=trusted
LinkUserId="LINKCESA"
In this example, a Communications Definitions (CD) entry called CESA is added
to the cicswint region’s permanent database. (If you add a CD entry to a region
while it is running, the changes are not enabled until the region is reinitialized
by either an autostart or a cold start. In this example, because the entry is being
added only to the permanent database, the region would have to be
cold-started.)

The attributes that are listed in this example configure the region as follows:

-

e The ConnectionType attribute value ppc_gateway specifies that PPC Gateway
server SNA is to be used.

¢ The RemoteLUName attribute value CICSESA specifies the LU name of the
remote system.

96 TXSeries for Multiplatforms: CICS Intercommunication Guide

¢ The RemoteNetworkName attribute value MYSNANET defines the SNA
network to which the remote system is connected.

* The GatewayName attribute value of GWY specifies the PPC Gateway server
that is to be used. (It is set to the name of the Gateway Definitions (GD)
entry defined for the PPC Gateway server.)

* The AllocateTimeout attribute value of 60 defines, in seconds, how long
CICS waits for the PPC Gateway server to accept an intersystem request.

* The RemoteCodePageTR attribute value (in this case, IBM-037) determines
which character set flows across the network during transaction routing. The
correct code page depends on the national language of your local region and
the remote system type. See [“Data conversion for transaction routing” on|
for information about how to choose this value.

* The RemoteSysSecurity attribute value of trusted specifies that CICS use
the security information (such as user ID) that is sent with an intersystem
request.

¢ The LinkUserld attribute value LINKCESA identifies a locally defined user ID

that can be associated with inbound requests. Its value is related to the value
of the RemoteSysSecurity attribute, which, in this case, is set to trusted.

The following attributes can also be specified:

¢ The SNAConnectName attribute specifies the name of the partner LU alias
that is defined in the SNA product. It is required only if the partner LU alias
is different from the partner LU name. (The partner LU is the SNA
communications product’s term for the remote region’s LU name. The partner
LU alias is an associated name for the partner LU; it is configured in the SNA
communications product.)

¢ The DefaultSNAModeName attribute specifies the SNA modegroup that is
to be used for intersystem requests when an SNA modename is not specified
in either the PROFILE option of the EXEC CICS ALLOCATE command or in
the SNAModeName attribute of the Transaction Definitions (TD) entry. (A
modegroup, or modename, is defined in the SNA communications product. It
defines the number of sessions that are associated with a connection and the
characteristics of those sessions.) See one of the following documents for
more information, depending on your SNA communications product:
— [TXSeries for Multiplatforms Using IBM Communications Server for AIX with|

CICS|

— [T XSeries for Multiplatforms Using IBM Communications Server for Windows

Systems with CICS|

— [T XSeries for Multiplatforms Using Microsoft SNA Server with CICS|

— [XSeries for Multiplatforms Using HP-UX SNAplus2 with CICY

— [XSeries for Multiplatforms Using SNAP-IX for Solaris with CICS|

If the DefaultSNAModeName attribute is set to " (its default value), and the
transaction has not provided a modename, the modename that is configured
for the SNA product is used. Refer to [“Default modenames” on page 110| for
more information about the use of this attribute.

* The OutboundUserlds attribute determines the security information that is
sent with outbound requests. [“Setting up a CICS region to flow user IDs” onl
[page 130|and [“Setting up a CICS region to flow passwords” on page 131]
describe how this option works.

* The RemoteSysSecurity attribute specifies the type of security that is
required:
— Using the default value of local causes CICS to run all incoming
intersystem requests from the remote system under the user ID value that
you specify in the LinkUserld field. The User Definitions (UD) entry for

Chapter 4. Configuring CICS for SNA 97

this user ID determines which resources these intersystem requests can
access. This type of security is called link security and is described in
[‘CICS link security” on page 126

— Choosing the verify or trusted values causes CICS to use the security
information (such as the user ID and password) that is sent with the
intersystem request. CICS also uses the user ID that you specify in the
LinkUserld field to restrict the resources that inbound intersystem
requests can access. This type of security is called user security and is
described in [“CICS user security” on page 127

* See|Chapter 6, “Configuring intersystem security,” on page 123 for more
information about how CICS security is configured, including descriptions of
the TSLKeyMask and RSLKeyMask attributes.

Configuring CICS for PPC Gateway server SNA support by
using the IBM TXSeries Administration Tool (CICS on
Windows platforms only)

To configure CICS for PPC Gateway server SNA by using the IBM TXSeries
Administration Tool, you must configure a Gateway Definitions (GD) entry and a
Communications Definitions (CD) entry for each remote system with which your
system is to communicate. It is also recommended that you update the Local
SYSID Region Definitions (RD) attribute. Perform the following procedures to set
these definitions (assume that default values are accepted for any attributes that
are not discussed):

First, configure a Gateway Definitions (GD) entry by doing the following:

1.

9.

Click the region name in the IBM TXSeries Administration Tool Administration
window.

Click Subsystem>Resources>Gateway. The Gateways window opens.
Click Gateways>New. The Gateway Definition window opens.

In the Gateway name field, type a name for the Gateway Definitions (GD)
entry. This name can be up to four characters in length and must be different
from the names of all other GD entries that are in your region. It does not have
to be unique within the network and it does not relate to any other names in
the network.

Type a description if desired.

Type the Gateway LU name in the Gateway LU name field.

Type the CDS name in the CDS name field. Specify either the short name for
the PPC Gateway server (for example, cicsgwy) or the full path name of the
PPC Gateway server (for example, /.:/cics/ppc/gateway/cicsgwy). If a name is
provided without an initial slash (/), CICS inserts the string
[.:[cics/ppc/gateway in front of the supplied name.

Click the Permanent button to add the Gateway Definitions (GD) entry to the
permanent database, or click the Both button to add the entry to the permanent
and runtime databases.

Repeat this process for any other Gateway Definitions (GD) entries.

Next, update the Local SYSID Region Definitions (RD) attribute by doing the
following:

1.

2.

Click the region name in the IBM TXSeries Administration Tool Administration
window.

Click Subsystem>Properties. The Properties window opens.

98 TXSeries for Multiplatforms: CICS Intercommunication Guide

3. Type a description if desired.

4. Type the region’s short name in the Local SYSID field. An example

configuration window is shown in |Figure 4

In"ﬁ.-E IBM TXSernes - CICS Hegion CICSWINT - Properties

General | File Server | Queue Filesl Scheduling | AT Intervals Sturagel Int 4 | *l

Region name: |CIC5WINT

Description: |CIC5 on Windows NT region

™ Protect resource

Start type: |c:u||:| E
Date format: Iddmmy‘y E

I¥ Use map name suffices

HTML help browser: I Browse... |

~Inter System Communication

Local network name: |

Local SYSID: [WINT

Local LU name: |

Release number: 0430
Number of updates: 3

Beset | Cancel | Help |

Figure 43. Region Definition Properties window

5.

Click OK to add the updated Region Definitions (RD) attributes to the
permanent database. (If you update RD attributes in a region while it is
running, the changes are not enabled until the region is reinitialized by either
an autostart or a cold start. In this example, because the attributes are updated
only in the permanent database, the region must be cold-started.)

Finally, configure a Communications Definitions (CD) entry for each remote system
with which your system is to communicate by doing the following:

1.

In the IBM TXSeries Administration Tool Administration window, click the
region name.

Click Subsystem>Resources>Communication. The Communications window
opens.

Click Communications>New. The Communication Definition window opens.
The attributes for a Communications Definitions (CD) entry are grouped on
four tabs:

* General: Contains attributes that are required by all CD entries.

* SNA: Contains attributes that describe how the remote system communicates
over an SNA network.

Chapter 4. Configuring CICS for SNA 99

¢ TCP/IP: Contains attributes that describe how the remote system is
connected to a TCP/IP network. Attributes on this page are not applicable to
a local SNA CD entry.

* Security: Contains attributes that define how security is managed.
4. On the General tab:

a. In the SYSID field, type a four-character name for the Communications
Definitions (CD) entry. This name must be different from the names of all
other CD entries that are in your region. However, it does not have to be
unique within the network and does not relate to any other names in the
network.

Type a description if desired.
C. Select the PPC Gateway option from the Connection type menu.

d. Accept the default value, or type the appropriate value in the Code page
for transaction routing field. This value determines which character set
flows across the network during transaction routing. The correct code page
depends on the national language of your local region and the remote
system type. See [Chapter 7, “Data conversion,” on page 147|for information
about how to choose this value. An example configuration window is

shown in |Figure 44

i IBM TXSeries - CICSWINT - Communication Definition - Untitled

General |SNA |TCP,I'IP| Security'

§YSID: [CESA

Description: [To CICSESA region

Gmup:|
¥ Activate on startup
[Protect resource
¥ In service
Connection type: IPPC Gateway j

Code page for transaction routing:

(IBM-037

Mumber of updates: 0

Permanent |

Figure 44. Communication Definition window: General tab

Reset Cancel Help

5. Click the SNA tab. On this tab:
a. In the Remote LU name field, type the LU name of the remote system.

b. Optionally, in the SNA LU alias field, type the LU alias that is configured
for the remote system in the SNA product that is used by the PPC Gateway
server. (In this example, this field is left empty.)

100 TXSeries for Multiplatforms: CICS Intercommunication Guide

c. In the Remote network name field, type the SNA network to which the
remote system is connected.

d. In the Default SNA mode name field, type the name of the SNA
modegroup that is to be used for intersystem requests when an SNA
modename is not specified either in the PROFILE option of the EXEC CICS
ALLOCATE command, or in the SNAModeName attribute of the
Transaction Definitions (TD) entry. Refer to [‘Default modenames” on pagel
for more information about the use of this attribute.

e. Select the name of the GD entry that was created in step for
the Gateway field value.

f. Accept the default value of 60 seconds or type a value in the Timeout on
allocate field to indicate the length of time CICS waits for the PPC Gateway
server to accept an intersystem request. This specification prevents the CICS
transaction that is issuing the intersystem request from becoming suspended
if the PPC Gateway server becomes overloaded or fails while accepting an

intersystem request. An example configuration window is shown in
Figure 45

i IBM TXSenes - CICSWINT - Communication Defimition - Unhitled

General SNA | TCPAP| Security |

—Common SNA attributes

Remote LU name: IW

SNA LU alias: I
Hemote network name: Im
Default SNA mode name: Im

—PPC Gateway attributes

Gateway: |GWY -

Timeout on allocate: IEU

Permanent |

Figure 45. Communication Definition window: SNA tab

Reset Cancel | Help

6. Click the Security tab. These attributes describe the security checks that are
applied to all intersystem requests that use this CD entry. On this tab:
a. In the Inbound request security area, click the type of security that you
require:

* Accepting the default Local option causes CICS to run all incoming
intersystem requests from the remote system under the user ID value that
you specify in the UserID for inbound requests field. The User
Definitions (UD) entry for this user ID determines which resources these

Chapter 4. Configuring CICS for SNA 101

intersystem requests can access. This type of security is called link security
and is described in [“CICS link security” on page 126

* Choosing the Verify or Trusted options causes CICS to use the security
information (such as the user ID and password) that is sent with the
intersystem request. CICS also uses the user ID that you specify in the
UserID for inbound requests field to restrict the resources that inbound
intersystem requests can access. This type of security is called user security
and is described in [“CICS user security” on page 127

b. Security information that is sent with outbound requests is determined by
the value that is selected in the Send user ID field. |'Setting up a CICS|
region to flow user IDs” on page 130 and [“Setting up a CICS region to flow]
passwords” on page 131| describe how this option works.

c. See[Chapter 6, “Configuring intersystem security,” on page 123 for more
information about how CICS security is configured, including descriptions

of the Transaction level security key masks and Resource level securit
key masks fields. An example configuration window is shown in

i\ IBM TXSenes - CICSWINT - Communication Defimition - Unhitled

General | SNA | TCPAIP Security

Transmission encryption Inbound request security
& None ' Local
& Control ' Verify
& Al data ' Trusted
Send user ID: ISent j

UserlD for inbound requests: ILINKCESA

—Key masks
Transaction level security key masks:
none =
=
Resource level security key masks:
none =
[~
Permanent | BReset Cancel | Help |

Figure 46. Communication Definition window: Security tab

7.

Click the Permanent button to add the Communications Definitions (CD) entry
to the permanent database, or click the Both button to add the entry to the
permanent and runtime databases.

Repeat this process for any other Communications Definitions (CD) entries.

102 TXSeries for Multiplatforms: CICS Intercommunication Guide

Configuring CICS for PPC Gateway server SNA support by

using SMIT (CICS for AIX only)

To configure CICS for PPC Gateway server by using SMIT, perform the following
procedure. (Assume that default values are accepted for any attributes that are not
discussed):

1.

Ensure that you are logged into AIX with enough privileges to change the
region database. (For example, log into AIX as the root user.)

Optionally, set the environment variable CICSREGION to the name of your
CICS region. For example:

export CICSREGION=cicsaix

Note: In this procedure, we call the local region cicsaix to reflect a CICS for
AIX system. Also, this example assumes that you are using the Korn
shell; if you are using a different shell, change the export command
accordingly.

Enter smitty cicsregion to start SMIT.

If you have not set the CICSREGION environment variable as described in

step El select the option Change Working CICS Region.

Select your CICS region from the list that is displayed and press the Enter key.
The COMMAND STATUS screen verifies your selection.

Press the F3 key.

Configure a Gateway Definitions (GD) entry by performing the following
procedure:

a. Select options:

» Define Resources for a CICS Region
» Manage Resource(s)
> Gateways
» Add New

The Add Gateway panel is displayed.

b. Enter a value for the Model Gateway Identifier attribute. Use the name of
a GD entry that you have defined previously, or press the Enter key to use
the default value ("").

c. Enter the name of the GD entry in the Gateway Identifier field.

d. Enter a description in the Resource description field if desired.

e. In the CDS path name of the gateway field, enter the name of the PPC
Gateway server that the region is to use.

Note: This attribute accepts either the full path name of the PPC Gateway
server or a partial name. If a partial name is supplied, CICS
appends it to the path /.:/cics/ppc/gateway/.

f. In the SNA LU name of the gateway field, enter the SNA LU name that
the gateway uses to communicate with the local region. In the example in
[Figure 47 on page 104} the gateway uses the name CICSOPGW.

Chapter 4. Configuring CICS for SNA 103

4 N

Add Gateway
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

* Gateway Identifier [GWY]

* Model Gateway Identifier e

* Region name [cicsaix] +
Add to database only OR Add and Install Add +
Group to which resource belongs 0
Activate resource at cold start? yes +
Resource description [Gateway Definition]

* Number of updates 0
Protect resource from modification? no +
CDS path name of the gateway [cicsgwy]
SNA LU name of the gateway [CICSOPGW]

Fl=Help F2=Refresh F3=Cancel Fa=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

N J

Figure 47. Add Gateway SMIT panel

8. Press the Enter key to create the GD entry. (If you add a GD entry to a region
while it is running, the changes are not enabled until the region is reinitialized
by either an autostart or a cold start. In this example, because the entry is
added only to the permanent database, the region must be cold-started.) The
COMMAND STATUS screen verifies successful creation of the definition.

9. Press the F3 key three times to return to the Manage Resource(s) menu.

10. Update the Region system identifier (short name) Region Definitions (RD)
attribute by performing the following procedure:
a. From the Manage Resource(s) menu, select the options:

> Region
» Show/Change

The Show/Change Region panel is displayed.
b. Enter a description in the Resource description field if desired.

c. Enter a four-character name for the CICS region, known as the SYSID, in
the Region system identifier (short name) field.

[Figure 48 on page 105/shows an example Show/Change Region SMIT
panel. (Only the panel that shows the updated attribute is shown.)

104 TXSeries for Multiplatforms: CICS Intercommunication Guide

/ N

Show/Change Region
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[TOP] [Entry Fields]
* Region name cicsaix
Resource description [Region Definition]
* Number of updates 1
Protect resource from modification? no ¥
Startup type cold +
Startup groups (]
Programs to execute at startup 0
Programs to execute at phase 1 of shutdown 1
Programs to execute at phase 2 of shutdown 0
Name of the default user identifier [CICSUSER]
Type of RSL checking for Files external 4
Type of RSL checking for TDQs external +
Type of RSL checking for TSQs external +
Type of RSL checking for Journals external +
Type of RSL checking for Programs external +
Type of RSL checking for Transactions external +
Do you want to use an External Security Manager? no +
Name of ESM Module [
Min protect Tevel used when accepting RPCs none +
Min protect Tevel for logical TDQs none +
Min protect level for physical TDQs none +
Min protect Tevel for non-recoverable TDQs none +
Min protect Tevel for recoverable TSQs none +
Min protect Tevel for non-recoverable TSQs none +
Min protect Tevel for locally queued PROTECT ATIS none +
Min protect level for locally queued ATIs none +
CICS Release Number 0430
Region system identifier (short name) [CAIX]
Network name to which local region is attached 0
Common Work Area Size [512] #
Minimum number of Application Servers to maintain [1] #
Maximum number of Application Servers to maintain [5] #
Maximum number of running transactions per class ([1,1,1,1,1,1,1,1,1,1]
10 entries)
Purge threshold for transaction requests above Cla [0,0,0,0,0,0,0,0,0,0]
ssMaxTasks
Time before Application Servers terminate (secs) [300] #
Level of protection against user corruption none i
Number of threads for RPC requests [e] #
Format date for FORMATTIME ddmmyy +
Hash sizes CD,FD,PD,RD,TSD,WD,TD,TDD,XAD,UD,MD,JD, [5,50,50,1,50,50,50,20,>
LD,GD,0D
Region Pool Storage Size (bytes) [2097152] #
Task-private Storage Size (bytes) [1048576] #
Task Shared Pool Storage Size (bytes) [1048576] #
Threshold for Region Pool short on storage (%age) [90] #
[MORE. . .62]
Fl=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
o %

Figure 48. Show/Change Region SMIT panel

d. Press Enter to update the Region Definitions (RD) attribute. (If you update
an RD attribute in a region while it is running, the change is not enabled
until the region is reinitialized by either an autostart or a cold start. In this
example, because the attribute is updated only in the permanent database,
the region must be cold-started.) The COMMAND STATUS screen
confirms successful completion of the process.

e. Press the F3 key three times to return to the Manage Resource(s) menu.

Chapter 4. Configuring CICS for SNA 105

11. Configure a Communications Definitions (CD) entry for each remote system
with which your system is to communicate, by performing the following
procedure:

a. Select options:

» Communications
» Add New

The Add Communication panel is displayed.

b. Enter a value for the Model Communication Identifier attribute. Use the
name of a CD entry that you have defined previously, or press the Enter
key to use the default value ("").

Enter the name of the CD entry in the Communication Identifier field.
Add a description in the Resource description field if desired.
Select the ppc_gateway option in the Connection type field.

~® o0

Enter the LU name of the remote system in the Name of remote system
field.

g. Enter the name of the network to which the remote system is attached in
the SNA network name for the remote system field.

h. In the Default modename for a SNA connection field, enter the name of
the SNA modegroup that is to be used for intersystem requests when an
SNA modename is not specified in either the PROFILE option of the EXEC
CICS ALLOCATE command or in the SNAModeName attribute of the
Transaction Definitions (TD) entry. If the Default modename for a SNA
connection attribute is set to " (its default value), and the transaction has
not provided a modename, the modename that is configured in the AIX
SNA communications product’s side information profile for the local LU
name is used. Refer to [“Default modenames” on page 110| for more
information about the use of this attribute.

i. Accept the default value or enter the appropriate value in the Code page
for transaction routing field. This value determines which character set
flows across the network during transaction routing. The correct code page
depends on the national language of your local region and the remote
system type. See|“Data conversion for transaction routing” on page 164| for
information on how to choose this value.

j. Accept the default value or select the appropriate value in the Send userids
on outbound requests? attribute to determine the type of security
information (if any) that is sent with outbound requests. [’Setting up a CICY

region to flow user IDs” on page 130|and [“Setting up a CICS region to flow|

passwords” on page 131| describe how this attribute works.

k. In the Security level for inbound requests field, select the type of security
that you require:

* Accepting the default local option causes CICS to run all incoming
intersystem requests from the remote system under the user ID value
that you specify in the UserID for inbound requests field. The User
Definitions (UD) entry for this user ID determines which resources these
intersystem requests can access. This type of security is called link
security and is described in [“CICS link security” on page 126)

* Choosing the verify or trusted options causes CICS to use the security
information (such as the user ID and password) that is sent with the
intersystem request. CICS also uses the user ID that you specify in the
UserID for inbound requests field to restrict the resources that inbound
intersystem requests can access. This type of security is called user
security and is described in [“CICS user security” on page 127/

106 TXSeries for Multiplatforms: CICS Intercommunication Guide

See [Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions
of the Transaction Security Level (TSL) Key Mask and Resource Security

Level (RSL) Key Mask attributes. shows an example Add

Communication SMIT panel.

4 . . N
Add Communication
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

* Communication Identifier [CESA]

* Model Communication Identifier "

* Region name [cicsopen] +
Add to database only OR Add and Install Add +
Group to which resource belongs 1
Activate the resource at cold start? yes i
Resource description [Connection to CICSESA]

* Number of updates 0
Protect resource from modification? no +
Connection type ppc_gateway i
Name of remote system [CICSESA]

SNA network name for the remote system [MYSNANET]

SNA profile describing the remote system 0

Default modename for a SNA connection [c1csIsco]

Gateway Definition (GD) entry name [awY]

Listener Definition (LD) entry name 0

TCP address for the remote system [

TCP port number for the remote system [1435] #
Timeout on allocate (in seconds) [60] #
Code page for transaction routing [1BM-037]

Set connection in service? yes +
Send userids on outbound requests? sent +
Security Tevel for inbound requests trusted +
UserId for inbound requests [LINKCESA]

Transaction Security Level (TSL) Key Mask [none]

Resource Security Level (RSL) Key Mask [none]

Transmission encryption level none +

Fl=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

- J

Figure 49. Add Communication SMIT panel

m.

Press Enter to create the CD entry. (If you add a CD entry to a region
while it is running, the changes are not enabled until the region is
reinitialized by either an autostart or a cold start. In this example, because
the entry is added only to the permanent database, the region must be
cold-started.) The COMMAND STATUS screen verifies the definition

creation.

n. Press the F3 key three times to return to the Manage Resource(s) menu.

0. Repeat this process for any other Communications Definitions (CD) entries.

Chapter 4. Configuring CICS for SNA 107

108 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 5. Configuring resources for intercommunication

This chapter describes how to configure resources on your CICS system so that
they can be shared with other systems. The following are described:

« [“Configuring transactions for intersystem communication”

* |“Configuring intrapartition TDQs for intercommunication” on page 111

e |“Configuring Program Definitions (PD) for DPL” on page 112

* |“Defining remote resources for function shipping” on page 113|

* |“Defining resources for transaction routing” on page 116|

* ["Defining remote transactions for asynchronous processing” on page 120

Configuring transactions for intersystem communication

This section describes:

* [“Transactions over an SNA connection (CICS on Open Systems only)”]
+ |“Back-end DTP transactions over TCP/IP and an SNA connection”

+ [“Configuring for the indoubt condition”|

Other sections that are relevant to configuring transactions for intercommunication
are:

+ |“Defining remote transactions for transaction routing” on page 119

+ |“Defining remote transactions for asynchronous processing” on page 120

Transactions over an SNA connection (CICS on Open Systems
only)

If you are using Communications Server for AIX, to make transactions available for
function shipping, transaction routing, and distributed transaction processing
(DTP) requests over an SNA connection, you need to set the Transaction
Definitions (TD) TPNSNAProfile attribute to the name of an AIX SNA TPN
Profile.

On HP-UX SNAplus2 or SNAP-IX for Solaris, you do not need to specify a
TPNSNAProfile in the TD entry. Leave the attribute blank.

Back-end DTP transactions over TCP/IP and an SNA
connection

CICS cannot distinguish between an inbound intersystem request for a DTP
back-end transaction and an inbound intersystem request for a transaction-routed
transaction. Therefore, it uses the IsBackEndDTP attribute of the Transaction
Definitions (TD) to decide how to process the request. If you are using a back-end
DTP transaction, set the transaction’s TD attribute IsBackEndDTP=yes; otherwise,
your back-end (remotely linked-to) program fails to start.

Note: In some conditions, setting IsBackEndDTP=yes for transactions that are not
run as back-end DTP transactions can result in a failure to start the
transaction. Therefore, do not set this attribute to yes unless it is required.

Configuring for the indoubt condition

Intercommunication with synchronization level 2 uses a two-phase commit. A
two-phase commit is a protocol for the coordination of changes to recoverable
resources when more than one resource manager is used by a single transaction. In

© Copyright IBM Corp. 1999, 2005 109

the first phase, all resource managers are asked to prepare their work; in the
second phase, they are all requested to either commit or back out (roll back).

While CICS is processing a two-phase commit for a transaction, a connection or
system error might occur. Some errors cause the transaction to wait until either

you correct the error, or it is corrected by CICS itself. These waiting transactions
are said to be in an Indoubt condition.

Because you might not want the transaction to wait for the error to be corrected,
do the following:

1. Use the Transaction Definitions (TD) InDoubt attribute to specify how the
condition is to be handled. When a transaction is waiting in the first phase of
the two-phase commit process, and a CEMT SET TASK FORCEPURGE is
issued against the transaction, CICS uses this attribute to determine whether to
commit or back out any changes that were made by the transaction before the
wait occurred. The InDoubt attribute can be set to the following values:

* wait_commit (commit changes)
* wait_backout (back out changes)

2. Use CEMT INQUIRE TASK INDOUBT to determine whether the transaction is
in the InDoubt condition.

3. Use CEMT SET TASK FORCEPURGE to resolve the indoubt condition in
accordance with the TD InDoubt attribute setting.

Default modenames

All intersystem requests over SNA require a modename. You can specify a
modename in several ways.

The modename can be specified explicitly for each intersystem request by using
either:

* The Profile option of the EXEC CICS ALLOCATE command (DTP only)

* The SNAModeName attribute in the Transaction Definitions (TD) entry

Alternatively, if you do not use the PROFILE or the SNAModeName attribute, you
can specify a default modename in the DefaultSNAModeName attribute on the
Communications Definitions (CD) entry.

If you do not specify a modename in the PROFILE, or the SNAModeName
attribute in the TD entry, or the DefaultSNAModeName attribute in the CD entry,
the CICS_SNA_DEFAULT_MODE environment variable can be used to set a
regionwide default mode name. It is read during region startup, and a message is
logged to the console.nnnnnn file so that you can check whether CICS has picked
up the value correctly. For further information about all the environment variables
that CICS uses, refer to the|TXSeries for Multiplatforms Administration Reference|

If none of the above is selected, the selection of modename depends on the
configuration of the particular SNA product that you are using.

Whichever modename is used must be correctly configured in the SNA product.

When using a PPC Gateway
The modename that is used is the value that is set with the Gateway Server
Definitions (GSD) SNADefaultModeName attribute. See ['Creating a PP(
(Gateway server” on page 184 for more information.

110 TXSeries for Multiplatforms: CICS Intercommunication Guide

SNA tuning

For assistance in tuning your SNA environment, refer to:

* |“Defining remote transactions for transaction routing” on page 119

[“Defining remote transactions for asynchronous processing” on page 120)

“Designing distributed processes” on page 283)|

TXSeries for Multiplatforms Administration Reference]

— When using HP-UX SNAplus2

Performance documentation for your SNA product.

Use the environment variable CICS_SNA_THREAD_POOL_SIZE to change
the number of threads that are available to handle incoming intersystem
requests. This environment variable has a range of 1 through 100. It defaults
to 6 if it is not specified. When high numbers of SNA back-end transactions
are expected on CICS for HP-UX, CICS_SNA_THREAD_POOL_SIZE should
be increased. This is configured in your region’s environment file.

Note: This environment variable is relevant only when you are using local
SNA support.

Configuring intrapartition TDQs for intercommunication

Intrapartition transient data queues (TDQs) can be configured with a trigger level
value, such that when the number of records that are written to the queue reach

that value, a transaction is automatically initiated. This is an example of automatic
transaction initiation (ATI).

The purpose of that transaction is typically to process the records on the queue.

The transaction can run locally on the region that owns the transient data queue,
or it can use intercommunication functions.

The following Transient Data Definitions (TDD) attributes are used:

TriggeredTransId
This attribute identifies the transaction that is to be automatically initiated

when the trigger level is reached. The purpose of transactions that are
initiated in this way is to read records from the destination. This

transaction must reside in the same region as is the TDQ that triggers it.

However, it might do one of the following:

* Run in the background

* Write to a local or remote terminal

¢ Acquire a conversation to another system and take part in a DTP
conversation with a back-end program

This is determined by the TDD FacilityType and Facilityld attributes.

TriggerLevel

This attribute defines the number of records that are to be accumulated
before a task is automatically initiated to process them.

FacilityType

This attribute defines the type of principle facility that is allocated for a

triggered task. Specify file for the triggered transaction to run as a

Chapter 5. Configuring resources for intercommunication

111

background task, terminal for the transaction to run against a terminal,
and system for the task to use a DTP conversation.

Facilityld
This attribute defines the triggered transaction’s principal facility identifier.

The principal facility that is associated with a transaction started by ATI can be:
* Alocal terminal

* A terminal that is owned by a remote region

e A DTP conversation to a remote region

Terminals as principal facilities

A local terminal is owned by the region that owns the transient data queue and the
transaction.

For an ATI triggered transaction to use a local terminal, specify the FacilityType as
terminal, and specify the terminal identifier in the Facilityld attribute. This
terminal identifier (TERMID) must be the name of the Terminal Definitions (WD)
entry.

Remote terminals as principal facilities

If FacilityType=terminal, you can define a terminal that is remote from the region
that owns the transient data queue and the associated transaction.

Use the Facilityld attribute to specify the name of the Terminal Definitions (WD)
entry for the remote terminal. You must define the terminal itself as a remote
terminal, and you must connect the terminal-owning region to the local region
through an intersystem connection. This intersystem connection is defined in a
Communications Definitions (CD) entry.

ATI with a remote terminal is a form of CICS transaction routing, and the normal
transaction routing rules apply. Refer to|[Chapter 12, “Transaction routing,” on page|
- 63,

Remote systems as principal facilities

If FacilityType=system, set the Facillityld attribute to the name of a
Communications Definitions (CD) entry. In this case, the triggered transaction is
started with a conversation that is allocated to the requested system as its principal
facility. The conversation is in “allocated” state and the transaction should issue an
EXEC CICS CONNECT PROCESS to connect to a back-end transaction.

For more information about transient data queues, see |CICS Administration Guide|
For more information about TDDs, see [TXSeries for Multiplatforms Administration|

Refer to[“Conversation initiation and the front-end transaction” on page 286

Configuring Program Definitions (PD) for DPL

All CICS applications can link to a program that is running in a remote system,
either by using the SYSID option in the EXEC CICS LINK command, or by
creating a Program Definitions (PD) entry that defines the program as remote. The
[TXSeries for Multiplatforms Administration Referencd describes all the attributes of a
PD entry. This section describes those attributes that are relevant for remote
programs.

112 TXSeries for Multiplatforms: CICS Intercommunication Guide

The key, or name, of the PD entry
Specifies the local name of the remote program. This is the name that is
used in a local EXEC CICS LINK command that invokes the program. In
the example, the name is LOCLPGM.

RemoteSysld attribute
Specifies the name of the Communications Definitions (CD) entry for the
connection to the remote system. In the example below, the name of the
CD entry is CONR.

RemoteName attribute
Specifies the name of the program in the remote CICS system in which it is
located. In the example, the name of the remote program is REMTPGM.

Note: A PD is not required for programs that are dynamically linked.

Example of a PD for DPL

This command adds a PD entry, called LOCLPGM, in a region named cicsopen:

% cicsadd -r cicsopen \
-c pd LOCLPGM \
RemoteSysId="CONR" \
RemoteName="REMTPGM"

When the EXEC CICS LINK PROGRAM(LOCLPGM) command is executed locally,
a link request is shipped on connection CONR to a remote CICS system in which
program REMTPGM is executed, by using the remote mirror transaction.

Defining remote resources for function shipping

The [TXSeries for Multiplatforms Administration Referencd gives a full description of all
CICS resource definitions. The following information contains guidance about
parameters that are important in the definition of remote data resources that are to
be accessed by function shipping. Those data resources are:

* Remote files

* Remote transient data queues

* Remote temporary storage queues

Defining remote files

A remote file is a file that resides on another region. CICS uses function shipping
for file control requests that are made against a remote file.

CICS application programs can name a remote region explicitly on file control
requests by means of the SYSID option. If this is done, you need not define the
remote file in the local region.

More generally, however, applications are designed to access files without being
aware of their location, and in this case you must define the remote file in the local
File Definitions (FD) entry.

Note: The definition of the file in the system that is named in the SYSID parameter
can itself be a remote definition.

FD entries for remote files

Defining a file entry as remote provides CICS with enough information to ship file
control requests to a specified remote region. You do this by specifying, in the
RemoteSysld attribute of the FD, the SYSID of the Communications Definitions

Chapter 5. Configuring resources for intercommunication 113

(CD) entry for the connection to the remote region. See the cicsadd command
example that is shown in|“Example of a file definition for function shipping”| for
further information about this.

You must define a link to this region. The identifier that is specified for the remote
region must not be the identifier of the local region.

File names
You specify the name by which the file is known on the local region in the
FD. Application programs in the local region use this name in file control
requests. In the example, the name is LOCLFILE.

You specify the name by which the file is known on the remote CICS
region in the RemoteName attribute in the FD. CICS uses this name when
shipping file control requests to the remote region. In the example, the
name is REMTFILE.

If the name of the file is the same on both the local and the remote region,
you do not need to specify the RemoteName. However, consider carefully
the desirability of using the local file name to provide a local alias for the
remote file name. This technique is, of course, essential if files of the same
name reside on both regions and you do not want your local system to
access the remote file of the same name.

Record lengths
You can specify the record length, in bytes, of a remote file by using the
KeyLength attribute in the FD entry. This value must be the same as that
which is specified in the description of the file in the remote system in
which it is locally defined. In the example, the record length is 6.

If your installation uses COBOL, specify the record length for any file that
has fixed-length records.

In all other cases, the record length is either a mandatory option on file
control commands or can be deduced automatically by the
command-language translator.

You can specify the maximum record size, in bytes, of a remote file by
using the RecordSize attribute in the FD entry. This value must be the
same as that which is specified in the description of the file in the remote
system in which it is locally defined. In the following example, the record
length is 86.

Example of a file definition for function shipping
This command adds an FD entry, called LOCLFILE, in the region named cicsopen:

% cicsadd -r cicsopen -c fd LOCLFILE RemoteSysId="CESA" \
RemoteName="REMTFILE" \
KeyLen=6 RecordSize=86

This entry enables the function shipping request for file LOCLFILE over connection
CESA to a remote CICS system, where it accesses a file REMTFILE, which has a
key length of 6 and a record length of 86.

Defining remote transient data queues

A remote transient data queue is one that resides on another region. CICS uses
function shipping for transient data requests that are made against a remote queue.

114 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICS application programs can use the SYSID option to name a remote region
explicitly on transient data requests. If this is done, you do not need to define the
remote transient data queue on the local region.

More generally, however, applications are designed to access transient data queues
without being aware of their location, and in this case you must define the remote
queue in the local Transient Data Definitions (TDD).

TDD entries for remote transient data queues

A remote entry in the TDD provides CICS with enough information to ship
transient data requests to a specified remote region. The name of the TDD entry is
the name of the queue that is used by local transaction, (see the cicsadd command
example shown in|“Example of a TDD for function shipping”). In the example, the
local name of the transient data queue is LTDQ.

Remote name
Use the TDD RemoteName attribute to specify the name of the transient
data queue in the remote CICS system in which it is defined. In the
example, this name is RTDQ.

Remote system
Use the TDD RemoteSysld attribute to specify the name of the
Communications Definitions (CD) entry that defines the connection to the
remote system in which the transient data queue resides. In the example,
this name is CESA.

Example of a TDD for function shipping
This command adds a TDD entry, called LTDQ, to a CICS group, called GROUP, in
the region named cicsopen:

% cicsadd -r cicsopen -c tdd LTDQ RemoteSysId="CESA" \
RemoteName="RTDQ"

This entry enables the function shipping of an access request for transient data
queue LTDQ over connection CESA to a remote CICS system, where it accesses
transient data queue RTDQ.

Defining remote temporary storage queues

CICS application programs use temporary storage queues to store data for later
retrieval. A remote temporary storage queue is one that resides on another region.
CICS uses function shipping for temporary storage requests that are made against
a remote queue.

CICS application programs can use the SYSID option to name a remote region
explicitly on temporary storage requests. If this is done, you need not define the
remote temporary storage queue on the local region.

More generally, however, applications are designed to access temporary storage
queues without being aware of their location, and in this case you must define the
remote queue in the local Temporary Storage Definitions (TSD).

TSD entries for remote temporary storage queues

A remote entry in the TSD provides CICS with enough information to ship
temporary storage requests to a specified remote region. The name of the TSD
entry is the name of the queue that used by the local application (see the cicsadd
command example shown in [“Example of a TSD for function shipping” on page]
116). In the example, the local name of the temporary storage queue is LOCLTSQ.

Chapter 5. Configuring resources for intercommunication 115

Remote system
Use the TSD RemoteSysld attribute to specify the name of the
Communications Definitions (CD) entry for the connection to the remote
system in which the real temporary storage queues reside. In the example,
this connection name is CESA.

Remote queue name
Use the TSD RemoteName attribute to specify the name of the temporary
storage prefix that is used by the remote system in which the queues are
located. In the example, this prefix is REMTTSQ.

Example of a TSD for function shipping
This command adds a TSD entry, called LOCLTSQ, to a CICS group, called
GROUP, in the region named cicsopen:

cicsadd -r cicsopen -c tsd LOCLTSQ RemoteSysId="CESA" \
RemoteName="REMTTSQ"

This entry enables the function shipping request for temporary storage queue
LOCLTSQ over connection CESA to a remote CICS system, where it accesses
temporary storage queue REMTTSQ.

Defining resources for transaction routing

Transaction routing enables a terminal that is owned by one CICS system (the
terminal-owning region) to be connected to a transaction that is owned by another
CICS system (the application-owning region). The following definitions are
required:

* In the terminal-owning region:

— If the terminal is not autoinstalled, it must be defined as a local resource on
the terminal-owning region, by using a Terminal Definitions (WD) entry.

— The transaction must be defined as a remote resource on the terminal-owning
region if it is to be initiated from a local terminal or by automatic transaction
initiation (ATI).

— For dynamic transaction routing, the terminal-owning region requires the
following information to be defined in the Transaction Definitions (TD):

- The local name of the transaction
- An indication that this is a dynamic transaction (Dynamic=yes)

In dynamic transaction routing, values that are defined in the TD can be
changed by the dynamic transaction routing user exit. Therefore, information
such as the name of the connection to the region that owns the transaction
and the name of the transaction in the region that owns it are not mandatory.
For more information, see ["Dynamic transaction routing” on page 267

* In the application-owning region:
— If the terminal definition is not shipped from the terminal-owning region, it
must be defined on the application-owning region.

— The transaction must be defined as a local resource on the application-owning
region.

These rules also apply to intermediate systems when indirect routing is used. (See
[“Indirect links for transaction routing” on page 266))

Note: The information that follows briefly describes only those resource definition
attributes that are required for transaction routing. Refer to the
[Multiplatforms Administration Reference| for complete details.

116 TXSeries for Multiplatforms: CICS Intercommunication Guide

Shipping terminal definitions

To avoid the need for a remote definition in the application-owning region, a
terminal can be defined as shippable in its local definition in the terminal-owning
region. To do this, set the IsShippable attribute to yes for the Terminal Definitions
(WD) for that terminal.

Note: This parameter defaults to yes and needs to be coded only when the intent
is to prohibit terminal shipping.

For terminals that are autoinstalled, you must set the IsShippable attribute to yes.
In effect, this gives automatic installation of remote terminals.

When a remote transaction is invoked from a shippable terminal (refer to the
IsShippable attribute in the Terminal Definitions in the [TXSeries for Multiplatforms|
|Administration Reference), the request that is transmitted to the application-owning
region is flagged to show that a shippable terminal definition is available. If the
application-owning region already has a definition of the terminal (which might
have been shipped previously), it ignores the flag. Otherwise, it asks for the
definition to be shipped. A shipped terminal definition is retained until one of the
following events occurs:

* The autoinstalled terminal definition on the terminal-owning region is deleted,
or the user logs off a terminal that is not autoinstalled.

* The WD entry for the logged-on terminal on the terminal-owning region is
changed or deleted.

* The system that shipped the terminal definition (the terminal-owning region) is
restarted.

¢ The system that received the shipped terminal definition (the application-owning
region) is restarted.

Note: The WD IsShippable attribute defaults to yes. Change this attribute to no
when you do not want a terminal definition to be shipped. Do not change
the attribute to no for terminals that are autoinstalled.

Fully qualified terminal identifiers

A unique identifier is used for every terminal that is involved in transaction
routing. The identifier is formed from the APPLID of the terminal-owning region
and the terminal identifier that is specified in the terminal definition on that
region.

For example, if the APPLID of the terminal-owning region is PRODSYS, and the
terminal identifier is L77A, the fully-qualified terminal identifier is
PRODSYS.L77A.

Note: When referring to a remote region, the APPLID for that region is known in
CICS as the Communications Definitions (CD) RemoteLUName.

The following rules apply to all forms of remote terminal definitions:

* You must associate the terminal definition with a region whose NETNAME is
the RemoteLUName (or APPLID) of the terminal-owning region.

* You must always specify the real terminal identifier, either directly or by means
of an alias.

Chapter 5. Configuring resources for intercommunication 117

Defining terminals to the application-owning region

If you are not going to ship the terminal definition from the terminal-owning
region to the application-owning region, you must define the terminal on the
application-owning region. The following attributes are required:

Terminal identifier
The name by which the terminal is known (see[“Fully qualified terminall
lidentifiers” on page 117). Application programs use this name in terminal
control requests. In the following example, in which the
application-owning region is CICS, the terminal identifier is REMT. This is
the key of the WD entry for this terminal as defined on the
application-owning region.

Remote name of terminal
The name by which the terminal is known on the terminal-owning region
is defined by using the WD RemoteName attribute. In the following
example, the name is LOCL. In a TXSeries for Multiplatforms
terminal-owning region, this is the key of the WD entry for this terminal in
the TOR.

The name by which a terminal is known in the application-owning region
is usually the same as the name that is in the terminal-owning region. You
can, however, choose to call the remote terminal by a different name (an
alias) in the application-owning region.

If the terminal name is to be the same on both the terminal-owning region
and the application-owning region, you do not need to specify the
RemoteName.

Remote Region Name
Specify the name of the Communications Definitions (CD) entry for the
connection to the terminal-owning region in the WD RemoteSysId
attribute. This is used to route transaction output from the
application-owning region back to the terminal in the terminal-owning
region. In the example shown below, this name is CESA.

User Area Size
You set the TCTUALen in the WD entry to specify the length of the
terminal user area. The value should be the same as that which is specified
in the terminal’s definition in its owning region. In the example, this value
is 100.

NetName
The NETNAME of the terminal. This must match the NETNAME as
defined for the local terminal in the remote system.

Example of a WD entry for a remote terminal
This command adds a WD entry, called REMT, in the region named cicsopen:

cicsadd -r cicsopen -c wd REMT RemoteSysId="CESA" RemoteName="LOCL" \
TCTUALen=100 NetName="TERM0OOO1"

This entry is installed in an application-owning region that receives transaction
routing requests from a remote terminal LOCL. The entry enables routing of data
from the application-owning region across connection CESA back to the
terminal-owning region.

Using the alias for a terminal in the application-owning region

When an ISC session is being used to provide the transaction routing services
between the terminal-owning-region region (TOR) and the application-owning-

118 TXSeries for Multiplatforms: CICS Intercommunication Guide

region (AOR), the name by which a terminal is known in the AOR is designated as
the alias for the fully qualified terminal name used in the TOR.

Usually, the alias that is on the AOR is the same as the TERMID that is on the
TOR. However, if two or more TORs use similar sets of terminal identifiers
(TERMIDs) for transaction routing, a naming conflict can occur. When the name on
a shipped terminal definition conflicts with the name of a surrogate terminal that
is already installed in the AOR, CICS assigns a randomly-generated alias to the
duplicate TERMID to resolve the naming conflict. In this case, the value of the
original TERMID is stored in the RemoteName field.

For example, the TOR named Regionl has a terminal with the TERMID T001. When
this terminal is shipped, it has the fully qualified name of Region1.T001, the alias of
T001, and the RemoteName is set equal to NULL on the AOR. If the AOR then
receives a terminal request from Region2 that is also using the TERMID T001, the
AOR uses the fully qualified name of Region2.T001. It assigns a randomly
generated alias, for example, XXXX, in place of the duplicate TERMID, and the
value of the RemoteName field is set to the name of the original TERMID, T001.

You must take care to ensure that the correct TERMID is used when a user on the
AOR issues the CECI START TRAN (tranName) TERMID (T001) command. The
results of the transaction are returned to the terminal with the fully qualified name
of Region1.T0OO1.

If the actual intention is to return the results of the transaction to the terminal that
has the fully qualified name of Region2.T001, the alias XXXX needs to be identified
as the TERMID. The user can get the correct TERMID by using the CICS-supplied

transaction CEMT INQUIRE TERMINAL or CEMT INQUIRE NETNAME.

Similarly, if an application on the AOR is using the command EXEC CICS START
TRAN (tranName) TERMID (termld) and the possibility exists for duplicate
TERMIDs, the application must get the required alias that is to be used as the
TERMID, by issuing an EXEC CICS INQUIRE NETNAME command or an
ASSIGN FACILITY command.

Defining remote transactions for transaction routing

A remote transaction for CICS transaction routing is a transaction, which is owned
by another region (the application-owning region), that can be run from the local
region by using a terminal that is owned by the local region (the terminal-owning
region).

You define a remote transaction in the same way as that in which you define a
local transaction, except that some of the operands are not required.

For details of all the attributes that define transactions, see the
IMultiplatforms Administration Reference,

TD attributes for remote transactions

To support transaction routing, you must define the remote transaction to the local
region by using a Transaction Definitions (ID) entry. The name of the TD entry is
the local name for the transaction. In the example in [“Example of a TD entry for af
fremote transaction” on page 120 the local name of the transaction is LTRN.

Connection to the remote system
Set the RemoteSysld attribute in the TD to specify the name of the

Chapter 5. Configuring resources for intercommunication 119

Communications Definitions (CD) entry of the connection to the remote
region in which the transaction resides. In the example, the name of the
connection is CESA.

Remote transaction name
Specify the name by which the transaction is known in the remote region,
by using the RemoteName attribute in the TD. In the example, this name
is RTRN. If the transaction name is to be the same as both the local and
remote region, you do not need to specify a remote transaction name.

CICS translates transaction names from local names to remote names when
a request to run a transaction is transmitted from one region to another.

Transaction work area (TWA)
You can set the TWASize attribute in the TD to zero because the relay
transaction does not require a TWA.

Transaction security
You can define the transaction level security key for this transaction with
the TSLKey TD attribute. Specify transaction security for routed
transactions that are user-initiated. You do not need to specify resource
security checking on the local transaction because the relay transaction
does not access resources. However, the actual TDs in the remote system
need resource security checking to be set up, if required.

Example of a TD entry for a remote transaction
This command adds a TD entry, called LTRN in the region named cicsopen:

% cicsadd -r cicsopen -c td LTRN RemoteSysId="CESA" \
RemoteName="RTRN"

This entry causes a request for transaction LTRN to be routed over connection
CESA to a remote CICS system, in which transaction RTRN is executed.

Defining remote transactions for asynchronous processing

The only remote resource definitions that are needed for asynchronous processing
are those for transactions that are named in the TRANSID option of EXEC CICS
START commands. An application can use the EXEC CICS RETRIEVE command to
obtain the name of a remote temporary storage queue that the transaction
subsequently names in a function shipping request.

A remote transaction for CICS asynchronous processing is a transaction that is
owned by another region and that runs from the local region only by means of
EXEC CICS START commands.

CICS application programs can use the SYSID option to name a remote region
explicitly on EXEC CICS START commands. If this is done, you need not define
the remote transaction on the local region.

More generally, however, applications are designed to start transactions without
being aware of their location, and in this case you must define the remote
transaction in the local Transaction Definitions (TD).

Note: If the transaction is owned by another region and can be run by CICS

transaction routing and by EXEC CICS START commands, you must define
the transaction for transaction routing.

120 TXSeries for Multiplatforms: CICS Intercommunication Guide

Remote transactions that are started only by EXEC CICS START commands require
only basic information in the local Transaction Definitions (TD). This information
consists of:

* RemoteSysld

* RemoteName

* LocalQ

* RSLCheck

You can specify local queuing for remote transactions that are initiated by EXEC
CICS START requests.

Chapter 5. Configuring resources for intercommunication 121

122 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 6. Configuring intersystem security

This chapter describes:

* How to ensure that systems that attempt to attach to the local region are
authorized to do so

* How to provide permission to specific remote systems and users to have access
to local resources

Overview of intersystem security

The security requirements for a region that communicates with other systems are
an extension of the security requirements for a single, stand-alone region. CICS
security uses the concepts of user sign-on to give a user authority to access
sensitive transactions and resources. These facilities are extended for
intercommunication functions to include the remote users and remote systems.

It is assumed that you are familiar with setting up security for a single region. You
need to understand:

* How to define users to CICS by generating User Definitions (UD) entries
¢ What it means to authenticate a user on your local system

* How transaction security can be used to restrict a user’s ability to run CICS
transactions

* How resource security can be used to restrict a user’s access to resources
managed by the region

For more information about these topics, see the |CICS Administration Guide}

CICS assumes that it is the responsibility of every system to verify the authenticity
of all requests that it receives. These inbound requests can be received from
individual users or remote systems. The remote system can be another CICS
system or a non-CICS system.

Implementing intersystem security

Some initial effort is required to determine how to set up intercommunication in
accordance with the policies of your local system, and the privileges that the users
of your region require. However, after the security checking is set up, CICS
security checking operates automatically without the need of remote users or
application programs to take specific security actions.

The security checks that TXSeries for Multiplatforms supports are based on
Systems Network Architecture (SNA) LU 6.2 security services. Therefore, they are
available for controlling access from SNA-connected systems. Where appropriate,
these services have also been extended to systems that are connected by TCP/IP.

When you configure your CICS system, you define all the remote systems from
which you want to accept intercommunication requests in Communications
Definitions (CD) entries. Define the security levels that you are prepared to give to
those remote systems with the RemoteSysSecurity, LinkUserid, RSLKeyMask,
and TSLKeyMask attributes in the CD entry. However, before accepting requests,
your system must first verify that the remote system is actually the system that it

© Copyright IBM Corp. 1999, 2005 123

claims to be. This verification process is known as authentication. The mechanisms
that are available to do this depend upon the type of network connection.

Summary of CICS intersystem security

The security checks that CICS performs do the following:
* Restrict the access of remote systems to the CICS region
* Restrict the access of requests to CICS resources

* Restrict the access of particular users

The following sections describe how to set up these security checks:

« |“Identifying the remote system”]

o [“Authenticating systems across CICS family TCP/IP connections”|

* [“Authenticating systems across CICS PPC TCP/IP connections”]

* [“Authenticating systems across SNA connections” on page 125

» [“Authenticating systems across PPC Gateway server connections” on page 126|
» [“CICS link security” on page 126
» [“CICS user security” on page 127

“ Authenticating systems across SNA connections” on page 125|[“CICS link|
security” on page 126 |and [“CICS user security” on page 127 tell you how to set
points at which you can apply security checks in the processing of an incoming
request. Review the description of security for local regions in |CICS Administration|
before you attempt to set up security for intercommunications.
Communications Definitions (CD) are described in the [TXSeries for Multiplatforms|
[Administration Referencel

Identifying the remote system

The first security problem that your CICS system has to resolve is to determine
correctly the identity of the remote system that is attempting to initiate an
intercommunication request. You must ensure that an alien remote system cannot
impersonate another.

The ways that are available to CICS to identify a remote system depend upon the
network protocol that is used in the connection.

Authenticating systems across CICS family TCP/IP connections

When an intersystem request is received on a CICS family TCP/IP connection,
your region cannot verify the identity of the remote system. No mechanism is
available that enables you to detect when an unauthorized system has deliberately
impersonated another.

CICS can extract the Internet Protocol (IP) address and port number of the remote
system, but this is easy for an alien system to imitate.

If you have defined a Listener Definitions (LD) entry to allow CICS family TCP/IP
connections, and unless your TCP/IP network is private and secure, define the
security attributes in the CD entry on the assumption that the identity of the
remote system has not been verified.

Authenticating systems across CICS PPC TCP/IP connections

Because CICS PPC TCP/IP can be configured to connect the regions on same
machine only, no authentication service is required.

124 TXSeries for Multiplatforms: CICS Intercommunication Guide

Authenticating systems across SNA connections

When a remote system uses an SNA connection to communicate with your CICS
system, it must first establish a session with your system. That session is created by
an exchange of flows called a BIND. You can associate a password with the BIND.
This process is known as bind-time security, or LU-LU verification. It enables each
system to verify the identity of the other.

These passwords are not sent between the two systems. Each system demonstrates
its knowledge of the password by being able to correctly encrypt random numbers
that are supplied by the partner, using the password as a key. The bind is
successful only when both systems can establish that they have the same
password.

shows the SNA flows that are exchanged to support bind-time security. If
either system discovers that the encrypted value received is not the value that is
expected, it flows an SNA UNBIND request to the remote system, and a session is
not established.

CICSA CICSB

Sendarandom number

(RD1)

request. Bind(RD1) —— > Encrypt RD1 usingthe
bind password as a key
and sendtheresult,
PW[RD1], along with
anotherrandom number.

Check PW[RD1]is <+— RSP(BIND,PW[RD1],RD2) —— (RD2)

correctand encrypt

RD2 using the bind

passwordto give

PW[RD2]. Send PW[RD2]

inanFMH-12. ———— FMH-12(PW[RD2]) — Check PW[RD2]is correct.

Figure 50. The bind password exchange

Bind passwords are set up in the SNA product that is managing your SNA
connectivity. Refer to your SNA product documentation for a description of how to
set the bind password for a connection.

Notes:

1. Bind-time security is optional in the SNA LU 6.2 architecture. Because it is
optional, the remote systems to which you are connecting might not support
BIND passwords.

2. To maintain maximum confidence in the identity of each connected system, it is
recommended that different bind passwords be used between each pair of
systems that you are configuring. However, when the number of systems
grows, this might become unmanageable. Therefore, unique bind passwords are
not a requirement of the SNA LU 6.2 architecture and so are not enforced.

It is important that you are familiar with the descriptions of bind security that are
given in the documentation for the SNA product that you are using. Refer to the
SNA books that are listed in|“Bibliography” on page 355.|

Chapter 6. Configuring intersystem security 125

Authenticating systems across PPC Gateway server connections

If you are using the PPC Gateway server to support SNA connections to remote
systems, CICS issues a CICSIPC Remote Procedure Call (RPC) to contact the PPC
Gateway server (which can be configured on the same machine). Similarly, the PPC
Gateway server uses an RPC to schedule an inbound intersystem request from an
SNA remote LU. Since the PPC Gateway and the CICS region are in same machine,
there is no need for authenticated RPCs.

CICS link security

You can define security levels to the transactions and resources in your CICS
system that apply to all intercommunication requests that are received from a
particular system. This form of security is known as link security.

To use link security, you must have a security manager. CICS has its own security
manager, but if your operating system supports an external security manager that
TXSeries for Multiplatforms supports, you can use that instead of, or in
conjunction with, the CICS internal security manager. An external security manager
is a user-supplied program that allows you to define your system’s own security
mechanism for preventing unauthorized user access to resources from application
programs and the unauthorized initiation of CICS transactions.

The sections that follow help you implement CICS internal security, which uses
Transaction Security Level (TSL) and Resource Security Level (RSL) keys to restrict
access. For information about using external security managers, refer to the
(Administration Guidel

The security keys that are defined for link security apply to all requests that are
received from a particular remote system. This means that the list of security keys
must include all the keys that are needed by every user from the remote system. If
the needs of the users from a remote system vary, this list of security keys might
give more access to some users than is needed. If this is not acceptable, consider
using the security that is described in [“CICS user security” on page 127,|which
allows you to set up security keys based not only on the system that sent the
request, but also on the user who is associated with that request also.

If link security is enough, it can be set up as follows:
1. Set the Communications Definitions (CD) RemoteSysSecurity attribute to local
for the connection to the system for which you want link security implemented.

2. Specify a link user ID for the connection with the CD LinkUserlId attribute.
This user ID is associated with any request that is received from the remote
system that is at the other end of the connection.

3. Create a User Definitions (UD) entry for the connection’s link user ID. Use the
UD TSLKeyList and the RSLKeyList attributes to specify the transactions and
resources that can be accessed by inbound requests.

An alternative implementation of link security follows:

1. Set the CD RemoteSysSecurity attribute to local for the connection to the
system for which you want link security implemented.

2. Do not specify a link user ID for the connection with the CD LinkUserld
attribute.

3. Use the CD TSLKeyMask and RSLKeyMask attributes to define the TSL and
RSL keys to use for the connection.

126 TXSeries for Multiplatforms: CICS Intercommunication Guide

These two methods differ as follows:

* When a link user ID is specified for the connection, the user is logged on as the
connection’s link user ID, and the keys that are defined for the link user ID are
used. This is the preferred method.

* When a link user ID is not specified for the connection, the user is logged on as
the region’s default user ID, and the connection’s TSLKeyMask and
RSLKeyMask keys are used. Any keys that are defined for the region’s default
user ID are ignored.

In either case, you must have TSL and RSL keys assigned to the resources and

transactions for which you want link security applied. For further information, see
the discussion of the RSLKey and TSLKey settings in [‘Using CRTE and CESN to|
sign on from a remote system” on page 142.|

CICS user security

CICS user security provides a more granular security checking than link security
does because it allows you to base the TSL and RSL keys that apply to inbound
requests not only on the remote system but also on the user who originated the
request. It is done by setting up the remote system to flow the user ID of the user
with the intersystem request. When the request is received from the remote system,
your region provides access to any transaction or resource that matches the
security keys that are defined for both the flowed user ID and the connections link
user ID. These keys are defined with the User Definitions (UD) TSLKeyList and
RSLKeyList attributes.

Note: A link user ID is specified with the Communications Definitions (CD)
LinkUserld attribute. If a link user ID is not specified, (that is, if the setting
is LinkUserId=""), the keys that are defined with the CD TSLKeyMask and
RSLKeyMask attributes are used in conjunction with the flowed user ID
instead.

Combining the keys for the link with the keys for the user ensures that remote
users who have the same user ID as do local users (or remote users from other
systems) can be set up with different access privileges.

Two ways are possible to set up user security:

Method one:

1. Ask the administrator of the remote system to generate the following:

a. A list of the user IDs of the remote users from the remote system who will
be accessing your region and the security keys that each of them will need.
Then, generate a list of security keys that consists of all the security keys
that these users require. (You can define them in two ways. Descriptions
follow.) These keys are known as the link keys for the system.

Refer to [Table 26 on page 128 In this table, user TOM from SYS2 needs
access to resources that have an RSL key of 2 assigned to them, and user
DICK from SYS2 needs access to resources that have an RSL key of 3
assigned to them. This means SYS2 has link keys of 2 and 3, as shown in
the “Composite link keys” column:

Chapter 6. Configuring intersystem security 127

Table 26. Security keys assigned to example systems

Remote SAM FRED TOM DICK HARRY Composite
systems RSLKeys | RSLKeys | RSLKeys | RSLKeys | RSLKeys link keys
Keys for SYS2 2 3 213
Keys for SYS3 6 6 3 4 5161718 | 31415161718
Keys for SYS4 8 9 10 819110
Keys for SYS5 4 416 416

b. Alist of those user IDs that appear in both the remote system and your
local system, irrespective of whether they will be used to access your region
from the remote system. For each of these user IDs, check the level of
security if they access your region from the remote system. To do this,
compare the keys that are common to the local User Definitions (UD) entry
for the user ID with the link keys, as calculated in step
Then, look at the transactions and resources to which these specifications
give them access. If the results are unacceptable, either the keys that are

assigned to your local transactions and resources must be changed, or the
user ID in one of the systems must be renamed. Refer to [Table 27|

Table 27. Security keys assigned to example users

Systems . SAM FRED TOM DICK HARRY
SLKeys | RSLKeys | RSLKeys | RSLKeys | RSLKeys

Keys for SYS1 (local users) 416 416

Keys for SYS2 (remote) 2 3

Keys for SYS3 (remote) 6 6 3 4 5161718

Keys for SYS4 (remote) 8 9 10

Keys for SYS5 (remote) 4 416

In this example, user IDs SAM and FRED appear on the local system (SYS1)
and one of the remote systems (SYS3). Both users who are on the local
system are assigned RSLKey values of 4 and 6. SAM and FRED from SYS3
require access to resources that are identified by an RSLKey of 6. However,
because SAM and FRED are already defined on the local system as having
access to resources that are identified by an RSLKey of 4 and 6, and
because the link for SYS3 requires RSLKeys of 31415161718, SAM and
FRED from SYS3 will be given access to resources that are identified by an
RSLKey of 4 in addition to 6. Remember that the keys are not flowed, only
the user IDs. If you do not want SAM and FRED to have access to resources
with RSLKeys 4 and 6 on your local system (ISC1), do not add these keys
to the RSLKeyLists for SAM and FRED in the UD entries on the local
system. Consider also the access that is automatically given to SAM or
FRED if they are added to SYS5 after security is defined for SYS1 and if the
administrators of SYS1 are not made aware of the change.

Note: You need to go through this exercise each time that a new user ID is
added to any of the remote systems to which you have granted
trusted access.

2. Set up the remote system to flow user IDs. This is described in:
a. [“Setting up a CICS region to flow user IDs” on page 130)
b. [‘Receiving user IDs from SNA-connected systems” on page 133)

128 TXSeries for Multiplatforms: CICS Intercommunication Guide

7.

Set the CD RemoteSysSecurity attribute to trusted or verify for the connection
to the remote system. Refer to|’Setting the RemoteSysSecurity attribute to]
[trusted or verify” on page 130|for an explanation of the differences between
trusted and verify.

Define User Definitions (UD) for each of the user IDs that were identified in
step [la on page 127}

Define a UD entry for the name of the remote system. This is important
because some CICS tasks (which are initiated by the remote system) can run
with the remote system name as the user ID. It is recommended that this user
ID is used only for this purpose (that is, it is not used as a normal user ID). The
default attribute values are enough for this UD entry.

Define a UD for the link user ID. This user ID represents the remote system
and requires the keys as calculated in the “Composite Keys” column for that
system.

Set the CD LinkUserld attribute to the user ID that is defined in step

Method two:

1.

Ask the administrator of the remote system to generate the lists of user IDs, as
described in steps and [Lbf in the previous list.

Set up the remote system to flow user IDs. Refer to step IZl in the previous list
for references to information that tells you how to do this.

Set the CD RemoteSysSecurity attribute to trusted or verify for the connection
to the system for which you want user security implemented.

Define User Definitions (UD) for each of the user IDs that are identified in step
of the previous list.

Define a UD entry for the name of the remote system. This is important
because some CICS tasks (which are initiated by the remote system) can run
with the remote system name as the user ID. It is recommended that this user
ID is used only for this purpose (that is, that it is not used as a normal user ID).
The default attribute values will be enough for this UD entry.

Do not specify a link user ID for the connection with the CD LinkUserld
attribute.

Use the CD TSLKeyMask and RSLKeyMask attributes to define the TSL and
RSL keys to use for the connection.

The differences between these two methods:

When a link user ID is specified for the connection, the user is logged on as the
flowed user ID, and the keys that are defined for both the link user ID and the
flowed user ID are used. This is the preferred method.

When a link user ID is not specified for the connection, the user is logged on as
the flowed user ID, and the TSLKeyMask and RSLKeyMask keys that are
defined for both the connection and the flowed user ID are used.

In either case, you must have TSL and RSL keys assigned to the resources and
transactions for which you want user security applied, as described in the
discussions of the RSLKey and TSLKey attributes in [“Using CRTE and CESN to|

ign on from a remote system” on page 142

This description

provides a simple approach to using the resource definitions to set

provides further examples and descriptions of how CICS security

up user security. [“Using CRTE and CESN to sign on from a remote system” on|

resources definitions can be used.

Chapter 6. Configuring intersystem security 129

Setting the RemoteSysSecurity attribute to trusted or verify

The RemoteSysSecurity attribute can be set to either trusted or verify.

Use the value trusted as follows:

* When the remote system does not send passwords with user IDs. This applies to
CICS Transaction Server for z/OS systems. TXSeries for Multiplatforms systems
might send passwords, but their default behavior is not to send them.

* When the remote SNA system does send passwords, but the SNA product that
yvou are using verifies the password and does not pass it to CICS. Refer to

[“Receiving user IDs from SNA-connected systems” on page 133|for further

details about this.

Use the value verify as follows:

* To ensure that user IDs are always accompanied by a password
* When you are using an SNA product that does pass the password to CICS

Use verify when using CICS family TCP/IP connections to CICS OS/2.

Setting up a CICS region to flow user IDs

A region flows users IDs to a remote system if the OutboundUserlIds attribute of
the local CD entry for the remote system is set to sent,
sent_maybe_with_password, or sent_only_with_password. If the remote system to
which you are sending cannot receive inbound user IDs, set the OutboundUserIds

attribute to not_sent.

shows which user ID is flowed when a local task issues an intersystem

request to a remote system.

Table 28. Which user ID is flowed when local task issues a request

Characteristics of the local task

User identifier sent by CICS to the remote
region

Task with associated terminal; user signed
on

Terminal user identifier.

Task with associated terminal; no user
signed on

The region’s DefaultUserld.

Task with no associated terminal started by
interval control EXEC CICS START

User identifier for the task that issued the
EXEC CICS START command.

Task with no associated terminal, triggered
by a transient data queue

User Identifier whose TDQ write triggered
the task.

CICS system task

Local Sysid of the region.

Program started by Distributed Program
Link (DPL)

The user ID is the one associated with the
task. This depends on the CD
RemoteSysSecurity and LinkUserld settings
for the connection that started the task. For
example:

RemoteSysSecurity=local: either link user
ID or default user ID.

RemoteSysSecurity=trusted orverify: either
flowed user ID or default user ID.

130 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 28. Which user ID is flowed when local task issues a request (continued)

Characteristics of the local task User identifier sent by CICS to the remote
region

Back-end Program started by Distributed The user ID is the one that is associated
Transaction Processing (DTP). with the task. This depends on the CD
RemoteSysSecurity and LinkUserId settings
for the connection that started the task. For
example:

RemoteSysSecurity=local: either link user
ID or default user ID.

RemoteSysSecurity=trusted or verify: either
flowed user ID or default user ID.

By default, CICS never flows passwords with these user IDs. This is because all
local user IDs that are running transactions in a region have had their passwords
checked. Therefore, set up remote systems in the SNA definitions to accept user
IDs that are flowed by a region as already_verified See ['Receiving user IDs from|
SN A-connected systems” on page 133| for more information.

If you want your CICS region to send passwords, see [“Setting up a CICS region to]
flow passwords.”|

Setting up a CICS region to flow passwords

It can sometimes be necessary for the local CICS region to send a password and
user ID to a remote system. This can occur if the CICS region is acting as a client
gateway to a CICS for MVS/ESA host, and you want to control all security with
RACEF on the host. It can also be needed when you need to implement user
security, but your SNA product (such as the Microsoft Microsoft SNA Server for
Windows) does not support sending already_verified user IDs.

To configure CICS to send passwords:

1. Create a DFHCCINX user exit that will cause CICS to save passwords received
from clients.

2. Configure the CD entry for the connection to the remote system to enable the
local region to send the password.

Notes:

1. Whenever CICS saves the password in storage, it encrypts the password.
However, if SNA is used to flow passwords, they are sent over the SNA
network in plain text as required by the SNA architecture.

2. Only the Universal Client software can be used when the user ID and
password are to flow to another system.

The DFHCCINX parameters that determine whether to save the password are:
« CICS_CCINX_PSWD_CHECK_AND_DROP (the default)

* CICS_CCINX_PSWD_CHECK_AND_KEEP

« CICS_CCINX_PSWD_IGNORE_AND DROP

« CICS_CCINX_PSWD_IGNORE_AND KEEP

If you want to use any of these settings, you must also set RemoteSysSecurity to
CICS_CCINX_SECURITYTYPE_VERIFY.

Chapter 6. Configuring intersystem security 131

The CD parameters that determine whether to send the password to the remote
systems are:

OutboundUserIds=sent only with_pswd
OutboundUserIds=sent_maybe_with_pswd

These are described in [“Writing your own version of DFHCCINX” on page 62.| The
following sections describe some scenarios.

To send passwords after local verification
This is needed if the local SNA product does not support sending already_verified
user IDs; for example, when using Microsoft Microsoft SNA Server. The password
is verified in the local region, then flowed to the remote region.
DFHCCINX:
RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|
CICS_CCINX_PSWD_CHECK_AND_KEEP)
CD:
OutboundUserlIds=sent_only_with_pswd

To send passwords without local verification
Sending passwords without local verification might be needed when you are using
the CICS region as a client gateway. The local CICS region does not verify the
password before sending it to the remote system.

DFHCCINX:

RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|
CICS_CCINX_PSWD_IGNORE_AND_KEEP)

CD:
OutboundUserIds=sent_only_with_pswd

If the local CICS region does not receive a password from the client, no user ID is
sent to the remote system.

Alternatively, the CD can be configured as follows:

CD:
OutboundUserlIds=sent_maybe_with_pswd

Then if the local CICS region does not receive a password from the client, the user
ID is sent to the remote system as already_verified).

Do not send passwords
If you do not want the local CICS region to send passwords to a remote system:
DFHCCINX:

RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|
CICS_CCINX_PSWD_CHECK AND_DROP)

CD:
OutboundUserIds=sent, or
OutboundUserIds=not_sent

This is the normal default operation, where the local CICS region verifies the
passwords but does not save them, and therefore they cannot be sent to a remote
system. This is the most secure setup.

No password checks

If you are operating in a secure environment, you might want to disable all
security. Passwords are not verified in the local CICS region and are not be sent to
the remote system.

132 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHCCINX:
RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|
CICS_CCINX_PSWD_IGNORE_AND_DROP)

CD:
OutboundUserIds=not_sent

Receiving user IDs from SNA-connected systems

The SNA LU 6.2 architecture has optional support for flowing user IDs and
passwords between SNA-connected systems. This is called conversation-level security
(or sometimes attach security, or conversation security). Conversation-level security is
provided in the 212, 213, 217, 218, 219, 220, 221, and 222 SNA LU 6.2 option sets.
Because this security is optional, each system needs a definition of the level of
security that it can, or wants to, accept from a particular remote system. You can
set up a different conversation security acceptance level on each end of a connection
between two systems.

The possible levels of security acceptance are:
* Conversation-level security not supported or required.

This option means that user IDs and passwords must not be sent to this system.
If they are sent, it is considered an SNA protocol violation.

* Conversation-level security supported.

This option means that user IDs can be sent to this system, but in order for them
to be accepted, they must be accompanied by a valid password. Select this level
if you want to receive user IDs from a system that does not have its own
security manager and so cannot verify its own users (as with CICS OS/2).

* Already verified supported.

This option means that user IDs can be sent to this system and these user IDs do
not need to be accompanied by a password because the remote system is trusted
to have verified the user ID against a password before the intersystem request
was sent. CICS Transaction Server for z/OS, CICS/ESA, CICS/MVS, CICS/VSE,
and TXSeries for Multiplatforms always send verified user IDs, and a remote
SNA system that wants to receive user IDs from these systems must accept
already verified user IDs.

* Persistent verification supported.

This option allows the verification that is associated with a user ID and
password pair to persist over a number of intersystem requests. Both the user ID
and password are sent on the first request. However, if they are valid, only the
user ID is required on subsequent requests. The user ID can be sent without a
password for a user-defined period of time, or until the initiating system sends a
sign-off request.

* Both already verified and persistent verification supported.

This option allows both already-verified requests and requests that use persistent
verification.

The security acceptance levels that are available to you depend on the support that
your local SNA product provides.

Chapter 6. Configuring intersystem security 133

When using Communications Server for AIX

For example, Communications Server for AIX supports three values for the
Security acceptance field in LU 6.2 partner LU definition. These are none (for no
conversation-level security), conversation (for conversation-level security) and
already_verified (for already verified support).

CICS Transaction Server for z/OS 4.1, which provides its own SNA services,
supports all five levels of security acceptance. These are specified in the
ATTACHSEC option of the CICS Transaction Server for z/OS CONNECTION
shows how they compare.

definition.

Table 29. Comparing security options between platforms

Security No Conversation- Already verified | Persistent Already verified
acceptance level |conversation- level security support verification and persistent
level security verification
Communications | None Conversation already_verified |See Note El See Note
Server for AIX
Communications |See Note Deselect Select See Note EI See Note
Server for Conversation Conversation
Windows Security Support | Security
Support
Microsoft SNA Deselect Select Select Accepts See Note See Note
Server Conversation Conversation Already
Security Security Verified user
Names
HP-UX SNAplus2 | None Conversation conv-security- See Note El See Note
ver
SNAP-IX for None Conversation conv-security- See Note [i] See Note 1]
Solaris ver
Notes:

1. Not supported with this SNA product.
2. Microsoft Microsoft SNA Server uses the values in the transaction definition
created by cicssnatpns.

These security levels define the security options that a system supports, rather than
the level of security that is expected on each intersystem request. For example, an
intersystem request that has no user ID associated with it can be received from a
remote system on which you have requested “already verified”.

The SNA LU 6.2 architecture specifies that the level of security that is required for
an intersystem request is dependent on the transaction name that is requested. This
is because it is recognized that some transactions are more sensitive than others
are.

CICS uses transaction security level (TSL) and resource security level (RSL) keys to
provide security checking at the transaction and resource level.

134 TXSeries for Multiplatforms: CICS Intercommunication Guide

— When using Communications Server for AIX
Communications Server for AIX also allows you to define a SecurityRequired
level in the TPN profile that you define for your CICS transactions.

Because CICS provides security support, the SecurityRequired attribute is not
required and can be set to none without security exposure.

The security acceptance level that you define locally is sent to the remote SNA
system as one of the parameters of the session bind request and response. Systems
such as CICS Transaction Server for z/0S, CICS/ESA, CICS/MVS and CICS/VSE,
which have fully integrated SNA support and so have access to the bind, can
examine the security acceptance level received and decide from that whether to
send user IDs. Systems such as CICS OS/2 and TXSeries for Multiplatforms, which
use a separate SNA product, require that you set them up to send user IDs. (See
[‘Setting up a CICS region to flow user IDs” on page 130.)

It is important that the security acceptance level that is defined in the remote
system matches the setup that is defined in the region. shows examples of
the security parameters that are defined to flow user IDs between a region and
CICS Transaction Server for z/OS.

Table 30. Defining security parameters

Types of definitions CICS Transaction Server for z/OS
Security setup on the remote CONNECTION
system ATTACHSEC=IDENTIFY

Because the local region and CICS Transaction Server
for z/OS do not need to send passwords with user
IDs, each remote system must be set up to accept
already-verified user IDs.

Communications Server for AIX LU | .
6.2 partner LU profile for the Security accepted=
remote system already_verified

Because the local region and CICS Transaction Server
for z/OS do not need to send passwords with user
IDs, each remote system must be set up to accept
already-verified user IDs.

Local HP-UX SNAplus2 LU 6.2 .
Remote APPC LU definition con-security-ver
conversation security

Local SNAP-IX Remote APPC LU .
definition con-security-ver
conversation security

IBM Communications Server for .
Windows Select
conversation security

Chapter 6. Configuring intersystem security 135

Table 30. Defining security parameters (continued)

Types of definitions CICS Transaction Server for z/OS

Microsoft Microsoft SNA Server .
Select

Accepts Already Verified
User Names

CD entry on the local region for the | .
remote system RemoteSysSecurity=trusted
OutboundUserlds=sent
LinkUserld=<>

The |CICS Administration Guidd has information about security for local regions.

Link security and user security compared

Link security and user security are defined with the following resource definition
attributes. The actual TSL and RSL keys that are assigned to remote users are
based on a combination of how these attributes are defined. The following list
describes the attributes individually. ["How the resource definition security|
lattributes are used” on page 137|describes how these attributes are used in
conjunction with each other.

The RSLKey attribute
The resources that are represented by the following resource definitions
can be assigned a resource security level (RSL) key by use of the RSLKey
attribute. This key is used to determine who has access to the resource.

 File Definitions (FD): Allows a user to access the file

* Journal Definitions (JD): Allows a user to write to the journal

* Program Definitions (PD): Allows a user to run the program

* Transaction Definitions (TD): Allows a user to issue EXEC CICS START
for the transaction

* Transient Data Definitions (TDD): Allows a user to access the queue

* Temporary Storage Definitions (TSD): Allows a user to access the queue

The TD TSLKey attribute
Transactions can be assigned a transaction security level (TSL) key by use
of the TSLKey attribute. This key is used to determine who can execute
the transaction.

The User Definitions (UD) TSLKeyList and RSLKeyList attributes
These attributes contain the list of TSL and RSL keys that are defined for a
user. These keys allow the user access to the resources and transactions
that have the same TSL and RSL keys defined for them.

The Communications Definitions (CD) RemoteSysSecurity attribute
This attribute specifies whether to use link security or user security.

The CD LinkUserld attribute
This attribute specifies a link user ID for the connection. The UD
TSLKeyList and RSLKeyList attributes that are defined for the
connection’s link user ID are used to determine which resources requests
from this connection can access.

136 TXSeries for Multiplatforms: CICS Intercommunication Guide

The CD TSLKeyMask and RSLKeyMask attributes
These attributes contain the list of TSL and RSL keys that control access to
transactions and resources for the connection. These attributes are used
when a link user ID is not defined for the connection.

The Region Definitions (RD) DefaultUserld attribute
This attribute specifies a default user for the region. This default user is
used when a user ID is required but one is not available. UD TSLKeyList
and RSLKeyList attributes that are defined for the region’s default user are
used to determine which resources this user ID can access.

The Communications Definitions (CD) OutboundUserlIds attribute
This attribute specifies whether a user ID is to be sent on the outbound
request.

How the resource definition security attributes are used

The following maps show how the level of security is determined. They show:
¢ Which user ID is used when the remote user logs in
* Which security keys are used

Map 1. Start

1. Is RemoteSysSecurity=local for this connection

YES Go to[‘Map 2. RemoteSysSecurity=local (Link Security).”]

NO Skip to the next question.
2. If RemoteSysSecurity=trusted for this connection

e Is a user ID flowed from the remote system with this request?

YES Go to ['Map 4. RemoteSysSecurity=trusted and a user ID is Flowed|
[(User Security)” on page 138

NO Go to ['Map 3. RemoteSysSecurity=trusted and a user ID is not|
[Flowed (User Security)” on page 138

3. If RemoteSysSecurity=verify for this connection

* Is a user ID flowed from the remote system with this request?

YES Go to ['Map 6. RemoteSysSecurity=verify and a user ID is Flowed|
[(User Security)” on page 138

NO Go to ['Map 5. RemoteSysSecurity=verify and a user ID is not|
[Flowed (User Security)” on page 138

Map 2. RemoteSysSecurity=local (Link Security)

1. Is a link user defined for this connection?
YES Skip to the next question.

NO CICS logs the user in as the region’s default user, and uses the keys
that are defined in the CD attribute TSLKeyMask and RSLKeyMask.
CICS ignores TSL and RSL keys that might be defined for the default
user.

2. Is a UD entry defined for the connection’s link user?

YES CICS logs the user in as the connection’s link user and uses the TSL
and RSL keys that are defined in the UD entry for the connection’s link
user.

NO CICS logs the user in as the connection’s link user and grants public
access.

Chapter 6. Configuring intersystem security 137

Map 3. RemoteSysSecurity=trusted and a user ID is not Flowed
(User Security)

1. Because no user ID is supplied, the default user ID is used.
2. Is a UD entry defined for the region’s default user?
YES Skip to the next question.
NO CICS logs the user in as the region’s default user and grants public
access.

3. Is alink user defined for this connection?
YES Skip to the next question.

NO CICS logs the user in as the region’s default user and uses the TSL and
RSL keys that are defined both for the default user and for the
connection’s TSLKeyMask and RSLKeyMask.

4. Is a UD entry defined for the connection’s link user?
YES CICS logs the user in as the region’s default user and uses the TSL and

RSL keys that are defined both for the default user and for the
connection’s link user.

NO CICS logs the user in as the region’s default user and grants public
access. CICS ignores TSL and RSL keys that might be defined for the
default user.

Map 4. RemoteSysSecurity=trusted and a user ID is Flowed (User
Security)
1. Is a UD entry defined for the selected user ID?

YES Skip to the next question.

NO CICS logs in as the selected user ID and grants public access.
2. Is a link user defined for this connection?

YES Skip to the next question.

NO CICS logs in as the flowed user ID and uses the TSL and RSL keys that
are defined both for the flowed user ID and for the connection’s
TSLKeyMask and RSLKeyMask.

3. Is a UD entry defined for the connection’s link user?

YES CICS logs in as the flowed user ID and uses the TSL and RSL keys that
are defined both for the flowed user ID and for the connection’s link
user.

NO CICS logs in as the flowed user ID and grants public access. Ignore TSL
and RSL keys that might be defined for the flowed user ID.

Map 5. RemoteSysSecurity=verify and a user ID is not Flowed
(User Security)

1. CICS logs the user in as the region’s default user and uses the TSL and RSL
keys that are defined both for the default user and for the connection’s
TSLKeyMask and RSLKeyMask.

Map 6. RemoteSysSecurity=verify and a user ID is Flowed (User
Security)

1. Is a password supplied?

YES If the password is correct, the flowed user ID is selected. If the
password is not correct, use the default user ID.

138 TXSeries for Multiplatforms: CICS Intercommunication Guide

NO The default user ID is selected.
2. Is a UD entry defined for the selected user ID?

YES Skip to the next question.

NO CICS logs in as the selected user ID and grants public access.
3. Is alink user defined for this connection?

YES Skip to the next question.

NO CICS logs in as the selected user ID and uses the TSL and RSL keys
that are defined both for the user ID and for the connection’s
TSLKeyMask and RSLKeyMask.

4. Is a UD entry defined for the connection’s link user?

YES CICS logs in as the selected user ID and use the TSL and RSL keys that
are defined both for the flowed user ID and for the connection’s link
user.

NO CICS logs in as the selected user ID and grants public access. Ignore
TSL and RSL keys that might be defined for the flowed user ID.

Examples of link and user security

[Table 31 on page 140| contains resource definitions for the example system, SYS1.
Assume that defaults are used where attributes are not shown in these example
definitions. For example, TSLKeyMask=none and RSLKeyMask=none for SYS2,
SYS3, and SYS5.

For more information, see [“Authenticating systems across SNA connections” on|
page 125 and [“CICS link security” on page 126]

The remote systems that are involved are represented by the following CD that
reside on SYSI:

SYS2 This system has the following users on it:
SAM Who needs access to TRN6, PROG6, and FILE6 on SYSI.
FRED Who needs access to TRN6, PROG6, and FILE6 on SYSI.

TOM Who needs access to TRN3, PROG3, and FILE4. FILE5, FILE7 and
FILES on SYSI.

LINK3
Who does not require access to any of the resources on SYSI.

SYS3 This system has the following users on it:
DICK Who needs access to TRN4, PROG4, and FILE4 on SYSI.

HARRY
Who needs access to TRN4 and TRAN6, PROG4 and PROG6, and
FILE4 and FILE6 on SYSI.

LINK2
Who does not require access to any of the resources on SYSI.

SYS4 This system is using link security. All users from this system are given the
same level of security. These users need access to TRN4 and TRANGS,
PROG4 and PROGS®6, and FILE4 and FILE6 on SYSI.

Chapter 6. Configuring intersystem security 139

SYS5 This system is using link security. All users from this system are given the
same level of security. These users need access to TRN6, PROG6, and
FILE6 on SYSI.

The following table shows definitions on REGIONA, which is the local CICS

system:

Table 31. Example resource definitions for link security

Resource
definition
category

Attributes and values

CD

SYS2: RemoteSysSecurity=trusted LinkUserld="LINK2" (user IDs are
flowed from this system)

SYS3: RemoteSysSecurity=trusted LinkUserIld="LINK3" (user IDs are not
flowed from this system)

SYS4: RemoteSysSecurity=local LinkUserld="" TSLKeyMask=4 |6
RSLKeyMask=416

SYS5: RemoteSysSecurity=local LinkUserId="LINK5"

RD

REGIONA DefaultUserld=CICSUSER

UD

CICSUSER: TSLKeyList=4 16 RSLKeyList=416
LINK2: TSLKeyList=all RSLKeyList=all

LINK3: TSLKeyList=all RSLKeyList=all

LINKS: TSLKeyList=6 RSLKeyList=6

SAM: TSLKeyList=6 RSLKeyList=6

FRED: TSLKeyList=6 RSLKeyList=6

TOM: TSLKeyList=3 RSLKeyList=314151718
HARRY: TSLKeyList=4 1517 RSLKeyList=41517

PD

PROG4: RSLKey=4
PROG6: RSLKey=6

D

TRN3: TSLKey=3 RSLKey=3
TRN4: TSLKey=4 RSLKey=4
TRNG6: TSLKey=6 RSLKey=6

FD

FILE3: RSLKey=3
FILE4: RSLKey=4
FILE5: RSLKey=5
FILE6: RSLKey=6
FILE7: RSLKey=7
FILE8: RSLKey=8

In these examples:

* Users from SYS2 are given access to those resources that are specified by the
TSLKeyList and RSLKeyList attributes as defined in UD entries on SYS1 for the
individual users. The reason for this is that RemoteSysSecurity=trusted, user
IDs are flowed from SYS2, and the TSLKeyList and RSLKeyList attributes for
LINK2 (the link user ID for SYS2) specifies all. LINK3 is a user on SYS2.

Although it is not intended that this user should have access to any resource on
SYS1, LINKS is given access to all resources.

LINK2 from SYS3 is given access only to those resources that are assigned to the
link user ID and that are also defined for the default user ID. This is true of all
users from SYS3 because user IDs are not flowed. Note that this is an unusual
way of setting up security. It is better to use link security. The reason for this is
that HARRY is defined locally and, if user IDs started to flow from the remote
system, HARRY would be given access to keys 5 and 7 in addition to 4, and
HARRY would lose access to 6.

140 TXSeries for Multiplatforms: CICS Intercommunication Guide

* Users from SYS4 are given access to those resources that are specified in the CD
TSLKeyMask and RSLKeyMask attributes. This is because
RemoteSysSecurity=local and a link user is not specified.

 Users from SYS5 are given access to those resources that are specified in the UD
for LINKS. This is because RemoteSysSecurity=local and a link user is specified.

Security and function shipping

This section gives additional information about security for function shipping.

Security requirements for the mirror transaction

When CICS receives a function-shipped request, the started transaction is the
mirror transaction. The CICS-supplied definitions of the mirror transactions (CPMI,
CVMI, and CSM*) all specify Resource Security Level (RSL) checking, but the
Transaction Security Level (TSL) key is set to 1, which gives public access to these
mirror transactions. The mirror transactions can therefore be run by any remote
region and user that have permission to access your region, but the transactions
can access only those resources for which the link and remote user have authority.

You can modify the appropriate mirror Transaction Definitions (TD) to achieve the
level of security you that require, or create new mirror transactions with different

levels of security, based on the supplied TD. Each mirror transaction must specify

DFHMIRS as the ProgName attribute.

Note: Also read [‘Migration considerations for function shipping” on page 345)
[“CICS link security” on page 126)and |“CICS user security” on page 127

Outbound security checking for function-shipping requests

If you include a remote resource in your resource definitions, you can arrange for
CICS to perform security checking locally, just as if the resource is local. This check
occurs before the function-shipping request is sent to the remote system and occurs
independently of any checks that the remote system makes.

In addition, if you specify the RSLCheck attribute as internal or external in the
Transaction Definitions (TD) entry for a transaction, CICS raises the NOTAUTH
condition locally if the transaction attempts to issue an EXEC CICS command with
the SYSID option specified. This is because the SYSID option bypasses the local
security checking for resources.

Note: The CICS-supplied transaction CECI is set up with RSLCheck=internal.
This means that it cannot be used to try out function-shipping requests
using the SYSID option until the TD definition for CECI is changed to
RSLCheck=none.

The NOTAUTH condition

If a transaction attempts to access a resource but does not satisfy the resource
security checks, CICS raises the NOTAUTH condition.

If a resource is being accessed as part of a function-shipping request and the CICS
mirror transaction does not have access to it, CICS returns the NOTAUTH
condition to the requesting transaction in the remote system, where the transaction
can handle the condition in the usual way.

Chapter 6. Configuring intersystem security 141

If the requesting transaction is in a release of CICS that does not support the
NOTAUTH condition, CICS raises an alternative condition instead.

EXEC CICS start requests from a remote system

When a transaction is started by an EXEC CICS START request that is issued from
a remote system, the request is handled as a function-shipping request. Therefore,
the security checks that are applied before the transaction is invoked are run
against the RSL keys that are defined for that transaction. These security checks, in
addition to the user ID that is established for the request, are done in accordance
with the normal inbound security rules, as described in [“Link security and user|
lsecurity compared” on page 136)

When the transaction is scheduled, it is handled as a local request; that is, no
consideration is given to the security of the link. The TSL keys are checked only
against the TSL keys that are defined for the user ID, and future accesses to
resources are granted to the transaction as if it were a local transaction. Refer to
the [CICS Administration Guide|for details of how TSL and RSL keys are used to
control access to local transactions and resources.

It is important to consider the security of remote EXEC CICS START requests when
planning intersystem security for your region. In particular, check whether the RSL
keys are at least as restrictive as are the TSL keys for your transactions. The only
time when this consideration does not apply is when the user ID that is used for
an incoming request can always be guaranteed to have no greater security than the
security that is associated with the link for that request. For example, this
condition applies when a region always uses link security with a link user ID
specified.

Using CRTE and CESN to sign on from a remote system

Users from remote systems can sign on to your local system by using the following

procedure:

1. Use CRTE.
Using CRTE, the remote users are logged in as the region’s default user ID. The
region’s default user ID is specified with the Region Definitions (RD)
DefaultUserld attribute.
The user is given access to transactions and resources as specified with the
TSLKeyList and RSLKeyList attributes that are in the User Definitions (UD)
entry for the region’s default user ID and that are also defined for the
connection’s link user ID. A link user ID is specified with the Communications
Definitions (CD) LinkUserld attribute.
Alternatively, if a link user ID is not specified, the TSLKeyMask and
RSLKeyMask from the CD are used in place of the link user ID’s keys.

2. Use CESN.

If the user requires access to transactions or resources that are not assigned to
the region’s default user ID, CESN can be used to change the user ID.

When CESN is used, the user assumes access to transactions and resources as
specified with the TSLKeyList and RSLKeyList attributes that are in the User
Definitions (UD) entry for the new user ID and that are also defined for the
connection’s link user ID.

3. Use CESF or CSSE

When the user logs off, by using either CESF or CSSF, the logged-on user ID
then becomes the region’s default user ID, and the user is given access to

142 TXSeries for Multiplatforms: CICS Intercommunication Guide

transactions and resources as specified with the TSLKeyList and RSLKeyList
attributes that are in the User Definitions (UD) entry for the region’s default
user ID and that are also defined for the connection’s link user ID (same as
item 1).

Intersystem security checklist

Use this checklist to plan and implement intersystem security.

When link security or user security is used

It is good practice to ensure that the transaction RSL keys, which are specified with

the Transaction Definitions (TD) RSLKeys attribute, are equally or more restrictive
than are the TSL keys, which are specified with the TD TSLKeys attribute, for any
given transaction. Refer to|“EXEC CICS start requests from a remote system” on|
I' &

for an explanation of the importance of restricting the RSL keys for
intersystem security.

When link security is used

If you specify RemoteSysSecurity=local in the remote system’s Communications
Definitions (CD) entry, which means that all users from that system have the same
level of security, ensure that the link security has adequate restrictions.

* Consider this scenario: SAM on the local system, SYS1, has public access only. It
is not intended that SAM be given access to any resource or transaction that is
higher than public on SYS1. SAM uses the transaction-routing transaction, CRTE,
to log in to SYS2 and becomes the default user ID on SYS2. SAM, as the default
user ID on SYS2, can now function ship back to SYS1, which has implemented
link security with SYS2 (RemoteSysSecurity=local) and can therefore gain access
to all transactions and resources that SYS1 allows the users of SYS2 to have.

* To avoid this problem: Do not use link security, where
RemoteSysSecurity=local, for a connection between your system and a remote
system that is not secure enough to allow all users of that system access to your
resources.

When user security is used

If you specify RemoteSysSecurity=trusted or verify in the remote system’s CD
entry, you can allow a flexibly restrictive combination of keys because they can be
restricted, not only by the keys locally defined for the connection’s link user ID,
but for the user ID flowed from the remote system.

Using the connection’s link user ID, rather than the connection’s TSLKeyMask or
RSLKeyMask attributes, to specify the link keys for the connection is the advised
method. This allows you to associate a distinctive user ID with the link and
provides you with the ability to use that user ID for each connection that requires
the same link keys. However, consider the following;:

Ensure that user IDs in the network do not conflict.

* Consider this scenario: SAM is a secure user on the local system, SYS1, and has
access to sensitive transactions. GEORGE from SYS2 requires the same security
levels on SYS1 as does SAM. The link user ID is set up to allow GEORGE access
to these sensitive transactions, as is GEORGE'’s user ID on SYSI.

SAM on SYS2 is not secure and should not be given access to the same
transactions as those to which GEORGE has access, but, because SAM is defined
on SYS1 as having access to these transactions, SAM from SYS2 assumes the

Chapter 6. Configuring intersystem security 143

local SAM’s security levels when SAM from SYS2 logs in to SYS1, and can,
therefore, gain access to the sensitive transactions.

* To work round this problem: Discuss your security requirements with the
system administrator of the remote system.

Note: You and the system administrator on the remote system need to agree
about the user IDs that can and cannot be used on either system.

Be careful when selecting a name for the link user ID.

* Consider this scenario: User security is implemented between SYS1 and SYS2, so
it is expected that all remote requests from SYS2 to SYS1 must flow a user ID
that is defined on SYS1 or be given public access only. The link user ID for the
link between SYS1 and SYS2, RE9X32Y, has enough security levels to allow
GEORGE access to parts ordering, and to allow SAM access to parts query. The
user ID for SAM on SYSI is restrictive enough so that SAM cannot order parts.

The link user ID on SYSI for the connection between SYS1 and SYS3 is PATTY.
This user ID also has enough security levels to allow access to parts ordering.
PATTY is also a local CICS user on SYS2, but PATTY on SYS2 is not considered
to be a secure user of SYS1. However, because user ID PATTY is defined on
SYSI1 as having access to parts ordering, PATTY from SYS2 will also be given
access to parts ordering on SYSI.

* To work round this problem: Because the link user ID needs to be given enough
security to allow access to all transactions and resources that the collective users
of the remote system require, it is important that you do not use a trivial or
common name for the link user ID. It is also important that you are in
agreement with the system administrator of the remote system as to what user
IDs can and cannot be used on either system.

Common configuration problems with intersystem security

This section lists symptoms of security problems that are the result of configuration
errors. The descriptions suggest possible solutions and point you to further
information as required.

Note: Before looking for your symptom in this list, ensure that you are not
experiencing any of the symptoms that are described in

[intercommunication errors” on page 216

Remote user is logged in to wrong user ID

If a remote user is logged in to a user ID other than the intended user ID, and
perhaps given access to the wrong transactions or resources, check the following:

e If the user is using the transaction-routing transaction, CRTE, the flowed user ID
is ignored and the user is logged in as the region’s default user ID. This is
normal operation. The user can use CESN to log on to a locally defined user ID.
However, the user security level is still subject to the link keys that are defined
for the connection. For more information, see [“Using CRTE and CESN to sign on|
[from a remote system” on page 142

* Is the flowed user ID the same as a locally defined default user ID or link user
ID? It is advised that you do not use names for a region’s default user ID or a
connection’s link user ID that are in conflict with other user IDs in the network.

* Was a user ID flowed? If a user ID was not flowed and one was required, the
user is logged in as _the default user. If you expected a user ID to be flowed and
one was not, go to [“Flowed user IDs are not received from a remote system” on|

144 TXSeries for Multiplatforms: CICS Intercommunication Guide

* Was a password flowed? If you are using RemoteSysSecurity=verify, user IDs
that are received by CICS without a password are discarded, and the user is
logged on as the default user. If user IDs are received without passwords, set
RemoteSysSecurity=trusted.

 If you expected the link user ID to be used on this request, but it was not, check
whether RemoteSysSecurity=local and whether a UD entry exists for the link
user ID.

User IDs are not flowed to a remote system

If your local region is supposed to be flowing user IDs to a remote system, but is
not, check whether:

* The security acceptance field in the remote system is set correctly

¢ The OutboundUserlds=sent is set in the Communications Definitions (CD) entry
for the connection to the remote system that is expecting flowed user IDs from
your system

Flowed user IDs are not received from a remote system

If a remote system is flowing user IDs to your system, but your system is not

receiving them:

¢ Check whether RemoteSysSecurity=trusted or verify is set in the CD entry for
the connection to the remote system that is supposed to be flowing user IDs to
your system. Note that because Microsoft Microsoft SNA Server product does
not forward passwords to CICS, always use RemoteSysSecurity=trusted with
that product.

* If you are using Communications Server for AIX, check whether the security
acceptance field that is in your Communications Server for AIX connections
definitions is set to “already_verified” or to “conversational”.

* If you are using HP-UX SNAplus2, specify conversation-level security.

* If you are using SNAP-IX for Solaris, specify conversation-level security.

CD RSLKeyMask and TSLKeyMask attributes are ignored

This might be the normal operation because the only time that the connection’s
RSLKeyMask and TSLKeyMask keys are used is when a link user ID is not
specified for the connection. It is advisable to use the link user ID (LinkUserld) for
link keys.

Unexpected message ERZ045006W - no obvious effect on
security

CICS uses the region name as the user ID to run some CICS tasks. If the user ID
that is specified in this message corresponds to the name of a remote region, define
a UD entry with the region name as the UD key.

Access is unexpectedly restrictive (message ERZ045006W)

This symptom occurs when no User Definitions (UD) entry exists that corresponds
to the user ID that is being used for this inbound request. To fix this problem:

1. Determine, from the message, or from the information in ["How the resource|
[definition security attributes are used” on page 137 the user ID that is being
used.

2. When you know the actual user ID that was used, determine whether this user
ID was the flowed user ID (if one was sent), the connection’s link user 1D, or
the region’s default user ID.

Chapter 6. Configuring intersystem security 145

3. Check whether the correct user ID was used. If not, ensure that you have
configured your resources correctly. Use the maps that are given in
[resource definition security attributes are used” on page 137]to help you
determine how the resource definition attributes must be set to ensure that the
correct user ID is used.

If the correct user ID was used, ensure that a UD entry exists for that user ID.

Access unexpectedly rejected or granted on inbound request

Either the user logged in with the wrong user ID, or the keys that are defined for
the user ID are not correct. To fix this problem, do the following:

1. Use messages that are associated with the error to determine the actual user ID
that was used.

2. When you know the actual user ID that was used, determine whether this user
ID was the flowed user ID (if one was sent), the connection’s link user ID, or
the region’s default user ID.

3. Based on how your security is set up (or how you want your security to be set
up) determine whether the user ID that was actually used was the correct user
ID. If it was not the correct user ID, ensure that you have configured your
resources correctly. Use the maps that are given in|“How the resource definition|
[security attributes are used” on page 137|to help you determine how the
resource definition attributes should be set to ensure that the correct user ID is
used. Refer also to [“Intersystem security checklist” on page 143|for helpful
information about administration of user IDs across a network.

If the correct user ID was used, establish the access that was granted for this
user during this particular inbound request. The access granted is a
combination of link keys and user keys, or it can be link keys alone, depending
on how you have security configured for the connection. For example, the user
is given access to transactions and resources based on various combinations of:
* The keys that are defined for the connection’s link user ID

¢ The TSLKeyMask or RSLKeyMask keys that are defined for the connection
* The keys that are defined for the region’s default user ID

¢ The keys that are defined for the flowed user ID

* The TSL and RSL key that is assigned to each transaction and resource

If you establish that the problem occurs while attempting to access a transaction or
resource, you will need to derive TSL and RSL key lists by using the maps and
diagrams that are given in [‘Link security and user security compared” on page
MDetermine whether the keys that the user is allocated are those keys that are
needed to access the required transactions or resources.

When you have established the reason why the access is being wrongly allowed or
revoked, you might want to change the privileges of the user ID on this inbound
request, or change the access keys on the resources or transactions that are being
accessed. Your decision on how to cure this problem must take into account the
effect that any change will have on the network.

The discussion has assumed that you are familiar with:

« [“Overview of intersystem security” on page 123

+ [“Authenticating systems across SNA connections” on page 125|
e |“CICS link security” on page 126
e |“CICS user security” on page 127
» [“Link security and user security compared” on page 136|
* |“Intersystem security checklist” on page 143|

146 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 7. Data conversion

Different hardware platforms and operating systems use different standards to
represent data. Some use ASCII (American National Standard Code for Information
Interchange); some use EBCDIC (Extended Binary-coded Decimal InterChange).
Each can use different binary patterns to represent data. Some use a single
hexadecimal byte to represent their characters; others might use more. Each has its
own way of storing numeric data.

When TXSeries for Multiplatforms communicates with other systems and data
flows from one system to another, that data might need to be converted from one
format to another. This chapter describes the configuration that is necessary to
support this data conversion.

Introduction to data conversion

The encoding of a character set is referred to as a code page. A code page defines
the meaning of all code points. For example, some code pages define meaning to
all 256 code points for an eight-bit code, other code pages define meaning for the
128 code points for a seven-bit code. Data conversion is needed when you have to
convert data from one code page to another.

TXSeries for Multiplatforms uses the iconv call to convert the encoding of
characters from one code page to another. The iconv call needs a conversion table
for each combination of a “from code page” and a “to code page”. For example, if
you are converting from IBM-850 to ISO8859-1, you will need an IBM-850 to
ISO8859-1 conversion table on your operating system.

— CICS on Windows Systems
The table in|[Appendix D, “Data conversion tables (CICS on Windows Systems]
land CICS for Solaris only),” on page 347|shows how data can be converted
from one code page to another.

— CICS on Open Systems
The names of the conversion tables represent the from-to conversions.
Although different operating systems can have their own naming
conventions, a conversion table source file is generally named as follows:

IBM-850_IS08859-1 on IBM
amere}iso81 on HP 9000

This shows that the first part of the name represents the from-code page, and
the second part represents the to-code page.

Some operating systems allow you to generate your own conversion tables.
To find out more about this, refer to the information about genxlt and iconv
that is provided with your operating system.

© Copyright IBM Corp. 1999, 2005 147

SBCS, DBCS, and MBCS data conversion considerations
SBCS, DBCS, and MBCS represent different code page layouts, as described below:

SBCS: single byte character set
This describes an encoding in which each hexadecimal value has a simple
relationship with a character. Up to 256 characters can be defined. Not all
hexadecimal values necessarily have a meaning. The EBCDIC IBM-037
code page is one example of such a code page; the ASCII IBM-850 is
another.

DBCS: double byte character set
This describes an encoding in which some hexadecimal values are
recognized as being the first byte of a two-byte sequence that collectively
identifies a particular character. This kind of encoding allows far more
characters to be defined; in theory up to 65536. The IBM-932 code page
(Japanese) is one example of a DBCS code page in which:

X'00' to X'7F" are single-byte codes
X'81" to X'9F' are double-byte introducer
X'A1' to X'DF' are single-byte codes
X'E0' to X'FC' are double-byte introducer

In this example, code points such as X'80' are undefined and have no
meaning. A code point such as X'81" is recognized as being the first byte of
a two-byte code. The second byte can be any of the 256 possible values.
Other DBCS code pages have different organizations; each one is
structured according to need.

MBCS: multibyte character set
This encoding describes a character set in which hexadecimal sequences of
arbitrary length are associated with particular characters. eucJP is an
example of a multibyte encoding. The principle is the same as that which
is described for DBCS, except that particular hex values are recognized as
being simple SBCS values or introducers for longer MBCS strings.
Sequences of different lengths can be identified within a single code page.

To summarize, MBCS can be viewed as a more generalized form of DBCS, in
which sequences of arbitrary length can be defined. SBCS is the simplest of all, in
which every sequence is only one byte long.

Note: MBCS is not supported by a standard, although wide characters are. A wide
character set is one in which the encoding supports multiple bytes (2, 3, or
4), but does so consistently; mixed length sequences do not exist in the set.
For instance, IBM’s wide characters are two bytes (DBCS) and
Hewlett-Packard’s are four bytes.

In TXSeries for Multiplatforms, no difference exists in coding the CICS-supplied
program that performs the standard conversions for SBCS, DBCS, or MBCS data.

With DBCS and MBCS data, you can convert data within the same language
(Japanese, Korean, Traditional Chinese, and Simplified Chinese) between the
following types of character sets:

* DBCS (ASCII) and DBCS (EBCDIC)

* DBCS (ASCII) and MBCS (EUC)

* DBCS (EBCDIC) and MBCS (EUC)

148 TXSeries for Multiplatforms: CICS Intercommunication Guide

Cross-language conversion is not possible. Conversions between SBCS and DBCS
or MBCS are also not possible.

In the conversions that are listed above, the length of the converted data might
differ from the original length because of the insertion and deletion of shift-out
(SO) characters and shift-in (SI) characters and the DBCS or MBCS code scheme
difference. An SO character is a code extension character that substitutes, for the
graphic characters of the standard character set, an alternative set of graphic
characters upon which an agreement exists or that has been designated by use of
code-extension procedures. An SI character is a code extension character that is
used to terminate a sequence that has been introduced by the SO character to
make effective the graphic characters of the standard character set.

CICS does not have the logic to handle any special treatment of data-length
changes. For example, 20-byte user data in a 20-byte input buffer might become
more than 20 bytes long after conversion, in which case the data might be
truncated. The application must compensate for expansion during data conversion.
For more information about how to use shift-out/shift-in (SO/SI) characters, refer
to the IBM 3270 Information Display Programmer’s Reference.

In transaction routing, 3270 data streams are always flowed across a network in
EBCDIC. Routed transaction BMS panels behave in the same way as do ordinary
EBCDIC 3270 screens, regardless of the CICS platform or the code page. Therefore,
no MBCS-unique considerations are needed for transaction routing.

Numeric data conversion considerations

Data conversion is not only concerned with the representation of character data.
The method of storing numbers can vary among different hardware platforms. This
means that conversion routines might be required in order to convert numerical
(binary) data that is received from a remote system into the local machine format.

As an example, [Figure 51 on page 150 shows how some of the standard C
language data types are represented on the RS/6000, HP 9000 Series 800
computers, and Intel® computers.

The major difference between the two representations that are shown is the byte
ordering. The decimal value 550 is stored as 0x0226 on the RS/6000, HP 9000 Series
800 computers, and SPARC machines. These machines use the big-endian format for
numbers, where the most significant byte of the number is stored in the lower
machine address and the least significant byte is stored in the higher machine
address. IBM mainframes are also big-endian machines.

On the Intel computers, the bytes are reversed, so decimal 550 is stored as 0x2602.
This format is called little-endian.

Chapter 7. Data conversion 149

Representation of numbers on an IBM RISC System/6000, HP900O Series 800
Computer, SNI Series, and SPARC machines

C Data type Value Size(bytes) Represented as:
unsigned short int 550 2 02 26

short int 550 2 02 26

short int -550 2 FD DA
unsigned Tong int 555550 4 00 08 7A 1E
long int 555550 4 00 08 7A 1E
long int -555550 4 FF F7 85 E2
unsigned int 550 4 00 00 02 26
int 550 4 00 00 02 26
int -550 4 FF FF FD DA
Representation of numbers on Digital Alpha machines

C Data type Value Size(bytes) Represented as:
unsigned short int 550 2 26 02

short int 550 2 26 02

short int -550 2 DA FD

unsigned long int 555550 8 1E 7A 08 00 00 00 00 00
long int 555550 8 1E 7A 08 00 00 00 00 00
long int -555550 8 E2 85 F7 FF FF FF FF FF
unsigned int 550 4 26 02 00 00
int 550 4 26 02 00 00
int -550 4 DA FD FF FF
Representation of numbers on Intel machines

C Data type Value Size(bytes) Represented as:
unsigned short int 550 2 26 02

short int 550 2 26 02

short int -550 2 DA FD
unsigned Tong int 555550 4 1E 7A 08 00
long int 555550 4 1E 7A 08 00
long int -555550 4 E2 85 F7 FF
unsigned int 550 4 26 02 00 00
int 550 4 26 02 00 00
int -550 4 DA FD FF FF

Figure 51. Representation of numbers

If numerical data is sent between two machines that use different byte ordering,
either the sender or receiver must swap the bytes around so that the data is
correctly interpreted by the receiving system. In most cases, CICS can be
configured to do this byte swapping automatically. However, you might need to
include byte-swapping functions in the user exit for function shipping (refer to
[‘Coding a nonstandard data conversion program” on page 161), and transaction
routing (refer to [“Writing your own version of DFHTRUC” on page 166).

[Figure 52 on page 151| and [Figure 53 on page 151| show two example C functions
that can be used for halfword and fullword byte swapping. The first swaps the
bytes for a two-byte number such as a short int, and the second swaps the bytes
for a four-byte number such as an int. Any byte-swapping routine must be aware
of the number of bytes that are used to store a number. Therefore, refer to your
programming language documentation to check the sizes of the data types that
your programs use.

150 TXSeries for Multiplatforms: CICS Intercommunication Guide

/*

* =

* Halfword (2 byte) Byte Swap

* =

*/
void HalfWord ByteSwap(void =*Buffer)
{
register unsigned char SavedByte; /* temp variable */
unsigned char *BufferPtr = Buffer; /* temp pointer */
/*

* Save the first byte into the temporary buffer,
* move the second byte to the first byte position
* and finally put the saved first byte into the
* second byte position.
*
/
SavedByte = *BufferPtr;
*BufferPtr = x(BufferPtr+l);
*(BufferPtr+1) = SavedByte;
return;

}

Figure 52. Sample C function for halfword swap

void FullWord ByteSwap(void *Buffer)
{

register unsigned char SavedByte; /* temp variable */
unsigned char *BufferPtr = Buffer; /x temp pointer */

/*

*

Save the first byte into the temporary buffer,
move the fourth byte to the first byte position
and finally put the saved first byte into the
fourth byte positi on.

* %k *

*/

SavedByte = *BufferPtr;
*BufferPtr = =(BufferPtr+3);
*(BufferPtr+3) = SavedByte;

/*

* Save the second byte into the temporary buffer,
* move the third byte to second byte position

* and finally put the saved second byte into the
* third byte position.

*/

SavedByte = x(BufferPtr+l);
*(BufferPtr+1) = x(BufferPtr+2);
*(BufferPtr+2) = SavedByte;

return;

}

Figure 53. Sample C function for fullword swap

The machine hardware and operating system can also affect the size of a data type.
Variations exist in the size of the Tong data type. It is four bytes on the RS/6000,
HP 9000 Series 800 computers, Intel computers, and SPARC machines. If you are

Chapter 7. Data conversion 151

sending numerical data between different types of machine, choose data types that
are the same size on both machines to simplify the data conversion. The CICS
standard data types in prodDir/include/cicstype.h provide C language data types
that are the same size for all CICS workstation products.

Finally, if the data that your programs send is defined in a record structure, your
data conversion routines must handle the padding that can be automatically
inserted into the structure to maintain boundary alignment. For example, consider
the record structure that is shown in which is defined in the C language.
It contains a one-byte character (OneByteCharacter), a four-byte integer
(FullWordInteger), another one-byte character (AnotherCharacter) and finally a
two-byte integer (HalfWordInteger).

struct

{
char OneByteCharacter;
int FullWordInteger;
char AnotherCharacter;

short int HalfWordInteger;
} ExampleRecord;

Figure 54. Example record structure

Although only eight bytes of storage have been defined, the structure actually
takes up 12 bytes. Three bytes are inserted after OneByteCharacter so
FullWordInteger starts on a fullword boundary and an additional byte is inserted
after AnotherCharacter, so HalfWordInteger starts on a halfword boundary.

Summary of data conversion for CICS intercommunication
functions

Data conversion is required when the code page that is used in a CICS transaction
is different from the code page that is used for the resource. The resource can be a
file or a temporary storage or transient data queue; or a program, a transaction, or
a terminal.

Data conversion has to be considered for:

* Function shipping, distributed program link, and asynchronous processing
 Transaction routing

* Distributed transaction processing

The data conversion requirements for the three intercommunication functions are
different. Also, these requests might appear as outbound or inbound to the
TXSeries for Multiplatforms region. That is, an application on a TXSeries for
Multiplatforms region might initiate a function-shipping request to a remote
system (an outbound request), or a remote system might initiate a
function-shipping request to a resource that is owned by the TXSeries for
Multiplatforms region (an inbound request). Key points are described in the
following sections:

Function shipping, distributed program link, and asynchronous processing

1. On the resource-owning system, define a data conversion template for
the resource as defined in [“Standard data conversion for function|
[shipping, DPL and asynchronous processing” on page 159] Each
resource, such as a file or a temporary storage queue, must have a
template defined for it if its data is to be converted. These templates
indicate how each field in the resource is to be converted.

152 TXSeries for Multiplatforms: CICS Intercommunication Guide

2. Generate the conversion template by using cicscvt.

3. Place the template on the appropriate directory, for example:
varDir/cics_regions/region/database/FD/FILE.cnv

4. Set the TemplateDefined attribute in the resource definition entry for
the resource to yes. This attribute specifies that a template exists for the
resource. See_the information about Schema File Definitions that is
given in the [TXSeries for Multiplatforms Administration Reference| for an
example description of the TemplateDefined attribute.

Transaction routing;:

1. Set the RemoteCodePageTR attribute in the Communications
Definitions (CD) entry for the remote system to the code page that is to
be used to flow transaction routing data.

2. You can customize the transaction routing user exit, DFHTRUC. This
user exit converts the COMMAREA and the TCTUA that flow with the
transaction routing data. Refer to ["Writing your own version of|
[DFHTRUC” on page 166| for further details.

Distributed transaction processing:

* Because DTP programs use application specific data areas, CICS cannot
supply data conversion macros or user exits for DTP. The technique that
you use is determined by the design of your application.

A full description of the data conversion requirements for the three
intercommunication functions is given in:

‘Data conversion for function shipping, distributed program link and]
asynchronous processing” on page 156|

‘Data conversion for transaction routing” on page 164|

‘Data conversion for distributed transaction processing (DTP)” on page 169)|

Code page support

shows the different names for code pages on each of the operating
systems that TXSeries for Multiplatforms supports. So, for example, the code page
name for English (Latin-1) EBCDIC is IBM-037 on, Windows Systems, and Solaris,
and american_e on HP. You use these code page names when you are configuring
the transaction routing RemoteCodePageTR attribute in the Communications
Definitions (CD) entry. This task is discussed in [“Data conversion for transaction|
frouting” on page 164

You use the CICS Short Codes that are shown in the table when you are coding
DFHCNV macros for function shipping data conversion. See [“Data conversion for]
function shipping, distributed program link and asynchronous processing” on pa ge|
156/ and [“Standard data conversion for function shipping, DPL and asynchronous|
processing” on page 159 for further information. The short code is the same, no
matter which type of CICS region you are using.

A CICS region displays its local code page and the corresponding short code in
one of the messages that are written to the console.nnnnnn file during region
start-up.

Table 32. CICS Shortcodes and code pages that TXSeries for Multiplatforms supports

CICS short code
name

AIX and Windows
code page

HP-UX code page
name

Solaris code page
name

Description

37

IBM-037

american-e

IBM-037

IBMLatin-1 EBCDIC

Chapter 7. Data conversion 153

Table 32. CICS Shortcodes and code pages that TXSeries for Multiplatforms supports (continued)

8859-1 1SO8859-1 is08859_1 8859 Latin-1 ASCII (ISO)

819 1SO8859-1 is08859_1 8859 Latin-1 ASCII
(IBM/ISO)

850 IBM-850 roman§ IBM-850 Latin-1 ASCII

437 IBM-437 is08859_1 IBM-437 Latin-1 (PC) ASCII

930 IBM-930 cp930 T1BM-930 Japanese EBCDIC

931 IBM-931 japanese_e IBM-931 Japanese EBCDIC

939 IBM-939 cp939 TBM-939 Japanese EBCDIC

932 IBM-932 sjis ja_JP.pck Japanese ASCII

EUCJP IBM-eucJP euc]P euc]P Japanese ASCII (ISO)

942 IBM-942 IBM-942 IBM-942 Japanese ASCII

EUCKR IBM-eucKR euckKR euckKR Korean ASCII (ISO)

934 1BM-934 IMB-934 IBM-934 Korean ASCII

944 1BM-944 IBM-944 1BM-944 Korean ASCII

949 IBM-949 korean15 IBM-949 Korean ASCII

933 IBM-933 korean_e IBM-933 Korean EBCDIC

EUCTW IBM-eucTW IBM-eucTW eucTW Traditional Chinese

938 IBM-938 IBM-938 IBM-938 Traditional Chinese
ASCIT

948 IBM-948 IBM-948 IBM-948 Traditional Chinese
ASCIT

937 1BM-937 chinese-t_e IBM-937 Traditional Chinese
EBCDIC

BIG5 Zh_TW.big5 bigh zh_TW.BIG5 Traditional Chinese
BIG5

946 1BM-946 IBM-946 IBM-946 Simplified Chinese
ASCII

1381 IBM-1381 hp15CN IBM-1381 Simplified Chinese
ASCIT

935 IBM-935 chinese-s_e IBM-935 Simplified Chinese
EBCDIC

EUCN IBM-eucCN chinese-s_e eucCN Simplified Chinese
ASCII (ISO)

GB18030 GB18030 gb18030 GB18030 Simplified Chinese
GB18030

864 IBM-864 arabic8 IBM-864 Arabic ASCII

8859-6 1S0O8859-6 is08859_6 1SO8859-6 Arabic ASCII (ISO)

1089 1S0O8859-6 is08859_6 1SO8859-6 Arabic ASCII
(IBM/ISO)

420 1BM-420 arabic_e IBM-420 Arabic EBCDIC

855 IBM-855 IBM-855 IBM-855 Cyrillic ASCII

866 IBM-866 IBM-866 IBM-866 Cyrillic ASCII

8859-5 1S0O8859-5 is08859_5 1SO8859-5 Cyrillic ASCII (ISO)

154 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 32. CICS Shortcodes and code pages that TXSeries for Multiplatforms supports (continued)

915 1SO8859-5 is08859_5 1508859-5 Cyrillic ASCII
(IBM/ISO)

1025 IBM-1025 IBM-1025 IBM-1025 Multilingual Cyrillic
EBCDIC

869 IBM-869 greek8 IBM-869 Greek ASCII

8859-7 1S0O8859-7 is08859_7 1S08859-7 Greek ASCII (ISO)

813 1SO8859-7 is08859_7 1SO8859-7 Greek ASCII
(IBM/ISO)

875 IBM-875 greek_e IBM-875 Greek EBCDIC

856 IBM-856 hebrew8 IBM-856 Hebrew ASCII

8859-8 1SO8859-8 is08859_8 1S08859-8 Hebrew ASCII (ISO)

916 1S0O8859-8 is08859_8 1SO8859-8 Hebrew ASCII
(IBM/ISO)

424 IBM-424 hebrew_e IBM-424 Hebrew EBCDIC

273 IBM-273 german_e IBM-273 Austria, Germany
EBCDIC

277 IBM-277 danish_e IBM-277 Denmark, Norway
EBCDIC

278 IBM-278 finnish_e IBM-278 Finland, Sweden
EBCDIC

280 IBM-280 italian_e IBM-280 Italy EBCDIC

284 IBM-284 spanish_e IBM-284 Spain, Latin Am.(Sp)
EBCDIC

285 IBM-285 english_e IBM-285 UK EBCDIC

297 IBM-297 french_e IBM-297 France EBCDIC

500 IBM-500 IBM-500 IBM-500 International latin-1
EBCDIC

871 IBM-871 icelandic_e IBM-871 Iceland EBCDIC

852 IBM-852 IBM-852 IBM-852 Latin-2 ASCII

8859-2 1508859-2 is08859_2 1508859-2 Latin-2 ASCII (ISO)

912 1S08859-2 is08859_2 1SO8859-2 Latin-2 ASCII
(IBM/ISO)

870 IBM-870 IBM-870 IBM-870 Latin-2 EBCDIC

857 IBM-857 turkish8 IBM-857 Turkey ASCII

8859-9 1508859-9 is08859_9 1508859-9 Turkey ASCII (ISO)

920 1S508859-9 1508859_9 1SO8859-9 Turkey ASCII
(IBM/ISO)

1026 IBM-1026 turkish_e IBM-1026 Turkey EBCDIC

UTE-8 UTE-8 (only) UTE-8 UTE-8 Unicode file code set

ucs-2 UCS-2 (only) ucs-2 ucs-2 Unicode processing

code set

Chapter 7. Data conversion 155

Data conversion for function shipping, distributed program link and
asynchronous processing

The following sections describe the factors that you must considered before you
configure data conversion for function shipping;:

“Introduction to data conversion” on page 147]

This introduces the subject of data conversion.

+ [“Which system does the conversion”|

This explains which of the interconnected systems is responsible for the data
conversion.

“How code page information is exchanged” on page 157|

This explains how the systems exchange information on the code pages that they
are using.

“When TXSeries for Multiplatforms does not convert the data” on page 157]

This explains how data conversion is configured when the TXSeries for
Multiplatforms region is not the one that is responsible for the data conversion.

» [“Standard data conversion for function shipping, DPL and asynchronous|
pbrocessing” on page 159

This explains how data conversion is configured when the standard
CICS-supplied data conversion programs can be used.

+ |[“Non-standard data conversion (DFHUCNV) for function shipping, DPL and|
asynchronous processing” on page 160

This explains how data conversion is configured when the standard
CICS-supplied data conversion programs cannot be used, and a user exit has to
be created.

Which system does the conversion

Function shipping distributed program link and asynchronous processing involves
two categories of data that might need data conversion:

* The name of the CICS resource

* The application data

CICS resource names must always flow across the link in EBCDIC. The system that
is not normally using EBCDIC is responsible for the translation, but this translation
is an internal CICS function and does not require user setup.

The application data is converted on the system that owns the resource (described
in ["Standard data conversion for function shipping, DPL and asynchronoug
[processing” on page 159).|[Figure 55 on page 157 shows this.

156 TXSeries for Multiplatforms: CICS Intercommunication Guide

REGIONA(ASCIIsystem) REGIONC(ASCIIsystem)

Reéqutest Conveirt Eegglgfc(;a Convertresource name FILEA

update nameto . i

FILEA Senddataasis; | oASCll (IBNF650)
' Conversion of character update

REGIONC IBM-850 (ASCII). datais notrequired. > data

REGIONB (EBCDIC system)

Request Convertresource Convertresource name

update |, nameto EBCDIC. > | {0ASCII.

FILEA Senddataasis; Convertdatato update
REGIONC IBM-037 (EBCDIC). IBM-850 (ASCII). >

Figure 55. Data conversion for function shipping

In REGIONC owns FILE A. FILE A is encoded with code page IBM-850
(ASCII). A transaction on REGIONA requests that FILE A be updated and the data
is sent encoded with code page IBM-850. Because the transaction data is encoded
in the same code page as is the resource, a conversion of the application data is not
required. However, because CICS resource names are always flowed across the
connection in EBCDIC (IBM-037), a conversion is required at both ends of the
connection.

REGIONB is an EBCDIC system. The transaction data is sent in EBCDIC and
converted on REGIONC before FILE A is updated. The resource name is also
converted on REGIONC. But, because REGIONB is an EBCDIC system, the
resource name is not converted before it is sent across the connection.

How code page information is exchanged

When a request is received from another TXSeries for Multiplatforms region, a
shortcode is included in the flow that identifies the code page that the transaction is
using.

If the transaction on the sending system is using a code page that is not specified
in the table, a null value is flowed. Also, non-TXSeries for Multiplatforms regions
do not flow code page information. In either case, the default code page that is
specified in the conversion template is used. If a shortcode is received that is not in
the table, CICS uses the shortcode as the code page.

When TXSeries for Multiplatforms does not convert the data

If your region does not need to convert application data, you do not need to set it
up for data conversion. Although you might not be concerned with data
conversion on a non-TXSeries for Multiplatforms region, you might need an
understanding of what the differences are. [Table 33 on page 158 highlights those
differences, and lists the other intercommunication manuals that describe data
conversion of the other platform.

Chapter 7. Data conversion 157

Table 33. Comparison of data conversion with other CICS systems

Data conversion | Differs from data conversion on | Refer to these books:
on: TXSeries for Multiplatforms in
the following ways:

IBM 1. Does not send or use code CICS Family: API Structure.
mainframe-based page or byte ordering
CIcs information flowed over the

network. See note for

exceptions.

2. CICS does the conversion.
Operating system facilities,
such as iconv in TXSeries for
Multiplatforms, are not used.

CICS OS/2 Does not send or use code page or | CICS for OS/2 Intercommunication
byte ordering information flowed | Guide
over the network.

CICS/400 Does not send or use code page or | Communicating from CICS/400
byte ordering information flowed
over the network.

Note: APAR PN75374 provides code page support for CICS Transaction Server for
z/0S 3.3. CICS systems with this APAR recognize code page information in
the PIP data on function-shipping flows. For CICS/VSE 2.2 refer to APAR
PN75374, and for CICS/MVS 2.1.2 refer to PN61020.

Avoiding data conversion
It is usually assumed that conversion is always required between systems that use
different encoding; for example, between EBCDIC and ASCII processors. However,
if requests for a particular resource are always in the same code page, you can
store that resource on your system in that code page, therefore avoiding the need
to convert shows this.

REGIONX (EBCDIC system) REGIONC (ASClII system)

Request Convertresource Convertresource name FILEB
update +—» nameto EBCDIC. to ASCII. (IBM-037)
FILEB Senddataasis; Conversion of character update

REGIONC IBM-037 (EBCDIC). datais notrequired. > data

REGIONY (EBCDIC system)

Request Convertresource Convertresource name

update +—» name to EBCDIC. to ASCII.

FILEB Senddataasis; Conversion of character update
REGIONC IBM-037 (EBCDIC). datais notrequired.

Figure 56. Avoiding data conversion

In this example, the only systems that need access to FILE B on REGIONC are
EBCDIC systems that are using IBM-037. Because of this, FILE B can be encoded in
IBM-037 on REGIONC, although REGIONC is an ASCII processor, and data
conversion is avoided.

158 TXSeries for Multiplatforms: CICS Intercommunication Guide

Standard data conversion for function shipping, DPL and
asynchronous processing

This section describes standard data conversion in which the CICS-supplied data
conversion can be used.[“Non-standard data conversion (DFHUCNYV) for function|
shipping, DPL and asynchronous processing” on page 160 describes the
non-standard conditions in which the CICS-supplied data conversion cannot be
used and user exits must be used.

When a request to access a resource is function shipped, the resource definition for
that resource is examined. If TemplateDefined=yes, CICS looks for a conversion
template that is defined for the resource to determine whether conversion is
required and how conversion is to occur.

Each resource that requires conversion must have a conversion template defined

for it. These conversion templates specify:

* The code page that is used to encode the resource character data when it is
stored on the resource owning system

* The default code page that is to be assumed for the incoming request if the
incoming request does not state how the data is encoded

* Field lengths

* What parts of the field contain character data, binary data, MBCS (graphic), or
packed decimal data

Conversion templates are user-defined. To define a conversion template:

1. You code a macro source conversion table, using the DFHCNV macros, to specify
how you want the resources converted. One macro source conversion table can
contain specifications for several resources. (See[Appendix A, “DFHCNV - The|
[data conversion macros,” on page 321))

2. You process your macro source conversion table, using a CICS-supplied
command, cicscvt, to create the conversion templates. One conversion template
is built for each resource. (See [“Using cicscvt to build the conversion|

templates.”)

Note: DFHCNYV macros are generally portable between CICS systems. Some minor
changes might be required. See [“When TXSeries for Multiplatforms does not]
[convert the data” on page 157|for information about the differences between
CICS systems.

Using cicscvt to build the conversion templates

The cicscvt program is a standalone utility that converts a macro source conversion
table to individual compiled conversion templates for each resource that is defined
in the table. To produce the conversion templates, enter:

cicscvt fileName
where fileName is the name of the coded DFHCNYV conversion table.
cicscvt names the conversion templates based on the resource type and resource

name that are specified with the DFHCNV macro. The source macro format uses
abbreviations for the resource classes. Those abbreviations are shown in

Chapter 7. Data conversion 159

Table 34. Resource class abbreviations and resource types

RTYPE resource_class

FC File Definitions (FD)

D Transient Data Definitions (TDD)

TS Temporary Storage Definitions (TSD)
IC Transaction Definitions (TD)

PC Program Definitions (PD)

The output of cicsevt is:
resource_name.resource_type.cnv

For example, cicscvt produces a file named “ABCD.TSD.cnv” when the following
is coded:
DFHCNV TYPE=ENTRY,RTYPE=TS,RNAME=ABCD

To use this conversion template, you need to install it as either:

\var\cics_regions\regionName\database\TSD\ABCD. cnv
/var/cics_regions/regionName/database/TSD/ABCD.cnv

Notice that the file needed to be renamed to “ABCD.cnv”.

Updating a conversion template in the runtime environment: If you want to
update a conversion template in the runtime environment you should:

1. Install the conversion template in the appropriate directory.

2. Delete the resource and reinstall it.

This forces CICS to reload the conversion template the next time that the resource
is accessed.

For TS Queues, you should also execute an EXEC CICS DELETEQ TS of the queue,
before carrying out the above procedure.

Non-standard data conversion (DFHUCNV) for function
shipping, DPL and asynchronous processing

“Standard data conversion for function shipping, DPL and asynchronoug
processing” on page 159 describes how the CICS-supplied data conversion
program uses the conversion templates to perform standard data conversions.
When a field requires nonstandard conversion, you can specify, at the resource
level, that a user exit is to be used (USREXIT=YES in the TYPE=ENTRY macro).

For example, a user exit can be used for data conversion when:
* You need to convert uppercase EBCDIC to lowercase ASCII
e The conversion logic is dependent on the data itself

* You have some fields that require standard conversion, and some that require
nonstandard conversion

* You want to provide your own complete conversion mechanism from with
DFHUCNV

A default function-shipping user conversion program, DFHUCNYV, is supplied for
nonstandard conversions. This program is provided to showe how to interface
with CICS to perform nonstandard data conversions when function shipping. In its
unmodified form, it converts all uppercase characters to lowercase if the user
conversion type is a particular hexadecimal value.

160 TXSeries for Multiplatforms: CICS Intercommunication Guide

You can implement DFHUCNYV in its unmodified form, or you can add
user-dependent processing to meet your particular requirements. However, before
you change the default user-conversion program, try it first; if you do decide to
change the functions of DFHUCNYV, take a copy of the program source so that you
have a backup in case you encounter problems and need to revert to the original
version.

You can write the program in C or COBOL, and you can use EXEC CICS
commands.

You must define the program in the Program Definitions (PD) entry DFHUCNV.

Performance and data conversion

CICS could call the user-conversion program every time a function shipping
request is processed. Therefore, the performance of the user program is critical to
the performance of the function-shipping mirror transaction.

When the user-conversion program has returned, CICS performs standard
conversions. CICS examines the conversion template to obtain the first SELECT
item in the linked list. If the user data matches the comparison data in the SELECT
item, CICS traverses the FIELD linked list, and converts the data as described by
the FIELD entry. CICS repeats this process until all matching user data is
converted.

Performance might be degraded if your conversion templates are poorly organized,
and result in extended searches for matching fields. You should ensure that the
most frequently matched fields are defined early in the conversion template,
therefore shortening the search times.

Coding a nonstandard data conversion program: CICS uses the COMMAREA to
pass a parameter list to the user-replaceable conversion program that is providing
access to the data conversion table and the data that is to be converted. All
pointers point to an area in the COMMAREA.

The following lists and describes the parameters. The names shown are those that
are used in the CICS-supplied sample header. A C language header file for these
parameters is in:

prodDir/include/cics_fscv.h

The C language source for the supplied version of DFHUCNYV is in:
prodDir/src/samples/ucnv/cics_fscv.ccs

Signature
This is the eight-character signature (ERZ27CVU) for the parameters that
CICS passes to the user-conversion program.

ConvDir
CICS passes this 32-bit parameter to the user conversion program. The
parameter indicates in which direction conversion should be performed,
and has one of these two values:
0 = Conversion from local to remote
1 = Conversion from remote to local

ResourceName
This is the name of the resource, and is NULL if CICS has not initialized
the conversion template.

Chapter 7. Data conversion 161

ResourceNameLength
This is an unsigned 16-bit integer that specifies the length of the resource
named. The length is zero if CICS does not initialize the conversion
template.

ResourceT

This 32-bit parameter defines the type of resource that the user data
conversion function can use as a key for obtaining a conversion template.
It has one of these values:

0 = file control

1 = transient data

2 = temporary storage

3 = interval control

4 = NOCHECK interval control

5 = distributed program link (DPL)

UserData
This 32-bit parameter points to the user data for conversion. It might be
NULL if no data exists for conversion.

UserDataLength
This is an unsigned 16-bit integer that specifies the length of the user data.
The length is zero if no user data exists.

KeyData
This 32-bit parameter points to file control key data for conversion. It
might be NULL if no key data exists for conversion.

KeyDataLength
This is an unsigned 16-bit integer that specifies the length of key data. The
length is zero if no key data exists.

LocalToRemote
This is a code page descriptor for conversion from the local code page to
the remote code page.

RemoteToLocal
This is a code page descriptor for conversion from the remote code page to
the local code page.

ByteOrder
The byte ordering of the remote system. (See |"Numeric data conversion|
fconsiderations” on page 149 for further details about byte ordering.)

0 = Byte order for IBM mainframes, , HP-UX, and Solaris
(Called Network order, or Big Endian order

1 = Byte order for OS/2 and Windows Systems

(Called Little Endian)

ConvTable
This is a pointer to the root of a linked list that details selected data from
the conversion template for the resource. Each element in the list contains
the root of a linked list of field data for the conversion template. All
elements in the linked lists are for input only and should not be modified.
The linked list of data for a conversion template consists of:

Signature
This is the eight-character signature (“ERZ27CVS”) for the
structure.

162 TXSeries for Multiplatforms: CICS Intercommunication Guide

Next This is a pointer to the next select element in the linked list. It is
set to NULL if it is at the end of the list.

SelectType
This 32-bit parameter specifies the type of select. Refer to the
following values:

0 = Default. OPTION=DEFAULT has been specified.

1 = Data. Indicates that the data to compare is in character
format.

2 = Hex Data. Indicates that the data is to be compared without
conversion.

3 = Key. Indicates the start of conversions that are to be applied
to file control keys.

CompareOffset
This is an unsigned 16-bit integer that specifies the offset, from the
start of the data area, at which the comparison is to begin.

CompareLength
This is an unsigned 16-bit integer that specifies the length of the
comparison data.

CompareData
This is a pointer to the data that is to be compared against.

FieldRoot
This is a pointer to the root of a linked list of field data for a
conversion template. It describes what to convert if a match was
found and is part of a linked list such that several conversions can
be made. This field data consists of:

Signature
This is the eight-character signature (“ERZ27CVF”) for the
structure.

Next This is a pointer to the next conversion template element.
It contains NULL if it is at the end of the list.

ConversionOffset
This is an unsigned 16-bit integer that specifies the offset,
from the start of the data, at which the conversion is to
begin.

ConvertType
This 32-bit parameter specifies the type of data to convert,
and has one of these seven values:

0 = Data is character. Convert as a character, using the
iconv library.

1 = Data is graphic (DBCS string without SOSI
characters).

2 = No conversion required.

3 = User data.

4 = Data is 16-bit numeric.

5 = Data is 32-bit numeric.
ConvertLength

This is an unsigned 16-bit integer that specifies the length
of the conversion data.

Chapter 7. Data conversion 163

UserEscapeType
This is the user escape type unsigned 16-bit integer that is
passed to DFHUCNYV.

Data conversion for transaction routing

The data that flows between two CICS systems when a CICS transaction is using a
remote terminal consists of:

* The data that is displayed on the screen. This is sent as 3270 data streams.

¢ Any COMMAREA and TCTUA that is saved by a pseudo-conversational
transaction when it returns.

Data conversion for transaction routing is required when the terminal-owning
region (TOR) and application-owning region (AOR) use a different code page or
byte ordering.

CICS on Open Systems and CICS on Windows Systems can be configured to
convert automatically the screen data (3270 data streams) that is sent to, and
received from, a remote CICS system. Data conversion is triggered by the
RemoteCodePageTR attribute of the Communications Definition (CD) entry for a
connection. If this attribute is set to a code page that is different from the local
code page, TXSeries for Multiplatforms ensures that the screen data that is sent to
the remote system is converted to the code page that is specified in
RemoteCodePageTR. TXSeries for Multiplatforms also assumes that screen data
that is received from the remote system is in the code page that is specified in
RemoteCodePageTR and will convert it to the local code page. So the code page
that is specified in RemoteCodePageTR can be viewed as the code page of all
transaction-routed screen data that is flowing between the two CICS systems.

Choosing an appropriate value for RemoteCodePageTR depends upon the
particular remote CICS system.

* IBM mainframe-based CICS does not perform any data conversion for
transaction routing. Therefore, if your TXSeries for Multiplatforms region is
communicating with an IBM mainframe-based CICS system, set
RemoteCodePageTR to the EBCDIC code page that is used in the IBM
mainframe-based CICS system. Your TXSeries for Multiplatforms region does all
the data conversion and the screen data flows in the code page of the IBM
mainframe-based CICS system.

* CICS OS/2 can perform data conversion for transaction routing. However, it
assumes that all screen data is flowed in EBCDIC. If your TXSeries for
Multiplatforms region is communicating with a CICS OS/2 region, set
RemoteCodePageTR to the same EBCDIC code page as that which is specified
in the CICS OS/2 Partner Code Page attribute of the Connection and Session
Table (TCS) entry for the connection.

* TXSeries for Multiplatforms can receive screen data in both ASCII and EBCDIC.
If your TXSeries for Multiplatforms region is communicating with another
TXSeries for Multiplatforms region, set the RemoteCodePageTR to the same
value in both regions. For performance reasons it is sensible to make the code
page that is specified in RemoteCodePageTR the same as at least one of the
region’s local code pages, to reduce the amount of data conversion. This is not
essential, however, and you can choose to use a code page between which both
regions can convert.

RemoteCodePageTR is expressed by use of the code page names that are defined
in your local machine. [Table 32 on page 153|shows the code page names for your

164 TXSeries for Multiplatforms: CICS Intercommunication Guide

operating system. In addition, ensure that an iconv data conversion table that can
convert both ways between the code page that is specified in RemoteCodePageTR
and the local code page, is installed on your machine. The default local code page
for the region is displayed in one of the messages that is output in the
console.nnnnnn file during region startup.

TXSeries for Multiplatforms can convert transaction routing screen data
automatically because the structure of the 3270 data streams is well understood.
TXSeries for Multiplatforms cannot automatically convert the data in a TCTUA or
a COMMAREA that is flowed during transaction routing because its contents are
application defined. It might contain a mixture of character and binary data that
must be converted by different techniques. TXSeries for Multiplatforms therefore
provides a user exit called DFHTRUC, which can be customized to your region’s
applications. The default version of DFHTRUC that is supplied with your TXSeries
for Multiplatforms region does nothing. You might have to change it if:

* Transaction routing is being used between your region and a remote CICS
system that uses a different code page and

* Pseudo-conversational transactions are being routed that save a TCTUA or
COMMAREA when they return and

¢ Some of the transactions that are accessing this TCTUA and/or COMMAREA
run on one system, while others run on the other

The information that follows discusses how to write your own version of
DFHTRUC.

When is DFHTRUC called
DFHTRUC is called under the following conditions:
* The code page that is in RemoteCodePageTR is different from the local code
page and
* a TCTUA and/or COMMAREA is included in the transaction routing data

It can be called in the following places:

* When you region is the terminal-owning region (TOR) and a TCTUA and/or
COMMAREA is being sent to the application-owning region at the beginning of
a routed transaction

* When your region is the application-owning region (AOR) and a TCTUA and/or
COMMAREA has been received with a routed transaction request

* When your region is the application-owning region (AOR) and a TCTUA and/or
COMMAREA is to be sent with the last data for the routed transaction

* When you region is the terminal-owning region (TOR) and a TCTUA and/or
COMMAREA has been received with the last data for the routed transaction

Only one DFHTRUC is in your region. It must therefore be coded to handle all
transactions that require conversion of the TCTUA or COMMAREA.
|passed to DFHTRUC”| describes the information that is passed to DFHTRUC and
that allows it to determine the conversion required.

Parameters passed to DFHTRUC
DFHTRUC is passed a COMMAREA that contains the following information:

SysIdLength
This is an unsigned 16-bit integer that defines the length of the SYSID that
is stored in the Sysld field below. The value must be 1 through 4.

Chapter 7. Data conversion 165

SysId This is a five-character field that contains the SYSID of the remote system,
padded on the right will NULLs (0x00). The SYSID is the name of the
Communications Definition (CD) entry for the remote system.

COMMAREA
This is a pointer to the routed transaction’s COMMAREA. If the routed
transaction did not have a COMMAREA, this field is NULLs (0x00).

COMMAREALength
This is an unsigned 16-bit integer that defines the length of the
COMMAREA.

TCTUA
This is a pointer to the routed transaction’s TCTUA. If the routed
transaction did not have a TCTUA, this field is NULLs (0x00).

TCTUALength
This is an unsigned 16-bit integer that defines the length of the TCTUA.

Direction
This parameter indicates whether the data is being sent to (outbound), or
received from (inbound), the remote system. It has the following values:
0 Outbound
1 Inbound

If the data is outbound, DFHTRUC needs to convert from the local code
page to the remote code page. If the data is inbound, DFHTRUC needs to
convert from the remote code page to the local code page.

LocalCodePageLength
This unsigned 16-bit integer contains the length of the local code page that
is stored in the LocalCodePage parameter.

LocalCodePage
This is a 255-byte character array that contains the local code page that is
extracted from the operating system.

RemoteCodePageLength
This unsigned 16-bit integer contains the length of the remote code page
that is stored in the RemoteCodePage parameter.

RemoteCodePage
This is a 255-byte character array that contains the code page from the
RemoteCodePageTR attribute of the connection’s CD entry.

A C language definition of these parameters is in file prodDir/include/cics_truc.h.

DFHTRUC can look at the EXEC Interface Block (EIB) to determine the transaction
that DFHTRUC is converting for (EIBTRNID). Finally, DFHTRUC can use EXEC
CICS commands such as ASSIGN to determine additional information about the
transaction.

Writing your own version of DFHTRUC

The source for the supplied version of DFHTRUC (cics_truc.ccs) along with a
Makefile to build it are in directory:

prodDir/samples/truc
In addition, it uses the header file called prodDir/include/cics_truc.h, which

defines the parameters that are passed to DFHTRUC. cics_truc.ccs is written in the
C programming language and includes not only the supplied version of

166 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHTRUC (see the function called main), but also two example functions that
might help you write your own DFHTRUC. The function called Convert uses the
iconv utility to convert a buffer of character data from one code page to another.
The function called Samp1eDFHTRUC is a sample version of DFHTRUC that converts
the COMMAREA and TCTUA for all transactions that do not begin with ‘c’ (or
‘C’). The conversion logic assumes that the COMMAREA and TCTUA contain only
character data, and that the process of conversion does not change the number of
bytes in the COMMAREA /TCTUA.

Although Samp1eDFHTRUC is a simple version of DFHTRUC, it does show several
important features of a DFHTRUC program. These are described below.

The first part of a DFHTRUC program should determine whether it understands
the format of the COMMAREA or TCTUA. It can do this by looking at EIBTRNID to
determine whether the transaction is one for which DFHTRUC has been coded to
convert. If it is no, DFHTRUC should return immediately. DFHTRUC must never
convert the COMMAREA /TCTUA of a CICS-supplied transaction because the
format of these data areas is not published. So Samp1eDFHTRUC looks for a ‘C” at the
beginning of EIBTRNID and returns if it occurs:

EXEC CICS ADDRESS EIB(EIB);
if (((EIB->eibtrnid)[0] == 'C') || ((EIB->eibtrnid)[0] == 'c'))
{

}

EXEC CICS RETURN;

A safer test would be to test explicitly for the transactions for which DFHTRUC is
coded to convert. The code fragment below returns if EIBTRNID is not PT01, PTO2 or
PTOS.

EXEC CICS ADDRESS EIB(EIB);

if ((memcmp(EIB->eibtrnid, "PTO1", 4) != 0) &&;amp;
(memcmp (EIB->eibtrnid, "PT02", 4) != 0) &&;amp;
(memcmp (EIB->eibtrnid, "PTO5", 4) != 0))

{

}

EXEC CICS RETURN;

It can also be useful to test EIBTRMID becauses the terminal name might, for
example, identify the type of TCTUA that the application uses.

When DFHTRUC has identified the type of COMMAREA /TCTUA that it is
converting, it should examine the Direction parameter that is passed to it. This
indicates whether data is being sent to, or received from, the remote system. Its
significance is primarily to determine whether the data conversion is from the local
code page to the remote code page, or from the remote code page to the local code
page. In the code fragment below, the Direction parameter is used to set two local
variables, FromCodePage and ToCodePage that are used later in DFHTRUC when
calling iconv.

Chapter 7. Data conversion 167

EXEC CICS ADDRESS COMMAREA((cics_char_t x)&Param);
if (Param->Direction == CICS_DFHTRUC_DIR_OUTBOUND)
{

FromCodePage = Param->LocalCodePage;
ToCodePage = Param->RemoteCodePage

}

else

{
FromCodePage = Param->RemoteCodePage;
ToCodePage = Param->LocalCodePage;

}

The final stage of DFHTRUC is to do the conversion. Before you attempt to
convert either the TCTUA or the COMMAREA, check whether one exists. (For
example, an application might be using a TCTUA and not a COMMAREA.
DFHTRUC will be called to convert the TCTUA only.) The code fragment below
tests that the transaction had a COMMAREA before calling the conversion routine.

EXEC CICS ADDRESS COMMAREA((cics_char_ t **)&Param);

if (Param->COMMAREALength != 0)
{
RetCode = ConvertPTO1CommArea(Param->COMMAREA,
FromCodePage,
ToCodePage) ;
1

Character data can be converted by use of iconv. Converting binary data
(numbers) depends on the machine architecture of both the local and the remote
system. No conversion might be necessary. However, some machine architectures
use a different byte ordering for storing numbers and DFHTRUC might need to
swap the bytes around. Use the SysId parameter to identify the remote system and
convert according to the remote system type.

When the conversion is finished, DFHTRUC should return to CICS by using EXEC
CICS RETURN;.

Note: If you want to use the functions in the supplied cics_truc.ccs file, copy
cics_truc.ccs to your own directory before modifying it so that you can refer
to the original version if necessary. If you want to use the sample Makefile,
copy that to you own directory also, and modify the PROGRAM variable to the
path name to which your complied DFHTRUC should be written. The value
of PROGRAM in the supplied Makefile overwritesthe supplied DFHTRUC in
prodDir /bin.

Installing your version of DFHTRUC into the region

The location of DFHTRUC is specified in the DFHTRUC Program Definition (PD)
entry. The PathName attribute of this entry is set to DFHTRUC,which means CICS
usesthe first version of the file DFHTRUC that it finds in the directories that are
specified in the region’s PATH. To install your own version of DFHTRUC either:

* Copy your version as DFHTRUC to a directory that is specified before
prodDir/bin in your region’s PATH. For example,
/var/cics_regions/regionname/bin. This means that CICS will find your version
of DFHTRUC before the supplied version in prodDir/bin.

Alternatively, change the PD entry for DFHTRUC so that it specifies the location
of your version of DFHTRUC in the PathName attribute. This PD entry is
protected (Permanent=yes) so you will have to switch it to unprotected
(Permanent=no) while you update it. The example below shows the PD entry for

168 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHTRUC being updated in both the permanent and running database of CICS
region cicsopen. The existing version is deleted from the running region. Then,
the new value of PathName is set along with Permanent=no. Finally the process
is repeated to switch the PD entry back to Permanent=yes.

cicsdelete -c pd -r cicsopen -R DFHTRUC

cicsupdate -c pd -r cicsopen -B DFHTRUC PathName=/cicsbin/DFHTRUC \

Permanent=no

cicsdelete -c pd -r cicsopen -R DFHTRUC

cicsupdate -c pd -r cicsopen -B DFHTRUC Permanent=yes

When the PD entry points to the location of your version of DFHTRUC, either:
* Restart your region or

* Use CEMT SET PROGRAM(DFHTRUC) NEW

to bring the new DFHTRUC into use.

Data conversion for distributed transaction processing (DTP)

DTP programs use application-specific data areas and conversion flows. Because of
this, CICS cannot provide a general procedure for data conversion for DTP. It is,
therefore, the application’s responsibility to perform data conversion.

Data conversion for DTP programs can be coded in several ways. Each has its
advantages and disadvantages, so your choice of technique is determined by the
design of your particular DTP program. Your goal should be to minimize data
conversion and, where it must occur, arrange for it to be done by the system that
has the most spare capacity.

If a DTP program will be communicating with partner programs that are, for
example, sometimes on an ASCII system and sometimes on an EBCDIC system,
you could code your DTP programs to flow data always in a common code page,
such as an EBCDIC code page. Then, each program will always know the code
page of the data that it is receiving.

Another strategy is for each program to send details of its code page in the first
flow of data, or use PIP data. The partner can convert, to the correct code page, the
data that it is sending.

Finally, it might be possible for all the DTP programs to work in one code page,
therefore eliminating data conversion completely.

Summary of data conversion

The systems to which your TXSeries for Multiplatforms region can connect can
store data in different character encodings. For example, TXSeries for
Multiplatforms uses ASCII, and CICS Transaction Server for z/OS uses EBCDIC.
You therefore need to use data conversion for integer and text when using function
shipping, transaction routing and distributed transaction processing.

Data conversion for function shipping

The CICS products define that conversion always takes place in the
resource-owning system. That is, in the system that owns the file, queue, program
or transaction that is being accessed by function shipping.

To perform data conversion for function shipping in TXSeries for Multiplatforms:

Chapter 7. Data conversion 169

1. Define a conversion template in the form of a file that contains DFHCNV
macros, and process the conversion template source file by using the TXSeries
for Multiplatforms cicscvt program. (“Standard data conversion for function|
[shipping, DPL and asynchronous processing” on page 159|describes how the
conversion template source files are coded and converted.)

2. Install the processed files into the appropriate TXSeries for Multiplatforms class
subdirectory for your region.

3. Set the TemplateDefined attribute to yes in the definition for the resource that
is being converted. This tells TXSeries for Multiplatforms that conversion of the
data is required, and that a conversion template should be loaded.

The conversion templates describe the format of the data that is to be converted,
and the code page and byte order between which the data is to be converted.
Because only one conversion template can be defined per resource, all systems that
are accessing that resource must have the same conversion performed on it. That
is, if a TXSeries for Multiplatforms region owns a file named ACCOUNTS, and a
conversion template exists for it that defines that all data in the file is to be
converted from US ASCII to US EBCDIC, that conversion is performed regardless
of what system is accessing the file. This means that if both a TXSeries for
Multiplatforms region and a CICS Transaction Server for z/OS system function
ship a read of that file, they will both receive the data in US EBCDIC. This is fine
for the CICS Transaction Server for z/OS region, but the CICS on Open Systems or
CICS on Windows Systems region will not get the expected data.

To avoid this problem, some CICS products (including TXSeries for
Multiplatforms) flow their code page and byte order in addition to the normal
function shipping information. This allows the resource owning system to
determine in what environment the remote (requesting) system is executing, and to
override the code page and byte order that is specified in the conversion template.
This allows two or more disparate systems to access the same data, and get the
appropriate results. If the requesting system does not support this, the default
action is always to convert the data as it is defined by the conversion template.

Note: Binary queue names should not be used for remote queues, even when the
queues are using the same operating system as the local host. In addition,
IBM mainframe-based CICS does not permit the use of binary queue names.

Data conversion for transaction routing

Transaction routing from CICS Transaction Server for z/OS to TXSeries for
Multiplatforms presents similar problems to those of function shipping. That is, a
panel that is displayed by TXSeries for Multiplatforms on a terminal that is
attached to CICS Transaction Server for z/OS would not be usable, because
TXSeries for Multiplatforms would have flowed its data in ASCII, and the CICS
Transaction Server for z/OS terminal would try to display it in EBCDIC.

To perform data conversion for transaction routing, define, in the
RemoteCodePageTR attribute of the CD entry for the remote system, the code
page that you want the transaction data to use. This causes TXSeries for
Multiplatforms to convert terminal data into that code page.

In addition, a COMMAREA or TCTUA that flows when the transaction routed
transaction starts or finishes can be converted by the Transaction Routing User
Conversion Program (DFHTRUC). This is described in|”Data conversion f011

ftransaction routing” on page 164.|

170 TXSeries for Multiplatforms: CICS Intercommunication Guide

Data conversion for distributed transaction processing

DTP programs use application-specific data areas and conversion flows. Because of
this, CICS cannot provide a general procedure for data conversion for DTP. It is,
therefore, the application’s responsibility to perform data conversion.

This is discussed in [“Data conversion for distributed transaction processing (DTP)"|

Chapter 7. Data conversion 171

172 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 3. Operating an SNA intercommunication environment

This part describes how to manage your CICS region, PPC Gateway server, and
SNA product, and reviews the problem determination procedures for these
products.

Table 35. Road map

If you want to... Refer to...

Read about managing a PPC Gateway Chapter 8, “Creating and using a PPC|

server. Gateway server in a CICS environment,” on|
[page 175|

Read about the procedures that you should |[“Intersystem problem solving process” on|
follow when investigating CICS intersystem |[page 213
communication problems

Read about PPC Gateway server problem “PPC Gateway server problem|
determination determination” on page 228§|

© Copyright IBM Corp. 1999, 2005 173

174 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 8. Creating and using a PPC Gateway server in a
CICS environment

A TXSeries for Multiplatforms region can use a Peer-to-Peer Communications
(PPC) Gateway server to communicate with remote systems across a Systems
Network Architecture (SNA) network with synchronization level 2 (SL2) support.
(For descriptions of synchronization levels, see [“Ensuring data integrity wit
lsynchronization support” on page 16.) This chapter discusses the basics of creating
and using a PPC Gateway server with CICS. The following topics are covered:

» [“Overview of the PPC Gateway server’]|

+ |“Choosing a management method” on page 181

¢ [“Using the CICS control program (cicscp) configuration tool to manage a PPCl
Gateway server” on page 182|

+ |[“Using CICS commands to manage a PPC Gateway server” on page 184

* [“Using the IBM TXSeries Administration Tool to manage a PPC Gateway server”]

on page 190|

+ |[“Using SMIT to manage a PPC Gateway server” on page 195

+ |[“Using ppcadmin commands” on page 200

+ |[“Changing CICS intercommunication definitions for use with a PPC Gateway]|
server” on page 210|

Overview of the PPC Gateway server

A PPC Gateway server runs independently of a CICS region. A CICS region is
connected to the PPC Gateway server through TCP/IP. The PPC Gateway server
provides a link to the SNA network.

To use PPC Gateway server SNA support, you must install and configure an
appropriate SNA product on the same machine as is the PPC Gateway server. The
appropriate communications product depends upon the platform:

Table 36. Communications products for various platforms

Platform Communications product

Windows IBM Communications Server or Microsoft SNA Server
AIX IBM Communications Server

Solaris SNAP-IX

HP-UX SNAplus2

To use CICS commands to create or change a PPC Gateway server, CICS must exist
on the same machine as does the server. To use CICS commands only to
communicate with a PPC Gateway server, CICS does not have to exist on the same
machine.

Note: CICS does not support the use of a PPC Gateway server on Solaris.

However, a CICS for Solaris region can use a PPC Gateway server that is
running on a non-Solaris platform.

© Copyright IBM Corp. 1999, 2005 175

A CICS region can use more than one PPC Gateway server. This type of
configuration provides the following performance benefits:

* If one PPC Gateway server fails, another is available as a backup.

* The processing load is spread across more than one PPC Gateway server and
across multiple SNA products.

A single PPC Gateway server can also be shared by more than one CICS region.
This can be an economical alternative if your CICS regions do not make many
SNA intercommunication requests. However, such a configuration can overload a
PPC Gateway server.

Each PPC Gateway server requires an operating system user ID and logical
volume, which you must create before creating the PPC Gateway server. The
logical volume stores the server’s log file, which contains its recoverable
information. As a result, the user ID for the PPC Gateway server must have read
and write permission to this logical volume.

CICS uses a Gateway Server Definitions (GSD) entry to specify the characteristics
that are required to start and stop the PPC Gateway server. This GSD entry is
created automatically when the PPC Gateway server is created, and deleted when
the server is destroyed.

The PPC Gateway server has a directory to store its working files, which is created
automatically when the PPC Gateway server is created. It is of the form:

/var/cics_servers/GSD/cics/ppc/gateway/server_name

on Open Systems and
C:\var\cics_servers\GSD\cics\ppc\gateway\server name

on Windows systems.

In both cases, server_name is the one- to eight-character unique identifying name of
the particular PPC Gateway server.

/var/cics _servers/GSD/cics/ppc/gateway/

cicsgwy/ cicsgwy2/

lock restart restart.bak key msg

A A A A

PPC Gateway server

Figure 57. Directory structure of the PPC Gateway server (assumes an Open Systems
platform)

Within the directory cicsgwy are working files that the PPC Gateway server uses,
such as:

lock This file is used by the cicsppcgwylock command to indicate whether the

176 TXSeries for Multiplatforms: CICS Intercommunication Guide

PPC Gateway server is running. (The cicsppcgwylock command is used by
the cicsppcgwycreate, cicsppcgwy, cicsppcgwyshut, and
cicsppcgwydestroy commands, and is not required under normal
conditions.)

restart and restart.bak
These files tell the PPC Gateway server during an autostart where its
logical volume is and how it is formatted. They are created by the PPC
Gateway server and should be read and changed only by the PPC
Gateway server.

msg The PPC Gateway server writes its messages to this file. These messages
are described in ['PPC Gateway server problem determination” on page]
- 28.

Sharing server names between a CICS region and a PPC
Gateway server

A PPC Gateway server and a CICS region communicate by using a mixture of
Remote Procedure Calls (RPCs) and native TCP/IP. For a PPC Gateway server and

a CICS region to communicate, they must know one another’s server name.
shows how the server names are stored and passed between them.

CICSregion

GD entry
Contains the PPC Gateway
server’'s name.

A

CGWY transaction
Passes the name of the CICS region’s server
to every PPC Gateway server witha GD entry.

A

CICSIPC

A 4

PPC Gateway server logfile
Storesthe CICSregion’s
servername supplied

by the CGWY transaction.

PPC Gateway server

SNA communications product

SNA network

Figure 58. How server names are shared between a CICS region and a PPC Gateway server

The server name of the PPC Gateway server is configured in the CICS region by

using a Gateway Definitions (GD) entry. (See [“Configuring CICS for PPC Gateway]|
lserver SNA support” on page 89| for information about how to create a GD entry.)
The CICS region has a CICS-supplied private transaction called CGWY that passes
the server name of the CICS region (and other relevant information) to each of the

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 177

PPC Gateway servers that are defined in the GD entries. This transaction is run
when the region starts up. You can also run the CGWY transaction while the CICS
region is running, by using an EXEC CICS START TRANSID(CGWY) command.

When the PPC Gateway server receives the information from the CGWY
transaction, it stores it in its log file. This information is unaffected by stopping
and restarting the PPC Gateway server.

As the CGWY transaction runs, it writes messages to the console log for the region.
Here are some example messages:

ERZ0300601/3101 time date region : PPC Gateway server configuration
has started

ERZ0300621/3103 time date region : Configuring PPC Gateway server 'GWY'
with details of the region

ERZ0300631/3104 time date region : Configuring PPC Gateway server 'GWY'
with details of local transactions

ERZ0300641/3109 time date region : Configuring PPC Gateway server 'GWY'
has ended

ERZ0300611/3102 time date region : PPC Gateway server configuration
has ended

If the CGWY transaction reports an error message, refer to the description of the
error message that is given in [T XSeries for Multiplatforms Messages and Codes| Any
SNA communications that are using the PPC Gateway server that is specified in
the message can fail until the problem is solved.

Process for making an intersystem request from a CICS
region through a PPC Gateway server

A CICS transaction can communicate with a remote system that is connected
through a PPC Gateway server. [Figure 59 on page 179| outlines the process that
occurs when such a request is made.

178 TXSeries for Multiplatforms: CICS Intercommunication Guide

CDentry
GDentry
Thg CD Gat_ewayName P |dentifies the PPC Gateway
attribute points to the GD entry of server's name
the PPC Gateway serverusedto .
contactthe remote system.
A
Intersystem request CICSregion
Specifiesthe CD entry of the
remote systemtowhichto
sendtherequest.
A
CICSIPC
v
PPC Gateway server
Callsthe SNA communications
product.

SNA communications product
Contacts the remote system through the
SNA network.

SNA network

Figure 59. Process for making an intersystem request from a CICS region through a PPC
Gateway server

When a CICS transaction issues an intersystem request to a remote system, it
specifies the name of the Communications Definitions (CD) entry that represents
that remote system. The CD entry points to the relevant GD entry, using the
GatewayName attribute. The GD entry contains the server name of the PPC
Gateway server, which enables the region to pass the intersystem request to the
PPC Gateway server. The PPC Gateway server then calls the SNA communications
product to contact the remote system. (For information about how to configure CD
and GD entries, refer to [‘Configuring CICS for PPC Gateway server SNA support’|

Process for making an intersystem request to a CICS region
through a PPC Gateway server

A remote system can request communications with the local CICS region. The
process that occurs in this condition is shown in [Figure 60 on page 180}

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 179

CICSregion

4

CICSIPC

A
PPC Gateway server
Requests the location of the CICS region PPC Gateway server log file
using the servername storedinthe CICS region s server name
logfile.Whenitreceives the location, it from the CGWY transaction is
passestheintersystemrequesttothe stored here.
CICS region.

SNA communications product
Contactsthe PPC Gateway server.

Intersystem SNA network

request

Figure 60. Process for making an intersystem request to a CICS region through a PPC
Gateway server

When a PPC Gateway server receives an intersystem request for a CICS region
from a remote SNA system, it uses the CICS region’s server name. (The region’s
server name was passed to the PPC Gateway server previously by the CGWY
transaction, and is stored in the PPC Gateway server’s log file.) It can then pass the
intersystem request to the CICS region.

If the PPC Gateway server detects that an intersystem request has failed, or that
the SNA network is unavailable, it writes error messages to its message file
Ivar/cics_servers/GSD/cics/ppc/gateway/server_name/msg on Open Systems or
C:\var\cics_servers\GSD\cics\ppc\gateway\server_name\msg on Windows
systems. These messages are described in [“PPC Gateway server problem|
[determination” on page 228)

Exchange log names (XLN) process

The PPC Gateway server supports synchronization level 2 (SL2). (Refer to
[‘Ensuring data integrity with synchronization support” on page 16| for information
about SL2.) As a result, it must record information in its log file about the CICS
transactions that are using SL2 intersystem requests.

This information is used if a failure occurs during an SL2 intersystem request. It
enables the PPC Gateway server to negotiate with the remote SNA system on
behalf of the CICS region to ensure that the data on each system remains
consistent. This negotiation is called resynchronization.

The PPC Gateway server must also record the names of the log files that are used
by the remote SNA systems with which it is communicating. This information is
required during resynchronization to ensure that the remote SNA system is using
the same log file for the resynchronization process as it was using when the
intersystem request failed. If the remote system (or the PPC Gateway server) has
changed log files (because of a cold start, for instance), the resynchronization
process is not reliable. In this case, administrator intervention is required to correct
the data on the affected systems. (See ['Using ppcadmin commands” on page 200)
for more information about ppcadmin commands.)

180 TXSeries for Multiplatforms: CICS Intercommunication Guide

The process by which the PPC Gateway server sends its log file name to a remote

SNA
excha

system and receives the name of the remote SNA system’s log file is called
nge log names (XLN). The XLN process occurs every time a connection is

established between the remote SNA system and the PPC Gateway server. SL2
intersystem requests are not permitted until the XLN process has been successful

with

the appropriate remote SNA system.

Choosing a management method

You can use several methods to install, configure, and run a PPC Gateway server.
The following list shows the methods that are available and the tasks that can be
performed with each:

* cicscp commands: The cicscp configuration tool provides an easy-to-use
command line interface that automates configuration as much as possible by
using default values where necessary and imposing some naming conventions.

[‘Creating a PPC Gateway server” on page 182|
"’Starting a PPC Gateway server” on page 183

[“Stopping a PPC Gateway server” on page 184

[“Destroying a PPC Gateway server” on page 184

¢ CICS commands: Low-level CICS commands allow the creation of more complex
configurations than can be created by using the cicscp configuration tool.

[‘Creating a PPC Gateway server” on page 184]

— [“Starting a PPC Gateway server” on page 186

- [“Stopping a PPC Gateway server” on page 187

- [“Destroying a PPC Gateway server” on page 188|

[‘Changing the attributes of a PPC Gateway server” on page 188

[“Listing the PPC Gateway servers defined on a machine” on page 18§

— [“Viewing the attributes of a PPC Gateway server” on page 188

[‘Listing the PPC Gateway servers running on a machine” on page 189

[‘Releasing the lock of a PPC Gateway server” on page 189

* The IBM TXSeries Administration Tool: This tool provides a Graphical User
Interface (GUI) method of configuring a PPC Gateway server on a Windows
system.

“Creating a PPC Gateway server” on page 190)|

“Starting a PPC Gateway server” on page 191|

“Stopping a PPC Gateway server” on page 193]

“Modifying the attributes of a PPC Gateway server” on page 193]
“Destroying a PPC Gateway server” on page 194

e SMIT: This tool provides a GUI method of configuring a PPC Gateway server on

an

AIX system.

“Creating a PPC Gateway server” on page 195|

“Starting a PPC Gateway server” on page 197

“Stopping a PPC Gateway server” on page 198|

“Viewing and changing the attributes of a PPC Gateway server” on page 199
“Destroying a PPC Gateway server” on page 200|

* ppcadmin commands: These commands provide details about the status of
transactions and the XLN process.

“Viewing CICS configuration in the PPC Gateway server” on page 203

“Viewing XLN process status in the PPC Gateway server” on page 204

[‘Requesting the XLN process with a remote SNA system” on page 205|

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 181

- ["Viewing pending resynchronizations in the PPC Gateway server” on page|
206)

- [“Canceling pending resynchronizations in the PPC Gateway server” on page
206

— ['Viewing intersystem requests running in the PPC Gateway server” on page|
07

— [“Viewing LUWs in the PPC Gateway server” on page 208§|

Using the CICS control program (cicscp) configuration tool to manage
a PPC Gateway server

The cicscp configuration tool provides an easy-to-use command-line interface that
automates the creation and configuration of a PPC Gateway server by using
default values where necessary and imposing some naming conventions. For more
information about the cicscp command set, see the [TXSeries for Multiplatforms|
[Administration Referencel

Use cicscp commands to perform the following system management tasks. For
each task, it is assumed that you are logged on as root on Open Systems or with
administrative privileges on Windows systems.

* |“Creating a PPC Gateway server”|

+ |“Starting a PPC Gateway server” on page 183

* |“Stopping a PPC Gateway server” on page 184]

+ |[“Destroying a PPC Gateway server” on page 184

Creating a PPC Gateway server
To use the cicscp create ppcgwy_server command to create a PPC Gateway server:

1. Decide on a one- to eight-character server_name for the PPC Gateway server (for
example, cicsgwy).

2. Enter the following command:
cicscp -v create ppcgwy_server server_name ShortName=shortName

This command creates the underlying structure and file base of the PPC Gateway
server automatically. The following processes are completed:

* If the GSD stanza file does not exist, the cicscp create ppcgwy_server command
creates it.

¢ If the UserID specified in the GSD for the server does not exist, the cicscp create
ppcgwy_server command creates it with the appropriate home directory.

* If you do not specify a logical volume name in the LogVolume attribute of the
GSD, the cicscp create ppcgwy_server command uses a default name of log_%S.
If the logical volume does not exist, the cicscp create ppcgwy_server command
creates it with a default size of 4 MB and a default location based on the
platform. (As a result, the CICS_PPCGWY_VG and CICS_PPCGWY_SIZE
environment variables do not need to be set.) If the logical volume already exists
and is owned by the correct user, the cicscp create ppcgwy_server command
issues a warning message. If it exists and is owned by a different user, the cicscp
create ppcgwy_server command issues an error message.

* The cicscp create ppcgwy_server command creates a value for the server’s GSD
ShortName attribute of the form PbaseName, where baseName is the first part of
the created server name, truncated to seven characters if necessary. The new
server name must be unique in its first seven characters to use the default
ShortName value. If it is not, and you try to create a second server name with

182 TXSeries for Multiplatforms: CICS Intercommunication Guide

the same first seven characters, an error occurs. For example, if you run the
cicscp create ppcgwy_server command to create a server called ppcgwysrvl, it
also creates a default ShortName value of Pppcgwys. If you then use the cicscp
create ppcgwy_server command to create a second PPC Gateway server called
ppcgwysrv2, the command attempts to create another ShortName value called
Pppcgwys. Because the resulting ShortName value is identical to an existing one,
the command issues an error. You can override the ShortName attribute default

by specifying a value for the ShortName attribute when you issue the cicscp
create ppcgwy_server command, as shown in step

* the cicscp create ppcgwy_server command adds an entry for the server to the
server_bindings file that is in the /var/cics_servers directory on Open Systems

or the C:\var\cics_servers directory on Windows systems. If this file does not
exist, the cicscp create ppcgwy_server command creates it.

 If SNA is not configured on the machine, the cicscp create ppcgwy_server
command issues a warning because the server cannot be started until SNA is
configured and started.

Note: If you want to simultaneously create and start a new PPC Gateway server,
use the cicscp start ppcgwy_server command as follows:

cicscp -v start ppcgwy_server server_name StartType=cold

Starting a PPC Gateway server

The cicscp start ppcgwy_server command offers two modes for starting a PPC
Gateway server. A PPC Gateway server can be cold started. In this mode, the server
is passed the name of its logical volume by the cicscp start ppcgwy_server
command, and formats its logical volume with a new log file, destroying the
recoverable information in the existing log file. Therefore, use a cold start only the
first time that you start a PPC Gateway server. More frequently, a PPC Gateway
server is started in autostart mode. In this mode, the server reads the recoverable
information from the existing log file and proceeds as if it had not been shut
down.

The following examples show how to use the cicscp start ppcgwy_server
command to start a PPC Gateway server. If you accept the default StartType
attribute value of auto, issue the command:

cicscp -v start ppcgwy_server server_name

If you want to change the StartType attribute value to cold, enter the command:
cicscp -v start ppcgwy_server server_name StartType=cold

It is possible to change the ThreadPoolSize and SNADefaultModeName attributes
of the PPC Gateway server during either a cold start or an autostart. This PPC
Gateway server continues to use the changed attributes on all subsequent
autostarts. Changing a parameter during a start affects only the runtime database.
Because the change is not placed in the permanent database, this attribute value is
lost on subsequent cold starts.

Note: If you want to simultaneously create and start a new PPC Gateway server,
use the cicscp start ppcgwy_server command as follows:

cicscp -v start ppcgwy_server server_name StartType=cold
In this case, because the server_name that you specify to start with the cicscp

start ppcgwy_server command does not exist, this command creates the
PPC Gateway server automatically using default values for all attributes. It

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 183

then starts this server and applies any attribute values that you specify on
the command line as changes to the defaults. Use this feature carefully
because any changes to attributes that you specify as part of the cicscp start
ppcgwy_server command do not take effect until the server is created. If the
changes that you specify conflict with the default attributes, the command
can fail.

If SNA is not configured, the cicscp start ppcgwy_server command issues an error
message, and the PPC Gateway server is not started.

Stopping a PPC Gateway server

The cicscp stop ppcgwy_server command provides two modes for stopping a PPC
Gateway server. A PPC Gateway server can be shut down in Normal mode, which
means that it waits for all intersystem requests to complete before shutting down.
Or it can be shut down in Forced mode, which causes it to close its files and stop
immediately without waiting for intersystem requests to complete.

To stop a PPC Gateway server, issue the cicscp stop ppcgwy_server command. The
following is an example of a normal shutdown (the default):

cicscp -v stop ppcgwy_server server_name

If you want to force the stop, enter:
cicscp -v stop ppcgwy_server server_name -f

Destroying a PPC Gateway server

To destroy a PPC Gateway server, issue the cicscp destroy ppcgwy_server
command as shown in the following example:

cicscp -v destroy ppcgwy_server server_name

The cicscp destroy ppcgwy_server command stops the server if it is running,
removes the server definition from the Gateway Definitions (GD), but does not
remove the user ID or the logical volume.

Using CICS commands to manage a PPC Gateway server

CICS commands are used to perform the following system management tasks. For
each task, it is assumed that you are logged on as root on Open Systems or with
administrative privileges on Windows systems.

* |“Creating a PPC Gateway server”|

« |“Starting a PPC Gateway server” on page 186|

« |“Stopping a PPC Gateway server” on page 187

* |“Destroying a PPC Gateway server” on page 18§|

+ |[“Changing the attributes of a PPC Gateway server” on page 188

« [“Listing the PPC Gateway servers defined on a machine” on page 188§|

+ |“Viewing the attributes of a PPC Gateway server” on page 188]

» |“Listing the PPC Gateway servers running on a machine” on page 189

* |“Releasing the lock of a PPC Gateway server” on page 189

Creating a PPC Gateway server

You create a PPC Gateway server by using the cicsppcgwycreate command. The
following steps show how to use the cicsppcgwycreate command and suggest a
simple naming convention for the PPC Gateway server’s resource definitions.

184 TXSeries for Multiplatforms: CICS Intercommunication Guide

Decide on a one- to eight-character server_name for the PPC Gateway server (for
example, cicsgwy).

Create an operating system user ID with this server_name and a logical volume
of about one partition (4 MB) called 1og_server_name (for example,
Tog_cicsgwy). The procedures that are used to create a user ID and a logical
volume differ according to platform. See the bulleted points listed under this
step for specific instructions on how to create a user ID and logical volume for
your platform. In these steps, server_name represents the name of the PPC
Gateway server.

¢ To set up the PPC Gateway server user ID and logical volume on the AIX
platform:
a. Enter the following command to create the user ID:

mkuser pgrp=cics home="/var/cics_servers/GSD/cics/ppc/gateway/sv_name"
core=2097152 server_name

This example shows the creation of a user ID for a PPC Gateway server
named server_name. (Setting the attribute value core=2097152 increases
the size of the dumps that the PPC Gateway server is allowed to create.)
The user ID must have the primary group cics and the home directory
Ivar/cics_servers/GSD/cics/ppc/gateway/sv_name.

b. Enter the following command to create the logical volume:
mklv -y Tog_server_name rootvg 4

This command places a logical volume named 1og_server_name in the
/dev directory. If possible, mirror this volume across more than one
physical disk.

c. Grant the PPC Gateway server user ID read and write permission to the
logical volume and the associated raw device by issuing the following
commands:
chown server _name:cics /dev/log_server_name
chown server_name:cics /dev/rlog_server_name

* To set up the PPC Gateway server user ID and logical volume on the HP-UX
platform, consult your HP documentation for information about how to use
the HP System Administration Manager (SAM). If the logical volume is
created on a volume group other than vg00, export the environment variable

CICS_PPCGWY_VG to the name of the volume group that was used before

starting the PPC Gateway server.

* To set up the PPC Gateway server user ID and logical volume on the
Windows platform:

a. Change to the directory C:\var\cics_servers\GSD\cics\ppc\gateway\
by entering the command:

cd C:\var\cics_servers\GSD\cics\ppc\gateway\
b. Make a new directory called server_name by entering the command:
mkdir server_name

c. Click Administrative Tools (Common)>User Manager to create a new
account for the PPC Gateway server.

Click User>New User. The New User screen is displayed.

If you intend to specify a value for the ShortName attribute when
creating your PPC Gateway server, enter that value in the Username
field.

Select the check box that is next to the Password Never Expires option.
g. Click the Profile button.

—h

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 185

h. In the Home Directory part of the screen, select the radio button that is
next to the Local Path option and enter
C:\var\cics_servers\GSD\cics\ppc\gateway\server_name in the box to
the right of this option.

i. Click OK.

j. Click the Groups button.

k. Click the cicsgroup entry under the Not member of portion of the screen.
I. Click the Add button.
m. Click OK.
n. Enter the following command to create the logical volume:
cicsmakelv -v Tog_svr name -s volumeSize -p C:\var\log_Pserver name

3. Follow the instructions under ['Viewing the attributes of a PPC Gateway]|
[server” on page 188 to view the default values of the GSD attributes that will
be assigned to the new PPC Gateway server.

4. Use one of the methods that are outlined under [“Changing the attributes of al

[PPC Gateway server” on page 188 to change the default values of the following
attributes:

¢ Change the ShortName attribute of the GSD from the default of PPCGWY to
the server_name that is defined in step|l on page 185 because:

— The value for the ShortName attribute must be unique among all PPC
Gateway servers that are defined on the machine.

— The value for the ShortName attribute affects the default values of the
UserID and LogVolume attributes. If you do not change the ShortName
attribute value, you must change the default values for the UserID and
LogVolume attributes to the name of the user ID and logical volume that
were created in step

5. Issue the cicsppcgwycreate command to create the PPC Gateway server:
cicsppcgwycreate /.:/cics/ppc/gateway/server_name

This command takes the name of the PPC Gateway server, which is always of
the format /.:/cics/ppc/gateway/server_name.

Note: You can specify changes to GSD attributes with this command. For
example, if you want to change the ShortName attribute, the command
is:

cicsppcgwycreate /.:/cics/ppc/gateway/server_name ShortName=svr_name

— When using HP-UX SNAplus2
The PPC Gateway server must be configured with the modename that is
associated with the Partner LU alias. Specify this value when the PPC
Gateway server is created. The following example shows the PPC
Gateway server called /.:/cics/ppc/gateway/cicsgwy, with the ShortName
attribute changed to cicsgwy and the SNADefaultModeName attribute
defined as CICSISCO:

cicsppcgwycreate /.:/cics/ppc/gateway/cicsgwy ShortName=cicsgwy \
SNADefaultModeName="CICSISCO"

Starting a PPC Gateway server

The cicsppecgwy command offers two modes for starting a PPC Gateway server. A
PPC Gateway server can be cold started. In this mode, the server is passed the

186 TXSeries for Multiplatforms: CICS Intercommunication Guide

name of its logical volume by the cicsppcgwy command and formats its logical
volume with a new log file, destroying the recoverable information in the existing
log file. Therefore, use a cold start only the first time you start a PPC Gateway
server. More frequently, a PPC Gateway server is started in autostart mode. In this
mode, the server reads the recoverable information from the existing log file and
proceeds as if it had not been shut down.

To start a PPC Gateway server, issue the cicsppcgwy command. If you accept the
default StartType attribute value of auto, enter the command:

cicsppegwy /.:/cics/ppc/gateway/server_name

Note: In this example, the PPC Gateway server server_name is specified explicitly
on the command line. You can also pass the server name on an autostart by
using the CICS_PPCGWY_SERVER environment variable. In this case, issue
the command to specify the variable before issuing the cicsppcgwy
command. For example:

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

(This example assumes that you are using the Korn shell on an Open
Systems platform; if you are using a different shell or platform, change the
command accordingly.)

If you want to change the StartType attribute value to cold, enter the command:
cicsppegwy /.:/cics/ppc/gateway/server_name StartType=cold

It is possible to change the PPC Gateway server’s ThreadPoolSize and
SNADefaultModeName attributes during either a cold start or an autostart.

After the PPC Gateway server is running, your CICS region can contact it. The
region uses a Gateway Definitions (GD) entry to locate the PPC Gateway server.
The PPC Gateway server then calls the SNA product to contact the remote system.
(For information about how to configure GD entries, refer to [“Configuring CICY
ffor PPC Gateway server SNA support” on page 89))

Stopping a PPC Gateway server

The cicsppcgwyshut command offers three modes for stopping a PPC Gateway
server. A PPC Gateway server can be shut down in Normal mode, which means
that it waits for all intersystem requests to complete before shutting down. It can
be shut down in Forced mode, which causes it to close its files and stop
immediately without waiting for intersystem requests to complete. Or it can be
shut down in Cancel mode, which simply kills it. A Cancel mode shutdown leaves
the PPC Gateway server in an undesirable state. Use it only if you have no other
choice.

To stop a PPC Gateway server, issue the cicsppcgwyshut command. The following
example command results in a normal shutdown (the default shutdown mode is
normal):

cicsppcgwyshut /.:/cics/ppc/gateway/server_name

The following example specifies a forced shutdown:

cicsppcgwyshut -f /.:/cics/ppc/gateway/server_name

The following example specifies a cancel:

cicsppcgwyshut -c /.:/cics/ppc/gateway/server name

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 187

Destroying a PPC Gateway server

The cicsppcgwydestroy command destroys a PPC Gateway server. Use this
command with care because when the server is destroyed, all the data that is
associated with it is lost.

To destroy a PPC Gateway server, issue the cicsppcgwydestroy command as
shown in the following example:

cicsppcgwydestroy /.:/cics/ppc/gateway/server_name

Changing the attributes of a PPC Gateway server

Three wayare possible to update the attributes in a PPC Gateway server’s GSD

entry:

* You can use the cicsppcgwy command to change the StartType,
ThreadPoolSize, and SNADefaultModeName attributes. (This process is
described in [‘Starting a PPC Gateway server” on page 186.)

* You can use the cicsppcgwydestroy command, followed by the
cicsppcgwycreate command, to destroy and re-create a PPC Gateway server.
(These commands are described in [“Destroying a PPC Gateway server”| and
[“Creating a PPC Gateway server” on page 184 respectively.) This method allows
you to change any of the GSD attributes. Use this method with care because,
although you can re-create a PPC Gateway server with the cicsppcgwycreate
command, all the data that is associated with the original is lost when you
destroy the original server with the cicsppcgwydestroy command. When you
start this new server after running the cicsppcgwycreate command, it is started
as a cold start. (For more information about cold starts, refer to [‘Starting a PPC|
[Gateway server” on page 186.)

* You can use the cicsupdate -c gsd command to change any GSD attribute.

Listing the PPC Gateway servers defined on a machine

You can list the PPC Gateway servers that have been created on a particular
machine by using the cicsget -c gsd -1 command. The cicsget command output

shows the server name and the description (from the ResourceDescription
attribute of the relevant GSD entry) for each PPC Gateway server. shows

the output for a machine that has two PPC Gateway servers defined.

cicsget -c gsd -1
/.:/cics/ppc/gateway/cicsgwy PPC Gateway server Definition
/.:/cics/ppc/gateway/cicsgwy2 PPC Gateway server Definition

Figure 61. Listing PPC Gateway servers with the cicsget command

Viewing the attributes of a PPC Gateway server

The attributes that are required to start and stop a PPC Gateway server are
specified in a GSD entry. You can view the attributes of a PPC Gateway server by
using the cicsget -¢ gsd command.

[Figure 62 on page 189 shows the attributes of an example PPC Gateway server that
has a server name of /.:/cics/ppc/gateway/cicsgwy.

188 TXSeries for Multiplatforms: CICS Intercommunication Guide

cicsget -c gsd /.:/cics/ppc/gateway/cicsgwy

/.:/cics/ppc/gateway/cicsgwy:
ResourceDescription="PPC Gateway server Definition"
AmendCounter=0

Permanent=no

StartType=auto

ThreadPoo1Size=10

ShortName="cicsgwy"

UserID="%S"

LogVoTume="Tog_%S"
\?NADefau]tModeName=""

Figure 62. PPC Gateway server attributes for cicsgwy

The system substitutes the value that you enter in the ShortName field in the other
fields where the %S value is displayed. For example, in if the value in
the UserID field displays "%S", the system reads this value as server_name.
Similarly, if the value in the LogVolume field shows "log_%S", the system reads
this value as log_server_name.

You can view the default values for the GSD attributes by using the cicsget -c¢ gsd
" command. These default values are assigned to a PPC Gateway server when it is
created unless you change them as described in [’Changing the attributes of a PPC]|
(Gateway server” on page 188.[[Figure 63 shows an example of this command.

~

cicsget -c gsd ""

:m13

ResourceDescription="PPC Gateway server Definition"
AmendCounter=0

Permanent=no

StartType=auto

ThreadPoo1Size=10

ShortName="PPCGWY"

UserID="%S"

LogVolume="1og_%S"
\?NADefau]tModeName=""

Figure 63. Default PPC Gateway server attributes

Listing the PPC Gateway servers running on a machine

You can list the PPC Gateway servers that are running on a machine, by using the

ps -ef | grep ppcgwy command. shows a machine on which two PPC
Gateway servers are running.

ps -ef | grep ppcgwy

cicsgwy 22377 2977 0 12:06:43 - 0:02 \

/opt/ibm.cics/bin/ppcgwy -n /.:/cics/ppc/gateway/cicsgwy -v /var/c
cicsgwy2 27009 2977 0 15:19:24 - 1:04 \

/opt/ibm/cics/bin/ppcgwy -n /.:/cics/ppc/gateway/cicsgwy2 -v /var/c

Figure 64. ps -ef | grep ppcgwy command

Releasing the lock of a PPC Gateway server

If a PPC Gateway server is stopped without the use of the cicsppcgwyshut
command, the PPC Gateway server can be left in a locked state. This state prevents
it from being restarted. If you are sure that the PPC Gateway server is not running,
you can release the lock for it by using the cicsppcgwylock command with the -u
option. After the lock is released, the cicsppcgwy command can be used to start

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 189

the PPC Gateway server. The following example shows the lock being released for
a PPC Gateway server named /.:/cics/ppc/gateway/cicsgwy:

cicsppegwylock -u /.:/cics/ppc/gateway/cicsgwy

Using the IBM TXSeries Administration Tool to manage a PPC Gateway

server

You can use the IBM TXSeries Administration Tool to perform the following tasks
for PPC Gateway server system management on the Windows platform. For each
task, it is assumed that you are logged onto Windows with administrative
privileges.

“Creating a PPC Gateway server”|

“Starting a PPC Gateway server” on page 191]

“Stopping a PPC Gateway server” on page 193]

“Modifying the attributes of a PPC Gateway server” on page 193|

“Destroying a PPC Gateway server” on page 194

Creating a PPC Gateway server

Follow these steps to create a PPC Gateway server:

1.

Start the IBM TXSeries Administration Tool. A list is displayed of the existing
CICS regions, SFS file servers, and PPC Gateway servers that are on the host.

Click Subsystem>New>PPC. The New PPC GWY Server dialog box appears.

Enter the name for the new PPC Gateway server in the PPC GWY CDS name
field.

Enter a value in the Short name field if you do not want to use the
system-generated default value. You cannot modify the value of this attribute
later.

The default short name that is generated for the PPC Gateway server takes the
form of Pbasename, where basename is the PPC Gateway server namethat you
entered in the PPC GWY CDS name field, truncated to seven characters if
necessary. Therefore, you must use PPC Gateway server names that are unique
in their first seven characters.

Change or accept the default description.

If you want to use an existing PPC Gateway server definition as the basis for
this new PPC Gateway server, enter its name in the Based on field, or select an
entry from this field’s drop-down list. An example configuration is shown in
[Figure 65 on page 191} (In [Figure 65 on page 191} leaving the Short name field
blank causes the default value to be used, as described in step El)

190 TXSeries for Multiplatforms: CICS Intercommunication Guide

IBM TXSeries - Hew PPC G'WY Server I

PPC GWY CDS name: |cicsgwy

Short name: I

Description: |Encina PPC Gateway

Based on: I j

0K Cancel | Help |

Figure 65. New PPC GWY Server screen with example configuration

7. Click OK to create the new PPC Gateway server. A message box informs you
whether the PPC Gateway server has been created successfully.

8. Click OK to exit the message box.

The following tasks are completed for you when you use the above procedure:
e The Short name attribute is set.
* The Server user ID is defined if it does not currently exist.

* A Log volume that is used for recovery information is created in the \var
subdirectory, if none already exists.

e If the PPC Gateway server is to run in an RPC-only environment, the necessary
server binding-file entry is set up. If the server_bindings file does not exist, it is
created.

When you have created your PPC Gateway server, consider whether to use the
default values for the following attributes. If you decide to change them, use the
procedure that is described in [“Modifying the attributes of a PPC Gateway server”)

Note: The following attributes appear on various tabs of the Properties screen.
* Size of Thread Pool

This attribute determines the number of operations that can run concurrently. It
can be set in the range 1 through 20. The default is 10.

* Protect resource

This attribute specifies whether CICS permits you to change or delete the
permanent database entry. If you check the check box, you cannot change or
delete the entry. The default is unselected (the check box is cleared), meaning
that your entry is not protected from being changed or deleted.

Starting a PPC Gateway server

The IBM TXSeries Administration Tool supports two modes for starting the PPC
Gateway server:

* Cold start

In this mode, the PPC Gateway server performs as if it has never been started. It
is passed the name of its logical volume and formats this logical volume with a

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 191

new log file. If the server has been started before, this action destroys the
recoverable information in the existing log file. Therefore, use a cold start only
the first time that the PPC Gateway server is started.

* Autostart

In this mode, the PPC Gateway server reads the recoverable information from
the log file and proceeds as if it had not been shut down.

To start a PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list displays the existing CICS
regions, SES file servers, and PPC Gateway servers on the host.

2. From the list of servers on the host, select the entry for the required PPC
Gateway server.

3. Click Subsystem>Start to display the Start PPC GWY server dialog box, as
shown in

! Start PPC server: [fcics{ppclgateway/cicsgwy Properties... |

Cancel | Help |

Figure 66. Start PPC GWY server screen

Note: If you click the Start All option, you can select Servers, CICS Regions,
SFS Servers, or PPC Gateways. A dialog box is displayed, prompting
you to confirm or cancel the start of the systems you have selected.

4. By default, the Start type attribute for a PPC Gateway server is set to auto,
causing CICS to restart it from the state in which it was last shut down. To
verify the attribute setting, or to change it to cold to invoke a cold start, click
the Properties button and make the change before proceeding to the next step.

5. Click OK to confirm the action. A message box informs you whether the PPC
Gateway server has started successfully.

6. Click OK to exit the message box.

When starting the PPC Gateway server, you might see one of the following
messages:

PCS6002A
Some of your configuration settings were not applied successfully. You can
ignore this message; SNA will be started successfully.

PCS6007A
Cannot retrieve the default configuration file name. If this message is
encountered when SNA is starting, it might be because you need to set a
default SNA configuration file that will be used each time you use the
Administration Console to start the PPC Gateway server. To set this
default, issue the following command from the command line:

csstart -d path_to_sna_config_file

For example:
csstart -d C:\ibmcs\private\mySNAconfig.acg

192 TXSeries for Multiplatforms: CICS Intercommunication Guide

You will now be able to start the PPC Gateway server.

Stopping a PPC Gateway server

The IBM TXSeries Administration Tool supports two modes for stopping the PPC
Gateway server:

Normal

The server waits for all intersystem requests to complete before it shuts down.
This is the default.

Forced

The server closes its files and stops immediately without waiting for intersystem
requests to complete.

To shut down a PPC Gateway server:

1.

Start the IBM TXSeries Administration Tool. A list displays the existing CICS
regions, SES file servers, and PPC Gateway servers that are on the host.

From the list of servers on the host, select the entry for the required PPC
Gateway server.

Click Subsystem>Stop. The Stop PPC GWY server dialog box is displayed, as
shown in

i Stop PPC GWY server !Em

| Stop PPC GWY server. Peicsgwy
.
Stop type:
¥ N rmal

ox | e |

Figure 67. Stop PPC GWY server screen

6.

Note: If you select the Stop All option, you can select Servers, CICS Regions,
SFS Servers, or PPC Gateways. A dialog box is displayed, prompting
you to confirm or cancel the action to stop the systems that you have
selected.

If you require an immediate stop, click the Force radio button.

Click OK to stop the PPC Gateway server. A message box informs you whether
the PPC Gateway server has stopped successfully.

Click OK to exit the message box.

Modifying the attributes of a PPC Gateway server

To change the values of an existing PPC Gateway server:

1.

Start the IBM TXSeries Administration Tool. A list displays the existing CICS
regions, SFS file servers, and PPC Gateway servers on the host.

From the list of servers on the host, select the entry for the PPC Gateway server
that you want to modify.

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 193

3. Click Subsystem>Properties. The Properties screen for the PPC Gateway server
is displayed. An example is shown in

Epyk

= IBM TXSeries PPCGWY Pcicsgwy Properties
General | Server | DCE |

PPC GWY CDS5 name: |,-'cics;'ppq'gateway;‘cicsgw

Description: IEncina PPC Gateway

™ Protect resource

Start type: [auto =

Short name: IPcicsgw
Server user |D: I%S

Number of updates: 1

Beset | Cancel | Help |

Figure 68. PPC Gateway server Properties screen—General tab

4. From the General or Server tabs, select or enter new values for the attributes
that you want to change.

5. Click OK to implement the changes.

Destroying a PPC Gateway server

Note: Before destroying a PPC Gateway server, ensure that it is not still required
for any other CICS regions. Use this facility with care because all the data
that is associated with the PPC Gateway server is lost when the server is
destroyed.

To destroy a PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list displays the existing CICS
regions, SES file servers, and PPC Gateway servers on the host.

2. From the list of servers on the host, select the entry for the required PPC
Gateway server.

3. Click Subsystem>Destroy. The Destroy PPC GWY Server dialog box displays,
as shown in [Figure 69 on page 195,

194 TXSeries for Multiplatforms: CICS Intercommunication Guide

E

= IBM TXSeries - Destroy PPC GWY Server

| Destroy PPC GWY server: Pcicsgwy

Cancel | Help |

Figure 69. Destroy PPC GWY Server screen

Note: If you select the Destroy All option, you can indicate Servers, CICS
Regions, SFS Servers, or PPC Gateways. A dialog box is displayed,
prompting you to confirm or cancel the action that you have selected.

4. Click OK to destroy the PPC Gateway server. This action both stops the PPC
Gateway server and deletes the associated GSD entry. A message box informs
you that the PPC Gateway server has been destroyed successfully.

5. Click OK to close the message box.

Note: When you destroy a PPC Gateway server, the user ID and logical volume
are not destroyed. You must delete the user ID and logical volume
separately (for example, by using the Windows User Manager Tool and
Windows Explorer, respectively).

Using SMIT to manage a PPC Gateway server

The System Management Interface Tool (SMIT) can be used to perform the
following tasks for PPC Gateway server system management on an AIX platform.
For each task, it is assumed that you are logged on as root.

* |“Creating a PPC Gateway server”|

* |“Starting a PPC Gateway server” on page 197|

* |“Stopping a PPC Gateway server” on page 198

« [“Viewing and changing the attributes of a PPC Gateway server” on page 199

* |"Destroying a PPC Gateway server” on page 200

Creating a PPC Gateway server
The following steps show how to use SMIT to create a PPC Gateway server:

1. Decide on a one- to eight-character server_name for the PPC Gateway server
(for example, cicsgwy).

2. Create an operating system user ID with this server_name. It must have the
primary group cics and the home directory
/var/cics_servers/GSD/cics/ppc/gateway/server_name.

The following example shows the creation of a user ID for a PPC Gateway
server named server_name. (Setting the attribute value core=2097152 increases
the size of the dumps that the PPC Gateway server is allowed to create.)

mkuser pgrp=cics home="/var/cics_servers/GSD/cics/ppc/gateway/server_name"
core=2097152 server_name

3. Create a logical volume of about one partition (4 MB) called log_server_name
(for example, Tog_cicsgwy). If possible, mirror this volume across more than
one physical disk. The following example places a logical volume named
log_server_name in the /dev directory.

mklv -y Tog_server_name rootvg 4

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 195

4. Change the ownership of the logical volume to give read and write
permission to the new user ID that was in step The following
example gives the user ID for server_name access to the logical volume:

chown server_name:cics /dev/1og_server name
chown server_name:cics /dev/rlog_server_name

5. Start SMIT by entering the following command:
smitty cics
6. Select the following options:

» Manage PPC Gateway Servers
» Define PPC Gateway Servers
» Create

The Create PPC Gateway Server screen is displayed.

7. Enter a value or accept the default value of (") in the Model PPC Gateway
Server Identifier field and press Enter.

8. On the expanded screen that is displayed, enter a value in the PPC Gateway
Server Identifier field in the form:

/.:/cics/ppc/gateway/server_name

where server_name is the server name that you defined in step [l on page 195

9. Enter this server_name as the value for the field Short name used for SRC.
The system substitutes the value that you enter in this field, in the other fields
where the %S value is displayed. For instance, if the value in the AIX user ID
for server field displays %S, the system reads this value as server_name.
Similarly, if the value in the AIX logical volume for logging field displays
log_%S, the system reads this value as log_server_name. These values match

the user ID and logical volume that were created in step and

step
10. Consider whether to use the default values for the following attributes:
* Number of threads for RPC requests

This attribute determines the number of operations that can run
concurrently. It can be set in the range 1 through 20. The default is 10.

e Protect resource from modification?

This attribute specifies whether CICS permits you to change or delete the
permanent database entry. If you enter the value yes in this field, you
cannot change or delete the entry in the permanent database. The default is
no, meaning that your entry is not protected from being changed or
deleted.

An example Create PPC Gateway Server screen is shown in [Figure 70 on page]

196 TXSeries for Multiplatforms: CICS Intercommunication Guide

4 N

Create PPC Gateway Server
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]
* PPC Gateway Server Identifier [/.:/cics/ppc/gateway/cicsgwy]
* Model PPC Gateway Server Identifier "
Ignore errors on creation? no +
Resource description [PPC Gateway Server Definition]
* Number of updates 0
Protect resource from modification? no +
Number of threads for RPC requests [10] #
Short name used for SRC [cicsgwy]
AIX user ID for server [%S]
AIX logical volume for logging [Tog_%S]
Fl=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
o J

Figure 70. Create PPC Gateway Server screen

11. When all the fields are set, press Enter to create the PPC Gateway server.

Starting a PPC Gateway server

SMIT supports two modes for starting a PPC Gateway server. A PPC Gateway
server can be cold started. In this mode, the server formats its logical volume with a
new log file, and destroys the recoverable information that is in the existing log
file. Therefore, use a cold start only the first time that you start a PPC Gateway
server. More frequently, a PPC Gateway server is started in autostart mode. In this
mode, the server reads the recoverable information from the existing log file and
proceeds as if it had not been shut down.

The following steps show how to use SMIT to start a PPC Gateway server:

1. Optionally, set the environment variable CICS_PPCGWY_SERVER to the name
of the PPC Gateway server. The following example command assumes that you
are using the Korn shell; if you are using a different shell, change the command
accordingly:
export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

2. Start SMIT by entering the following command:
smitty cics

3. Select the following option:

» Manage PPC Gateway Servers

4. If you set the CICS_PPCGWY_SERVER environment variable before starting
SMIT, go to step EI (Step @, step EI and step E are required only if you have not
set this environment variable before starting SMIT.) If you have not set this
environment variable, select the Change Working PPC Gateway Server option
to select which PPC Gateway server to start.

5. Select the server that you want to start, and press Enter. The COMMAND
STATUS screen confirms your selection.

6. Press F3 to return to the Manage PPC Gateway Servers screen.

7. Select either Cold Start a PPC Gateway Server or Auto Start a PPC Gateway

Server, depending on the type of start that you require. An example Auto Start
a PPC Gateway Server screen is shown in |Figure 71 on page 198I

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 197

4 N

Auto Start a PPC Gateway Server

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[Entry Fields]

* PPC Gateway Server Identifier /.:/cics/ppc/gateway/cicsgwy
Ignore errors on startup? no +
Resource description PPC Gateway server Definition
Number of threads for RPC requests [10] #
Short name used for SRC cicsgwy
AIX user ID for server cicsgwy
AIX logical volume for Togging log_cicsgwy

Fl=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

o J

Figure 71. Auto Start a PPC Gateway Server screen

8. In this screen, you can change the values for the Number of threads for RPC
requests attribute. Any changes that are made are remembered for subsequent
autostarts.

9. Press Enter to start the PPC Gateway server.

After the PPC Gateway server is running, your CICS region can contact it. The
region uses a Gateway Definitions (GD) entry to locate the PPC Gateway server.
Refer to[“Configuring CICS for PPC Gateway server SNA support” on page 89 for
information about how to configure a GD entry.

Stopping a PPC Gateway server

SMIT supports three modes for stopping a PPC Gateway server. A PPC Gateway
server can be shut down in Normal mode, which means that it waits for all
intersystem requests to complete before shutting down. It can be shut down in
Immediate mode, which causes the server to close its files and stop immediately
without waiting for intersystem requests to complete. Or it can be shut down in
Cancel mode, which simply kills the PPC Gateway server. A Cancel mode
shutdown leaves the PPC Gateway server in an undesirable state. Use it only if
you have no other choice.

The following steps show how to use SMIT to stop a PPC Gateway server:

1. Optionally, set the CICS_PPCGWY_SERVER environment variable to the name
of the PPC Gateway server. The following example command assumes that you
are using the Korn shell; if you are using a different shell, change the command
accordingly:
export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

2. Start SMIT by entering the following command:
smitty cics

3. Select the following option:

» Manage PPC Gateway Servers

4. If you set the CICS_PPCGWY_SERVER environment variable before starting

SMIT, go to step (Step [} step [5 on page 199} and step
are required only if you have not set the CICS_PPCGWY_SERVER

environment variable before starting SMIT.) If you have not set this
environment variable, select the Change Working PPC Gateway Server option
to select which PPC Gateway server to stop.

198 TXSeries for Multiplatforms: CICS Intercommunication Guide

5. Select the server that you want to stop, and press Enter. The COMMAND
STATUS screen confirms your selection.

6. Press F3 to return to the Manage PPC Gateway Servers screen.

7. Select the Shutdown a PPC Gateway Server option. The Shutdown a PPC
Gateway Server screen is displayed.

8. In the Shutdown Type field, select the type of shutdown that you require:
¢ NORMAL: A normal shutdown
¢ IMMEDIATE: A forced shutdown
* CANCEL: To cancel the PPC Gateway server

An example Shutdown a PPC Gateway Server screen is shown in

4 N
Shutdown a PPC Gateway Server
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]
* PPC Gateway Server Identifier /.:/cics/ppc/gateway/cicsgwy
Shutdown Type NORMAL +

Fl=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do
o J

Figure 72. Shutdown a PPC Gateway Server screen

9. Press Enter to stop the PPC Gateway server.

Viewing and changing the attributes of a PPC Gateway server

Two ways are possible use SMIT to view and update the attributes of a PPC
Gateway server:

* Use the Cold Start of a PPC Gateway Server screen or the Auto Start of a PPC
Gateway Server SMIT screen. Only Number of threads for RPC requests field
can be changed in these screens. (For more information about how to start a
PPC Gateway server, refer to [“Starting a PPC Gateway server” on page 197)

* Use the PPC Gateway server’s Show/Change screen. You can change any of the
server’s attributes from this screen. However, the update process first destroys,
then re-creates the PPC Gateway server. Use this method with care because all
the data that is associated with the server is lost. As a result, the next time the
server is started, it is started as a cold start. (For more information about cold
starts, refer to [“Starting a PPC Gateway server” on page 197.)

The following steps show how to use SMIT to view and change a PPC Gateway
server on the server’s Show/Change screen:

1. Start SMIT by entering the following command:
smitty cics
2. Select the following options:

» Manage PPC Gateway Servers
» Define PPC Gateway Servers
» Show/Change

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 199

The Select a PPC Gateway Server for Show/Change screen is displayed.

3. In the PPC Gateway Server Identifier field, enter a PPC Gateway server
identifier in the form:

/.:/cics/ppc/gateway/server_name
4. Press Enter. The Show/Change PPC Gateway Server screen is displayed. An

example screen is shown in

4 N
Show/Change PPC Gateway Server
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]
% New PPC Gateway Server Identifier [/.:/cics/ppc/gateway/cicsgwy]
* PPC Gateway Server Identifier /.:/cics/ppc/gateway/cicsgwy
Ignore errors? (force redefinition of server) no +
Resource description [PPC Gateway Server Definition]
* Number of updates 0
Protect resource from modification? no +
Number of threads for RPC requests [10] #
Short name used for SRC [cicsgwy]
AIX user ID for server [%S]
AIX logical volume for logging [Tog_%S]
Fl=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
N J

Figure 73. Show/Change PPC Gateway Server screen

5. If you do not want to change the PPC Gateway server, press F3 to return to the
Define PPC Gateway Servers screen. Otherwise, change the required attributes,
and press Enter to destroy and re-create the server with the new values.

Destroying a PPC Gateway server

SMIT can be used to destroy a PPC Gateway server. Use this facility with care
because all the data that is associated with the PPC Gateway server is lost when
the server is destroyed.

The following steps show how to use SMIT to destroy a PPC Gateway server:
1. Start SMIT by entering the following command:

smitty cics
2. Select the following options:

» Manage PPC Gateway Servers
» Define PPC Gateway Servers
» Destroy

The Destroy a PPC Gateway Server screen is displayed.

3. In the PPC Gateway Server Identifier field, enter a PPC Gateway server
identifier in the form:

/.:/cics/ppc/gateway/server_name
4. Press Enter to destroy the PPC Gateway server.

Using ppcadmin commands

The PPC Gateway server has a set of administration commands called ppcadmin
that allow you to view its status. The set of commands can display:

200 TXSeries for Multiplatforms: CICS Intercommunication Guide

The CICS regions that have passed configuration data to the PPC Gateway
server, by using the CGWY transaction

The names of the remote SNA systems in which the exchange log names (XLN)
process is required or has been successful

The remote SNA systems with which the PPC Gateway server is waiting to
resynchronize, and the CICS transactions that are affected

The current intersystem requests that are using the PPC Gateway server

lists the ppcadmin commands that are applicable to the CICS
environment.

Table 37. ppcadmin commands that are applicable to the CICS environment

Command Use

ppcadmin help Show syntax of a ppcadmin command (This command lists

all the ppcadmin commands, some of which are not
applicable to the CICS environment.)

ppcadmin list luentries List all CICS regions that have configured the PPC
Gateway server

ppcadmin query luentry View a CICS region’s configuration in the PPC Gateway
server

ppcadmin list xIns List XLN status for all connections

ppcadmin query xIn Query XLN status for the specified connection

ppcadmin force xIn Force an XLN for the specified connection

ppcadmin list convs List all active intersystem requests

ppcadmin query conv Query an active intersystem request

ppcadmin query stats Query the conversation statistics

ppcadmin list luws List all active Logical Units of Work (LUWs)

ppcadmin query luw Query an active LUW

ppcadmin list transactions List all active transactions

ppcadmin query transaction |Query an active transaction

ppcadmin list resyncs List all pending resynchronizations
ppcadmin query resync Query the specified resynchronization
ppcadmin cancel resync Cancel all pending resynchronizations for a connection

Note: If the CICS region runs on a different operating system from that on which

the PPC Gateway server runs, you can issue a ppcadmin command from
either the machine on which the PPC Gateway server runs, or from the
machine on which the CICS region runs.

Use the following procedure to use a ppcadmin command (this procedure assumes
that you are using the Korn shell on an Open Systems platform; if you are using a
different platform or shell, change the export commands accordingly):

1.

2.

Decide on the specific ppcadmin command that you require from the list that is
shown in

Determine the PPC Gateway server’s name. The ppcadmin commands require
the PPC Gateway server’s name, which is passed to the ppcadmin command
by using the command'’s -server server_name option or the environment
variable CICS_PPCGWY_SERVER. If you are planning to issue several

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 201

ppcadmin commands to a PPC Gateway server, it is easier to set the
CICS_PPCGWY_SERVER environment variable before calling the first
ppcadmin command as follows:

export CICS PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name
3. Issue the ppcadmin command. The ppcadmin commands can be run in a

command mode or in an interactive mode, as shown in |Figure 74| and
[Figure 75, [Figure 74| shows a ppcadmin command issued in interactive mode.

4]) N
export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/cicsgwy
ppcadmin
PPC administration tool.
Type "help" for help, "exit" to exit.
ppcadmin> help list Tuentries
NAME
ppcadmin Tist Tuentries -- List all registered executive LU entries
SYNOPSIS
ppcadmin list luentries [-server server]
ppcadmin> Tist luentries
Command executed at: Mon Oct 11 12:44:18 1999
total local LU entries: 1
Executive LU: CICSOPEN
ppcadmin> exit
%

Figure 74. Using ppcadmin commands in interactive mode

To enter this mode, enter the command suite name with no arguments (for
example, ppcadmin). When you do so, the prompt becomes the name of the
command suite, which allows you to enter only the verb, object, and arguments
for subsequent commands.

shows the ppcadmin command issued in command mode:

4 . .
export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/cicsgwy
ppcadmin help Tist luentries
NAME
ppcadmin Tist luentries -- List all registered executive LU entries

SYNOPSIS
ppcadmin list luentries [-server server]
ppcadmin Tist Tuentries

Command executed at: Mon Oct 11 12:45:46 1999

total Tocal LU entries: 1

Executive LU: CICSOPEN
o %

Figure 75. Using ppcadmin commands in command mode

The sections that follow provide information about selected ppcadmin commands.
For information about the whole ppcadmin command set, see |TXSeries foﬂ
IMultiplatforms SFS Server and PPC Gateway Server: Advanced Administration]

202 TXSeries for Multiplatforms: CICS Intercommunication Guide

Viewing CICS configuration in the PPC Gateway server

Use the ppcadmin list luentries command to list the Logical Unit (LU) names that
are configured in the PPC Gateway server. An example of this command and its

output is shown in .

ppcadmin Tist Tuentries

Command executed at: Mon Oct 11 09:43:36 1999

total local LU entries: 2

Executive LU: CICSOPEN

Executive LU: CICSLUGW
o J

Figure 76. ppcadmin list luentries command

In a CICS region’s LU name is shown as an Executive LU. This is the LU
name that is configured in the CICS region’s Gateway Definitions (GD)
GatewayLUName attribute.

The PPC Gateway server, /.:/cics/ppc/gateway/cicsgwy, has two LUs configured:
CICSOPEN and CICSLUGW. The LU OPENCICS is for the CICS region cicsopen, and the
LU CICSLUGW is for the CICS region cicsaix.

If you are using a PPC Gateway server on the AIX platform with the IBM
Communications Server for AIX, you can use the ppcadmin query luentry
command to show the CICS transactions for which the PPC Gateway server is
listening on behalf of the region’s LU name. To use this command, you must

provide the LU name for the CICS region about which you are querying.

n page 204 shows an example of this command and its output.

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 203

s
ppcadmin query luentry CICSLUGW

Command executed at: Mon Oct 11 10:48:05 1999

Executive LU: CICSLUGW
Total TPN profiles: 1
TPN Profile: CICSTPN
Total TP Names: 30

DTP1
CEMT
CvMI
CRSR
RECV
TEST
ACCT
BANK
CSM1
\01

CSM2
\02

CSM3
\03

CESF
ACCO
CSM5
\05

ACC1
CSSF
ADDR
CECI
CESN
CEBR
CEDF
CPMI
CALF
CECS
CSMI

CRTE
-)

Figure 77. ppcadmin query luentry command

In the PPC Gateway server is queried about the CICS transactions that
are associated with LU name CICSLUGW. The listed transactions have been passed to
the PPC Gateway server because the cicsaix region’s Transaction Definitions (TD)
TPNSNAProfile attribute is set to the name of an IBM Communications Server for
AIX TPN profile. In this example, the profile is called CICSTPN. The PPC Gateway
server can receive requests only from remote SNA systems for the transactions that
are listed by this command.

The transactions \01, \02, \03, and \05 are hexadecimal versions of the CICS
transactions CSM1, CSM2, CSM3 and CSM5. These hexadecimal transaction names
are used by some CICS systems for function shipping requests. The hexadecimal
transaction names do not have TD entries. Each is given to the PPC Gateway
server whenever its CSMx equivalent transaction name is passed.

Note: When switching between local SNA and a PPC Gateway server, be sure to
purge the old LU entry in the region’s Gateway Definitions (GD) to avoid
duplicate LU names. Refer to[“Configuring CICS for PPC Gateway server|
[SNA support” on page 89| for information about configuring GD entries.

Viewing XLN process status in the PPC Gateway server

Use the ppcadmin list xIns command to view the status of the XLN processes that
are occurring between the CICS region and the remote SNA systems with which it
is communicating. (See|“Exchange log names (XLN) process” on page 180| for an

204 TXSeries for Multiplatforms: CICS Intercommunication Guide

overview of the XLN process.) An example of this command and its output is

shown in [Figure 78

ppcadmin list xIns

Command executed at: Mon Oct 11 12:48:16 1999

Number of LU pairs: 2

Executive LU: CICSLUGW
SNA Partner LU: CICSESA
Log Identifier Name Exchange Complete: YES

Executive LU: CICSLUGW
SNA Partner LU: CICSMVS
\}og Identifier Name Exchange Complete: NO

Figure 78. ppcadmin list xIns command

In the PPC Gateway server: /.:/cics/ppc/gateway/cicsgwy has made
requests for the XLN process to occur between the local LU CICSLUGW and both
partner LUs CICSESA and CICSMVS. The XLN process, which is represented as Log
Identifier Name Exchange Complete, is successful between CICSLUGW and CICSESA,
but unsuccessful between CICSLUGW and CICSMVS.

An unsuccessful XLN process can occur as a result of network or operations
failures. Check your SNA product’s messages for information about network
availability. Check your PPC Gateway server’s messages for operations problems.
For more information about PPC Gateway server messages, refer to
lserver problem determination” on page 228.|For information about the related

ppcadmin query xIn command, see [TXSeries for Multiplatforms SFS Server and PPC|
(Gateway Server: Advanced Administration]

Requesting the XLN process with a remote SNA system

Use the ppcadmin force xIn command to request that the XLN process occur
between the CICS region and a remote SNA system. (See [“Exchange log names|
IXLN) process” on page 180| for an overview of the XLN process.)

To use this command, you must provide the local LU name for the local CICS
region and the partner LU name for the remote system. An example of this
command and its output is shown in

ppcadmin force x1n CICSLUGW CICSMVS

Command executed at: Mon Oct 11 15:39:22 1999

Figure 79. ppcadmin force xIn command with successful results

In the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy has requested
that the XLN process occur between local LU CICSLUGW and partner LU CICSMVS.

The request is successful.

If the command fails, as shown in the example in |Figure 80 on page 206} check the
messages that the PPC Gateway server produces. Refer to ['PPC Gateway server|
[problem determination” on page 22§ for information about PPC Gateway server
messages.

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 205

ppcadmin force xIn CICSLUGW CICSMVS
Error: ENC-ppc-0016: Connection failure, no retry

Figure 80. ppcadmin force xIn command with unsuccessful results

Viewing pending resynchronizations in the PPC Gateway
server

Use the ppcadmin query resync command to view the resynchronization requests
that the PPC Gateway server requires to resolve the outcome of distributed CICS
LUWs. (See [“Exchange log names (XLN) process” on page 18(| for an overview of
the resynchronization process.)

To use this command, you must provide the local LU name for the local CICS
region and the partner LU name for the remote system. An example of this
command and its output is shown in

Ve
ppcadmin query resync CICSLUGW CICSMVS

Command executed at: Mon Oct 11 16:15:53 1999

Log Identifier Name Exchange Complete: NO
Number of transactions with pending resynchronizations: 1

Executive LU: CICSLUGW SNA Partner LU: CICSMVS
Logical Unit of Work Id: MYSNANET.TMVS412:1c2f3594dea2:0001
Transaction Id: 2
Global tid: 00 00 00 02 06 12 01 01 e0 1f Ga 00 b3 f9 a4 le 8c cO 08
convId: 20493824
Conversation Correlator: 60 f9 f8 d3
Session Id: f0 1c Of ec 37 51 68 01
SNA Mode Name: CICSISCO
Local Tran State: PPC_TRAN_STATE_PREPARED
Peer Tran State: PPC_TRAN_STATE_PENDING

Transaction is prepared and awaiting resolution at this site. (Not finished).

A prepare has been sent by the peer. The peer has resynchronization
\responsibi]ity towards this site.

Figure 81. ppcadmin query resync command

In the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy is requested to
show the resynchronization requests that are pending between local LU CICSLUGW
and partner LU CICSMVS. Currently, only one resynchronization request is required.

For information about the related ppcadmin list resyncs command, see [TXSeries for]
Multiplatforms SFS Server and PPC Gateway Server: Advanced Administration,

Canceling pending resynchronizations in the PPC Gateway
server

Use the ppcadmin cancel resync command to delete the resynchronization
requests that the PPC Gateway server requires to resolve the outcome of
distributed CICS LUWs. (See |“Exchange log names (XLN) process” on page 180| for
an overview of the resynchronization process.)

206 TXSeries for Multiplatforms: CICS Intercommunication Guide

To use this command, you must provide the local LU name for the local CICS
region and the partner LU name for the remote system. An example of this

command and its output is shown in

ppcadmin cancel resync CICSLUGW CICSMVS

Command executed at: Mon Oct 11 16:15:53 1999

Figure 82. ppcadmin cancel resync command

In the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy is requested to
delete the resynchronization requests that are required between local LU CICSLUGW

and partner LU CICSMVS.

Note: Use this command only if the remote SNA system has been cold started, or
the remote system will not contact the PPC Gateway server again. If a
transaction in the local CICS region is waiting for the result of any of the
deleted resynchronization requests, you must issue a FORCEPURGE against
it before it will complete. If the transaction is in doubt, it will commit or
back out as specified in the InDoubt attribute of its Transaction Definitions
(TD) entry.

Viewing intersystem requests running in the PPC Gateway
server

Use the ppcadmin list convs command to view the intersystem requests that are
running in a PPC Gateway server. An example of this command and its output is

shown in [Figure 83

ppcadmin Tist convs

Command executed at: Mon Oct 11 16:08:24 1999

total convs: 2

convId: 20493824
Logical Unit of Work Id: MYSNANET.TMVS412:1c2f3594dea2:0001
Transaction Id: 2
Global tid: 00 00 00 02 06 12 01 01 e0 1f Ga 00 b3 f9 a4 le 8c cO 08
TP Name: ACCT
Executive LU: CICSLUGW <-- SNA Partner LU: CICSMVS

convId: 204898c4
Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002
Transaction Id: 1
Global tid: 00 00 00 c6 01 Oc 73 6e 61 74 65 73 74 31 00 00 00 08
TP Name: CEMT

Y Executive LU: CICSLUGW <-- SNA Partner LU: CICSESA)

Figure 83. ppcadmin list convs command

In the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy is requested to
list the current conversations. Two intersystem requests running. One intersystem

request is for the CICS transaction ACCT and is between the local LU CICSLUGW and
the partner LU CICSMVS. The other intersystem request is for the CICS transaction
CEMT and is between the local LU CICSLUGW and the partner LU CICSESA.

If you need more information about a particular conversation, use the ppcadmin
query conv command. This command requires the convid number for the
particular conversation, which you can obtain from the results of the ppcadmin list

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 207

convs command. An example of the ppcadmin query conv command and its
output is displayed in

4) ™
ppcadmin query conv 204898c4
Command executed at: Mon Oct 11 17:55:51 1999
convId: 204898c4
Conversation Parameters:
Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002
Transaction Id: 1
Global tid: 00 00 00 c6 01 Oc 73 6e 61 74 65 73 74 31 00 00 00 08
TP Name: CEMT
Sync Level: CM_SYNC_POINT
Conversation Type: CM_MAPPED_CONVERSATION
Conversation State: CM_SEND_STATE
Last Sync point State: CM_SEND_STATE
This is an SNA conversation.
Conversation Correlator: 60 f9 f8 e5
Session Id: fO 1c 10 19 23 86 ea 02
Peer Information:
Executive LU: CICSLUGW <-- SNA Partner LU: CICSESA
Local Tran State: PPC_TRAN_STATE_ACTIVE
Perceived Peer (Tran) State: PPC_TRAN_STATE_ACTIVE
SNA Parameters:
SNA Mode Name: CICSISCO
SNA Security Type: CM_SECURITY_NONE
SNA User Id:
Conversation Statistics:
Bytes sent: 933
Bytes Received: 686
Error Count: 0
Number of Sync points: 0
Number of Backouts: 0
o J

Figure 84. ppcadmin query conv command

For information about the related ppcadmin query stats command, see |TXSeries foﬂ
Multiplatforms SFS Server and PPC Gateway Server: Advanced Administration,

Viewing LUWSs in the PPC Gateway server
Use the ppcadmin list luws command to view the LUWs that are active in a PPC

Gateway server. An example of this command and its output is shown in
ﬂ

208 TXSeries for Multiplatforms: CICS Intercommunication Guide

ppcadmin Tist Tuws

Command executed at: Mon Oct 11 15:56:58 1999

Total LUWs: 2

Logical Unit of Work Id: MYSNANET.TMVS412:1c2f3594dea2:0001
Transaction Id: 2
Global tid: 00 00 00 02 06 12 01 01 e0 1f 0a 00 b3 f9 a4 le 8c cO 08

Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002
Transaction Id: 1
Y Global tid: 00 00 00 c6 01 Oc 73 6e 61 74 65 73 74 31 00 00 00 08)

Figure 85. ppcadmin list luws command

In the command is issued to the PPC Gateway server

/.:/cics/ppc/gateway/cicsgwy. This PPC Gateway server has two LUWSs. For each

LUW, the ppcadmin list luws command displays the following:

* The Logical Unit of Work Id (or LUWId): the SNA unique name for the LUW.

* The Transaction Id (or tid): the local identifier of the LUW that the PPC
Gateway server uses.

e The Global tid: the identifier for the LUW that all involved servers use, such as
a Structured File Server (SFS) server.

If you need more information about a particular LUW, use the ppcadmin query
luw command. This command requires the Logical Unit of Work Id value for the
particular LUW, which you can obtain from the results of the ppcadmin list luws
command. An example of the ppcadmin query luw command and its output is

shown in [Figure 86

Ve
ppcadmin query Tuw MYSNANET.TESA232:1c2bb7ccd158:0002

Command executed at: Mon Oct 11 15:57:39 1999

Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002
Total transactions: 1

Transaction Id: 1
Global tid: 00 00 00 c6 01 O6c 73 6e 61 74 65 73 74 31 00 00 00 08
Number of conversations associated with this transaction: 1

convld: 204898c4

Executive LU: CICSLUGW

SNA Partner LU: CICSESA

Conversation Correlator: 60 f9 f8 e5
Session Id: fO 1lc 10 19 23 86 ea 02
Local Tran State: PPC_TRAN_STATE_ACTIVE
Peer Tran State: PPC_TRAN_STATE_ACTIVE

Transaction is currently active at this site. (Not yet resolved).

Transaction is currently active at the peer. (Not yet resolved).

Figure 86. ppcadmin query luw command

For information about the related ppcadmin list transactions and ppcadmin query
transaction commands, see [T XSeries for Multiplatforms SFS Server and PPC Gatewai|
[Server: Advanced Administration],

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 209

Changing CICS intercommunication definitions for use with a PPC
Gateway server

If you need to change the routing of the SNA flow, you possibly need to add,
change, or delete CICS intercommunication resource definitions such as:

* Listener Definitions (LD) entries

* Gateway Definitions (GD) entries

* Communications Definitions (CD) entries

This section includes information about when and how these resource definitions
can be updated, and the effects of updating them on the SNA communications
product and the PPC Gateway server.

CICS resource definitions exist in two places:

* In the permanent database that contains the CICS resource definitions that are
available to the region during a cold start.

¢ In the runtime database that contains the CICS resource definitions that are
available to the region during an autostart. The runtime database is created as
part of a region cold start. It can be changed only when the region is running.

Use the cicsadd command to add intercommunication resource definitions to the
permanent database, and, if the region is running, to the runtime database. For
example, the following command adds a Listener Definitions (LD) entry called
LOCALSNA to a region. The -B option causes the entry to be added to the permanent
database, and, if the region is running, to the runtime database:

cicsadd -c 1d -r regionName -B LOCALSNA Protocol=SNA

Use the cicsinstall command to add, to a running region, resources that are
defined in the permanent database. For example, the following command adds to
your region all resources that have the attribute ActivateOnStartup equal to yes:

cicsinstall -r regionName -a

Use the cicsdelete command to delete resources that are defined in the permanent
database, and sometimes, in a running region. For example, the following
command deletes a Listener Definitions (LD) entry called LOCALSNA from a region’s
permanent database only (indicated by the -P option):

cicsdelete -c 1d -r regionName -P LOCALSNA

The following table summarizes the effects of changing CICS intercommunication
resource definitions on the region’s permanent and runtime databases.

Table 38. The effect of updating CICS intercommunication resource definitions

Action Listener Definitions |Gateway Definitions | Communications
(LD) entry (GD) entry Definitions (CD)
entry
Add new entry to This can be done at |Same as the LD Same as the LD
permanent database. |any time. The entry |entry. entry.
is then available at
the next cold start.

210 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 38. The effect of updating CICS intercommunication resource definitions (continued)

Action

Listener Definitions
(LD) entry

Gateway Definitions
(GD) entry

Communications
Definitions (CD)
entry

Add new entry to
runtime database
while region is
running.

The region accepts a
new LD entry, but it
has no effect. You
must restart the
region before it uses
the new LD entry.

When the GD entry
is added to the
region, CICS
immediately
configures the PPC
Gateway server that
is named in the GD
entry so that it is
available for use by

The CD entry is
immediately
available for use by
CICS transactions.

database.

updated entry is then
available at the next
cold start.

the region.
Update existing entry | This can be done at | Same as the LD Same as the LD
in permanent any time. The entry. entry.

Update existing entry
in runtime database
while region is
running.

This is not allowed.

The entry must be
deleted by using the
cicsdelete -R
command, then

The entry must be
deleted by using the
cicsdelete -R
command, then

database.

will no longer be
available at the next
cold start.

updated. updated.
Delete existing entry |This can be done at |Same as the LD Same as the LD
from permanent any time. The entry |entry. entry.

Delete existing entry
from runtime
database while
region is running.

The LD entry cannot
be deleted from the
runtime database.

The GD entry can be
deleted at any time.
Before deleting the
entry, CICS removes
its configuration from
the PPC Gateway
server.

The CD entry can be
deleted from the
region only if a CICS
transaction is not
using it for an
intersystem request.

Transaction Definitions (TD) entries also contain intercommunication information
in the TPNSNAProfile, SNAModeName, and IsBackEndDTP attributes. These
attributes affect the way that intersystem requests are processed that involve the
transaction that is named in the TD entry. In addition, TD entries that have the
TPNSNAProfile attribute configured can affect the PPC Gateway servers that are
configured in the Gateway Definitions (GD) and the CICS local SNA support.

If you add a GD entry to your region while it is running, CICS attempts to contact
the PPC Gateway server that is configured in the GD entry in order to pass it
information about the local system. If the PPC Gateway server is not running,
CICS cannot contact it. If this occurs, start the PPC Gateway server, then run the
CGWY transaction. This is described in [‘Sharing server names between a CICS|

fregion and a PPC Gateway server” on page 177

If you delete a GD entry from your region, you must ensure that all information
about your region has been removed from the PPC Gateway server. You can do

this by:

* Using the command:

Chapter 8. Creating and using a PPC Gateway server in a CICS environment

211

ppcadmin delete Tuentry -server server_name LUentry

where server_name is the name of the PPC Gateway server (for example,
/.:[cics/ppc/gateway/cicsgwy) and LUentry is the local LU name taht is
configured in the GatewayLUName attribute of the deleted GD entry. Refer to
TXSeries for Multiplatforms SFS Server and PPC Gateway Server: Advanced|
Administration| for further information.

* Stopping, then cold starting the PPC Gateway server.

* Stopping and destroying the PPC Gateway server.

Similarly, if you change the local LU name that is configured in the GD entry
attribute GatewayLUName, you must ensure that the information that associates
the original LU name with your region is removed from the PPC Gateway server.
You can do this by stopping and cold starting the PPC Gateway server, or by
issuing the ppcadmin delete luentry command. After the original information is
removed from the PPC Gateway server, you can run the CGWY transaction to add
new information. Refer to[“Sharing server names between a CICS region and a|
IPPC Gateway server” on page 177|for further information.

When you add, update, or delete a Transaction Definitions (TD) entry that has a
non-blank TPNSNAProfile attribute in the running region, the region passes
information about the changes to every PPC Gateway server that is configured in
the GD. If a PPC Gateway server is not running, it does not receive the updates.
This is a concern only if you are adding a TD entry and the PPC Gateway server is
running on AIX. Until this PPC Gateway server is given the information about the
new transaction, it cannot receive intersystem requests for the transaction from
remote SNA systems. If this condition occurs, start the PPC Gateway server and
perform one of the following actions to pass the configuration to the PPC Gateway
server:

* Run the CGWY transaction. This action configures all PPC Gateway servers that
are defined in the GD, with details of the local region and all transactions that
have a TD entry where the TPNSNAProfile attribute is configured.

* Delete, then add the TD entry for the transaction. This action configures all PPC
Gateway servers with the transaction.

* Delete, then add the GD entry for the PPC Gateway server. This action
configures the PPC Gateway server with details of the local region and all
transactions that have a TD entry where the TPNSNAProfile attribute is
configured.

212 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 9. Intersystem problem determination

This chapter contains information about problem determination in an
intercommunication environment. It is provided for CICS users who are new to
SNA. The information in this chapter is not intended to replace the information
that is provided in the administration and diagnosis books that are available with

the SNA products that you are using. Refer to|TXSeries for Multiplatforms Conceptd
for a list of relevant SNA books.

This chapter describes:

* The steps to take to track down and solve an intersystem problem

* Common intercommunication problems

* CICS intercommunication error codes that appear in CICS messages
* PPC Gateway server problem determination procedures

Intersystem problem solving process

Problem solving in the CICS intersystem environment might seem a difficult task
because of the number and variety of products that are involved. It requires a
systematic approach that enables you to find the component in the network that is
causing the problem. It is also helpful if you have:

* Knowledge of what each product does

* Familiarity with the diagnostics

* Experience to recognize the symptoms of common problems

The information that follows guides you through the process of intersystem
problem determination and shows you where to look for clues and how to
interpret those clues. It is sometimes difficult in this description to be specific
because each problem is different. However, by following the process that is
suggested, you will be able to isolate your particular problem to one component in
the network and most likely fix it yourself. If you cannot solve the problem, the
information that you have collected will help the service representative to solve the
problem.

To solve intersystem problems, do the following steps:
* [“Step 1. Understand the failure scenario”

* [“Step 2. Identify the failing component” on page 214]
* |“Step 3. Fix the problem” on page 215

Step 1. Understand the failure scenario

The first step in problem determination is to have a clear picture of exactly what is
failing. Here are some questions to ask yourself:

* What was the system doing when the failure occurred? For example, was it
initializing or had it been running successfully for some time?

* What transactions were running at the time of the failure? What should these
transactions do?

* When does it fail? Does it fail all the time, or is it intermittent?
* How does it fail? Is it a hang, loop, or abend?

* Did it start failing after a particular event such as a change to the configuration
or a system crash?

* What steps are needed to re-create the problem?

© Copyright IBM Corp. 1999, 2005 213

If possible, try a little experimentation to either narrow the failure down to a
specific scenario, or to discover the extent of the problem. (The CICS-supplied
CECI and CRTE transactions might be useful.)

This experimentation process is best demonstrated with an example. Consider the
problem in which a function shipped temporary storage (TS) queue request that is
issued by a CICS transaction fails. You should try a few requests to see if all
function shipped TS queue requests fail or if it is only the one that was issued by
the failing transaction. If all function shipped TS queue requests fail, do function
shipping requests to files work, for example? If function shipping in general fails,
is transaction routing working or do you have a scenario in which all outbound
requests are failing? If all outbound requests are failing, do inbound requests
work?

By answering these questions you are generating a clear picture of the problem
that you are trying to solve, an important first step to identifying the cause.

Step 2. Identify the failing component

When you are sure of the exact nature and extent of the problem that you are
trying to solve, you must identify which component in the network is failing. You
might have strong suspicions about this already, but if not, or you want to confirm
your suspicions, continue as follows:

1. Identify the components of the network that are involved in the request.

For example, the request might flow from your CICS region, across TCP/IP to
a PPC gateway, then from the PPC gateway through an SNA network to arrive
in a mainframe CICS/ESA system where it is to be run.

2. Check whether each component is running. If a component is running, check
whether it has produced any error or attention messages. (Refer to [Table 39| for

some suggestions about where to look for diagnostics.)

Table 39. Sources of information for following the path of a request

Type of request Local CICS PPC Gateway | SNA link trace | Remote system’s
messages server messages message
(console.msg
and CSMT.out)
TCP/1P Yes Yes
intersystem
request
PPC Gateway Yes Yes
server
configuration
PPC Gateway Yes Yes Yes Yes
server/SNA
intersystem
request
Local SNA Yes Yes Yes
intersystem
request

Note: CICS messages are described in [TXSeries for Multiplatforms Messages and|
. They are very useful in intersystem PD because:

* They log information on the failing request.

214 TXSeries for Multiplatforms: CICS Intercommunication Guide

¢ During region startup, messages are logged that describe the network
name and protocols that the region uses and any errors that are detected
in the communication configuration (such as LD, CD and GD entries).

PPC Gateway server messages are described in|"PPC Gateway server|
[message descriptions” on page 232

It is possible that several components have reported the error. However, it is
usually the component that initially detects the error that gives the most precise
diagnostics. Refer to the message descriptions because they might give you the
exact cause of the error.

If the messages do not identify the problem, try turning on the trace in each
component and rerunning the failing request. Traces show the calls and responses
that are being passed between the different components that might highlight a bad
parameter or return code. They tend to be designed for developers of the product
and so are not easy to read without the product design information. However, the
trace will tell you whether the request even reached a particular component. If you
find that the request failed before reaching the remote system, concentrate your
suspicions around the component that rejected the request. Check the configuration
of this component. Also refer to the information that is given in
fintercommunication errors” on page 216/ because it might describe the failure that
you are seeing.

If you still cannot determine what is wrong, refer to [‘Getting further help”| because
you need help from the service representative.

Step 3. Fix the problem

The message descriptions and other diagnostics should provide you with the
information that you need in order to solve the problem.

When the problem is fixed, think about whether it could happen again, and
whether you can take any steps to prevent it. This can save you time and trouble
in the future.

Getting further help

If you really cannot solve the problem yourself, collect the appropriate information,
as shown in [Table 40} and contact the service representative.

Table 40. Required information for the service representative

Information Required TCP/IP request Local SNA PPC Gateway PPC Gateway
request server request server

configuration

Description of the problem Yes Yes Yes Yes

CICS messages, trace and resource Yes Yes Yes Yes

definitions

PPC Gateway server messages Yes Yes

PPC Gateway server GSD entry Yes Yes

PPC Gateway server trace Yes Yes

PPC Gateway server configuration Yes Yes

SNA product configuration, Yes Yes Yes

messages and link trace

Chapter 9. Intersystem problem determination 215

Table 40. Required information for the service representative (continued)

Information Required TCP/IP request Local SNA PPC Gateway PPC Gateway
request server request server
configuration
Messages and other diagnostics on Yes Yes Yes
the remote system

Common intercommunication errors

This section describes how to solve common intercommunication problems for the
following symptoms:

* |“Symptom: cannot start (acquire) SNA sessions”]

* [“Symptom: the PPC Gateway server fails to start” on page 217

* |“Symptom: CICS will not configure the PPC Gateway server” on page 217|

* |"Symptom: CICS will not configure my transactions in the PPC Gateway server”]

on page 217|

* [“Symptom: CICS cannot configure the PPC Gateway server” on page 218|
* [“Symptom: CICS for MVS/ESA transactions abend AXFX” on page 219
* |"Symptom: SNA exchange log names (XLN) fails” on page 219

¢ [“Symptom: all inbound requests fail” on page 220

+ |[“Symptom: all outbound requests fail” on page 220|

+ [“Symptom: invalid or unrecognizable data is passed to applications” on page
221

+ |[“Symptom: applications fail because of security violations” on page 221|

* |“Symptom: Transaction routing to CICS Transaction Server for z/OS fail with|
communications error 15a00007 /a0000100” on page 221|

+ [“Symptom: Transaction routing causes screen errors” on page 222

* |“Symptom: CICS fails to detect a predefined CD entry, and autoinstalls another”|

on page 222|

Symptom: cannot start (acquire) SNA sessions

These problems are usually because of:
* A configuration problem
* The remote system, or part of the network, being unavailable

Check whether all the components of your network, including the remote system,
are running. Check whether the configuration in these components is properly
installed.

If the link will not start and the relevant machines are running, either your local
machine, VTAM, or the remote machine does not have correct node, or machine
address information.

If the link is running but the session will not start, experiment to see whether the
session can be activated from one side only. For example, the session might not
start if the request is issued locally, but will start if activated from the remote
system. If this occurs, the local and partner Logical Unit (LU) names are correctly
configured but either,

* The modename definition that is used does not allow both systems to bind
contention winners.

216 TXSeries for Multiplatforms: CICS Intercommunication Guide

* The side that cannot start any sessions cannot locate the remote system. This
could be because the remote system is defined as located on the wrong machine,
or using the wrong link.

If the session will not start in either direction, check:

* The local and partner LUs are correctly defined on all systems.
It is often easy to misspell LU names; for example, replacing a numeric 0 (zero)
with the letter O, or the number one (1) with the letter 1.

e If VTAM is used, the PU and LU definitions that are used are correct.

* The modenames that are used are consistent both in the local definitions and in

the remote system’s definitions. In addition, if VTAM is used, MODEENT
definitions are required for each modename.

Refer to the specific SNA product information for details of local configuration and
how to display the status of your SNA product.

Symptom: the PPC Gateway server fails to start

The PPC Gateway server is started using the cicsppegwy command. If this fails to
work, check the message descriptions that this command produces. Also check the
PPC Gateway server’s message file, because the PPC Gateway server might have
started, detected a bad condition, then exited. More information about PPC
Gatewai server messages is given in|“PPC Gateway server message descriptions”]

If RPC-only is being used, check the server_bindings file CICS_HOSTS
environment variable.

Symptom: CICS will not configure the PPC Gateway server

Your CICS region requires a Gateway Definitions (GD) entry for your PPC
Gateway server in order to pass it configuration information. Check whether you
have defined a GD entry for the PPC Gateway server and this entry is installed in
your CICS region. If your GD entry is correct, refer to [’Symptom: CICS cannof]
fconfigure the PPC Gateway server” on page 218.|

Symptom: CICS will not configure my transactions in the PPC
Gateway server

When configuring a PPC Gateway server, your CICS region attempts to pass the
names of all CICS transactions that have a value configured in the TPNSNAProfile
attribute of their Transaction Definitions (TD) entry. Only the AIX PPC Gateway
Server requires this information because it cannot receive an intersystem request
from Communications Server for AIX unless:

¢ The TD entry for the CICS transaction has the TPNSNAProfile attribute set to
the name of a valid AIX TPN profile.

* This profile is in Communications Server for AIX’s runtime database.

* CICS has successfully configured the AIX PPC Gateway Server with the name of
the CICS transaction.

You can view the CICS transactions that are configured in the PPC Gateway server
by using ppcadmin. If your transaction is not configured in the PPC Gateway
server, check whether:

e The TPNSNAProfile attribute in the TD entries is set up correctly.

Chapter 9. Intersystem problem determination 217

* Your CICS region can successfully configure the PPC Gateway server. (For more
information, refer to [’Symptom: CICS cannot configure the PPC Gateway]|

Note: When using a non-AIX PPC Gateway Server, it is usual to leave the
TPNSNAProfile attributes set to their default value of "”. However, if the
TPNSNAProfile attributes are changed and CICS passes some transaction
names to a non-AIX PPC Gateway Server, it responds to CICS by indicating
that it does not need this information, and CICS stops the configuration.
Therefore, if you do configure the TPNSNAProfile attribute in your TD
entries, CICS will make one unnecessary configuration request to the
non-AIX gateway each time it is configured.

Symptom: CICS cannot configure the PPC Gateway server

The CICS-supplied transaction CGWY configures the PPC Gateway servers at CICS
region startup, or you can run it by using the EXEC CICS START
TRANSID(CGWY) command. To configure the PPC Gateway servers, CGWY
needs:

* A Transaction Definitions (TD) entry for CGWY that allows it to run as a
background task

* A Gateway Definitions (GD) entry for each PPC Gateway server that it is to
configure

Check whether these conditions are satisfied.

Your CICS region also configures a PPC Gateway server when a GD entry for that
PPC Gateway server is successfully installed in the region.

When the PPC Gateway server configuration is in progress:
* The PPC Gateway server must be running.
* Your SNA product must be correctly configured.

CICS writes messages to the console.nnnnnn file while the PPC Gateway server
configuration is in progress. These messages show the GD entries that are being
used for the configuration. In the example below, the CICS region cics6000 has two
GD entries, one named GWY and the other named GWY?2.

ERZ0300601/3101 date time region : \
PPC Gateway server configuration has started

ERZ0300621/3103 date time region : \

Configuring PPC Gateway server 'GWY' with details of the region
ERZ0300631/3104 date time region : \

Configuring PPC Gateway server 'GWY' with details of Tocal transactions
ERZ0300641/3109 date time region : \

Configuring PPC Gateway server 'GWY' has ended

ERZ0300621/3103 date time region : \

Configuring PPC Gateway server 'GWY2' with details of the region

ERZ0300631/3104
Configuring PPC
ERZ0300641/3109
Configuring PPC
ERZ0300611/3102

date time region : \

Gateway server 'GWY2' with details of local transactions
date time region : \

Gateway server 'GWY2' has ended

date time region : \

PPC Gateway server configuration has ended

If CICS detects errors when configuring a PPC Gateway server, it writes an error

message that describes the problem to console.nnnnnn, and moves to the next GD
entry. Examine these messages in your region’s nnnnnn file. They are described in

218 TXSeries for Multiplatforms: CICS Intercommunication Guide

the [TXSeries for Multiplatforms Messages and Codes| manual. If error messages occur,
follow the instructions that are given in the message descriptions. If no error
messages occur, check whether the GD entries contain the correct values for the
PPC Gateway server. Also check whether the required GD entries are installed in
your region. Finally, check the PPC Gateway server’s message file, because the
PPC Gateway server may have reported the reason for the error.

Symptom: CICS for MVS/ESA transactions abend AXFX

The AXFX abend code usually occurs if a CICS for MVS/ESA transaction makes a
synchronization level 2 request to CICS for Open Systems on a connection that has
not successfully exchanged log names (XLN).

XLN can be successful only on a SNA connection that uses a PPC Gateway Server.
So check whether the CICS for Open Systems Communications Definition (CD)
entry for the connection is set up with ConnectionType=ppc_gateway.

If the SNA connection is using a PPC Gateway Server, refer to [“Symptom: SNA|
fexchange log names (XLN) fails”|because this explains how to make the XLN
work.

If the connection should use local SNA (ConnectionType=Ilocal_sna) and, therefore,
you want CICS for MVS/ESA to use synchronization level 1 intersystem requests,
change the local LU definition in your SNA product so it requests synchronization
level 1 instead of synchronization level 2. For information about synchronization
levels, refer to [“Ensuring data integrity with synchronization support” on page 16
Alternatively:

+ [“Communicating across SNA connections” on page §| compares using local SNA
with using a PPC Gateway Server.

* [Chapter 4, “Configuring CICS for SNA,” on page 67|describes how to configure
CICS to use local SNA or a PPC Gateway Server.

Symptom: SNA exchange log names (XLN) fails

SNA Synchronization level 2 intersystem requests can be sent only to a remote
system that has successfully completed exchange log names (XLN). XLN occurs
between the remote SNA system and a PPC Gateway Server. Ensure that the
remote system, SNA session, and PPC Gateway Server are running. Also check
whether the remote system can support synchronization level 2 requests.

Use the ppcadmin list xIn command to list the XLN status of your SNA
connections. (This is described in [“Viewing XLN process status in the PP(]
(Gateway server” on page 204.)

If XLN is not successful for a connection, check the PPC Gateway Server’s message
file because the PPC Gateway Server might have logged an error message that
indicates why the XLN failed. Follow the instructions that are given in
(Gateway server message descriptions” on page 232| for any error messages that
you find.

If the ppcadmin list xIn command does not list a particular SNA connection, XLN
has never been attempted for the connection since the PPC Gateway Server was
last cold started. Use the ppcadmin list luentries command, which is described in
[“Viewing CICS configuration in the PPC Gateway server” on page 203, to show
which CICS regions have configured the PPC Gateway Server. Follow the

Chapter 9. Intersystem problem determination 219

instructions that are given in [‘Symptom: CICS will not configure the PPC Gateway]
lserver” on page 217 if your CICS region has not configured the PPC Gateway
Server.

When you have ensured that the PPC Gateway Server has been configured by
yvour CICS region, use the ppcadmin force xIn command, which is described in
[“Requesting the XLN process with a remote SNA system” on page 205/ to issue an
XLN request. If this command fails, check the PPC Gateway Server’s message file
because the PPC Gateway Server will have logged an error message that indicates
why the XLN failed. Follow the instructions for these messages, which are given in
[“PPC Gateway server message descriptions” on page 232)

For information about synchronization levels, refer to [“Ensuring data integrity with|
synchronization support” on page 16 Alternatively:

“Mixing the communications methods” on page 11|compares using local SNA
with using a PPC Gateway Server.

+ |Chapter 4, “Configuring CICS for SNA,” on page 67|describes how to configure
CICS to use local SNA or a PPC Gateway Server.

+ [“Overview of the PPC Gateway server” on page 175 describes how the PPC
Gateway Server works.

Symptom: all inbound requests fail

Check whether your CICS region is available and configured correctly. Examine the
CICS messages that are written to your region’s console.nnnnnn and CSMT.out
because they might explain what the problem is.

Check whether the network and the remote system are available and configured
correctly. If you are using a PPC Gateway server and SNA synchronization level 2,
check whether exchange log names has been successful. (Refer to [‘Symptom: SNA|
fexchange log names (XLN) fails” on page 219.)

If you are using a PPC Gateway server, check whether the PPC Gateway server is
configured correctly. Refer to [“Symptom: CICS cannot configure the PPC Gateway|
lserver” on page 21§ for more information.

Look for error messages that are written by the remote system, because the remote
system might have rejected the request before it was sent into the network.

If you are using Communications Server for AIX, ensure that the TPNSNAProfile
attribute for all your Transaction Definitions (TD) entries are set to the name of an
Communications Server for AIX TPN profile, and, if you are using an AIX PPC
Gateway Server, that CICS has configured these transactions in the PPC Gateway
server. (Refer to|[’Symptom: CICS will not configure my transactions in the PPC[
(Gateway server” on page 217.)

Symptom: all outbound requests fail

Examine the CICS messages that are written to your region’s console.nnnnnn and
CSMT.out because they might explain what the problem is.

Check whether the network and the remote system are available and configured
correctly.

If you are using a PPC Gateway server, check whether the PPC Gateway server is
configured correctly and running. The PPC Gateway server is configured in your

220 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICS region using a Gateway Definitions (GD) entry. (Refer to [“Symptom: CICS|
fcannot configure the PPC Gateway server” on page 218l for more information.) If
the PPC Gateway server is successfully configured, check whether the PPC
Gateway server has written any error messages. More information about PPC
Gatewai server messages is given in[“PPC Gateway server message descriptions”]

The Communications Definitions (CD) entry for your connection should point to
this GD entry by the GatewayName attribute.

If you are using SNA synchronization level 2, check whether exchange log names
has been successful. (Refer to [“Symptom: SNA exchange log names (XLN) fails” on|

Look for error messages that are written by the remote system, because the remote
system might have rejected the request.

Symptom: invalid or unrecognizable data is passed to
applications

If your applications are starting correctly, but the data that they are given is not
what was sent (for example, the COMMAREA that is passed to a DPL program
has invalid values), it could be that:

1. The data conversion templates are not installed correctly.

2. The TemplateDefined attribute of your local resource (for example, a program
or file) is not set to yes.

See [“Summary of data conversion” on page 169 and |[Chapter 7, “Data conversion,”

Ign page 147.|
Symptom: applications fail because of security violations

If intersystem requests fail for security reasons, your security configuration might
be incorrect. Access to resources for intersystem requests are controlled by static
configuration. When configured, the security checking operates automatically. Try
to establish which part of the network is rejecting the request. For example:

¢ Is the request failing before it leaves the originating system? TXSeries for
Multiplatforms returns NOTAUTH to an application if it attempts to use the
SYSID option on a function shipping request when RSLCheck=internal in the
application’s Transaction Definitions (TD) entry.

¢ Check whether any user IDs that are sent with CICS intersystem requests are
recognized by the remote system. This includes the CICS default user ID, which
is configured in the RD attribute DefaultUserld, that is used by CICS private
transactions.

Refer to|Chapter 6, “Configuring intersystem security,” on page 123| and |“C0mmon|
lconfiguration problems with intersystem security” on page 144{for more
information about security configuration and problems.

Symptom: Transaction routing to CICS Transaction Server for
z/0OS fail with communications error 15a00007/a0000100

If your region is communicating with CICS Transaction Server for z/OS version 4.1
or later, and all transaction routing requests fail with a communications error
15a00007 /20000100, this could be because of a mismatch in the security
configuration in the two systems.

Chapter 9. Intersystem problem determination 221

If the CONNECTION definition on CICS Transaction Server for z/OS has
ATTACHSEC set to IDENTIFY or VERIFY, and USEDFLTUSER set to NO, CICS
Transaction Server for z/OS requires a user ID to be sent with all transaction
routing requests. If a user ID is not received, CICS Transaction Server for z/OS
unbinds the session that is used by the transaction routing request with a
sensecode of X’080F6051". Your region is informed of a conversation failure and
reports communications error 15a00007 /a0000100.

To solve this problem you can either:

* Set OutboundUserlds=sent in the Communications Definition (CD) entry for the
remote system so that your region sends user IDs to CICS Transaction Server for
z/0OS, or

* Change the settings of ATTACHSEC or USEDFLTUSER in the CICS Transaction
Server for z/OS CONNECTION definition so that it does not require your
region to send user IDs.

Symptom: Transaction routing causes screen errors

Problems with the data that is displayed at a terminal by a transaction routed
transaction can be caused by:

* Incorrect code page defined in the RemoteCodePageTR attribute of the
Communications Definitions (CD) entry. Refer to [“Data conversion for
[transaction routing” on page 164| for information about how to code this
attribute.

* Incompatible terminal definitions in the local or remote regions. Check whether
the terminal definitions that are used by each system are compatible. TXSeries
for Multiplatforms uses a Terminal Definitions (WD) entry to define a terminal.

* Errors in the application program. Check whether the application runs with a
local terminal.

Symptom: CICS fails to detect a predefined CD entry, and
autoinstalls another
If you have previously defined a Communications Definitions (CD) entry for a

remote system that is connected over CICS family TCP/IP, CICS might fail to use
it when a connection request is received, and it might autoinstall another CD entry.

When CICS receives a connection request from a remote CICS system, it searches
the CD entries in your region to determine whether one already exists for that
connection.

The CD attributes that it checks are:
* ConnectionType

* RemoteLUName

* RemoteTCPAddress

* RemoteTCPPort

e ListenerName

Also, the CD entry must not be in use by another connection.

If you have predefined a CD entry for the remote system, but CICS does not use it
and proceeds to build an autoinstall entry, check the following:

* Verify that the attributes that are listed above have been defined correctly.
¢ Check whether both systems are trying to acquire the connection simultaneously.

222 TXSeries for Multiplatforms: CICS Intercommunication Guide

When your local CICS region attempts to acquire a connection to a remote
system, it will use its CD entry for that connection. If the remote system
attempts to acquire the connection at the same time, your local CICS region will
not be able to use that same CD entry when it receives the connection request,
because that entry will be in use. Therefore your CICS region will autoinstall

another CD entry.

e Check the definition of the connection in the remote system, and ensure that
when your local region sends a connection request, the remote system selects the

correct definition.

If the remote system is a CICS OS/2 system, it should issue an EXEC CICS
INQUIRE CONNECTION() NETNAME() command before your local CICS
region issues its connection request. This command ensures that the correct LU
Name is set into its definition of the connection, and so it will use that definition
when it receives the connection request from your CICS region.

SNA product-specific errors

For SNA product-specific errors, you should refer to the appropriate SNA product

book:

« |TXSeries for Multiplatforms Using IBM Communications Server for AIX with CICS|

« |TXSeries for Multiplatforms Using IBM Communications Server for Windows Systems|

with CICS|

« |TXSeries for Multiplatforms Using Microsoft SNA Server with CICS|

* |TXSeries for Multiplatforms Using SNAP-IX for Solaris with CICS|

» |TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICS|

CICS error codes

Some CICS error messages contain:

Communications error primaryCode/secondaryCode

where primaryCode is the primary error code, and where secondaryCode is the
secondary error code. The following list shows the primary and secondary error
codes. Refer to this list for problem determination when you get a CICS
communications error message that contains these codes:

15a0000a/15a0010a Unsupported

Explanation: An attempt has been made to use a
communications function that is not supported by the
communications protocol.

System action: The communications conversation
might fail.

User response: Look for additional messages in the
console.nnnnnn file and the CSMT log. These might
describe the cause of the problem, and tell you how to
proceed.

If the problem remains, contact your service
representative.

15a00001/8890000 Program Error Purging

Explanation: The remote program called EXEC CICS
ISSUE ERROR.

System action: The transaction might be abnormally
terminated.

User response: If you are using distributed transaction
processing (DTP), check whether the front-end and
back-end transactions that are involved in the
communications conversation are behaving as expected.
Refer to[“Communicating errors across a conversation’|
|on page 295| for more information. If the indicated
transaction is a back-end DTP transaction, ensure that
the transaction definition IsBackEndDTP is set to yes.
If the problem remains, contact your service
representative.

15a00002/15a00101 Allocate Busy

Explanation: CICS attempted to allocate a
conversation, but no bound contention winner sessions
were available.

System action: The communications conversation has
not been started.

Chapter 9. Intersystem problem determination 223

User response: Query your SNA product to determine
whether any sessions are active to the remote system. If
no sessions are active, start some. This might require
restarting the remote system, or part of the network. If
all available sessions are bound, but they are in use,
considering increasing the number of sessions. This is
configured in the mode (or session) definition both in
your local SNA product and in the remote system.
These "session limits” must be the consistent in both
system for the connection to activate.

When sessions have been made available, rerun the
intersystem request.

15a00002/15a00102 Allocate Failure

Explanation: CICS was unable to initiate an

intersystem request with the remote system because

either

* The remote system or intervening network is
unavailable

¢ The communications configuration in the
Communications Definitions (CD) entry for the
connection is incorrect

¢ If the remote system is connected by SNA, the SNA
configuration might be incorrect

System action: The intersystem request fails. Further
messages that give more detail might follow.

User response: Check the Communications Definitions
(CD) entry for the connection on the local and the
equivalent definitions on the remote system. Check
whether the remote system and the network path to the
remote system are available and correctly configured.

If CICS Bind time security is being used, ensure that no
mismatch exists in the bind passwords that are used by
each system. Refer to [“Authenticating systems across|
ISNA connections” on page 125|for further information
about Bind time security.

15a00003/15a00109 Allocate Timed Out

Explanation: The communications operation did not
complete in the acceptable time. The timeout value is
configured in the AllocateTimeout attribute in the
Communications Definitions (CD) entry.

System action: The intersystem request has not been
started, or has been terminated.

User response: Check whether the remote system is
available and the connection between the local system
and the remote system is working if the connection is
using a PPC Gateway server.

Check the value that is specified in the CD entry for
the AllocateTimeout attribute, or the Timeout on
allocate if you are using the IBM TXSeries
Administration Tool (on Windows systems), or Timeout
on allocate (in seconds) field if you are using AIX
SMIT. The configuration of the CD entries is described
in:

+ |“Configuring CD entries for CICS PPC TCP/IP” on|
page 47]
¢ ["Using SMIT to configure CD entries (AIX only)” on]

page 52|
* [“Configuring CICS for PPC Gateway server SNA|
support” on page 89|

You can change the configured value, which is
described in:
* |"Changing the attributes of a PPC Gateway server”|

on page 188|

15a00004/15a0010d Synclevel Not Supported Locally

Explanation: The local system cannot support the
requested synchronization level. This is usually because
the transaction has requested a higher synchronization
level than is supported on the connection. The type of
connection is configured in the ConnectionType
attribute of the CD entry that is specified in the SYSID
option for the intersystem request. |”Designing you;l
[network configuration” on page 5| describes the
different types of connections and the synchronization
levels that they support. [“Ensuring data integrity with|
|synchronization support” on page 1€ describes the
synchronization levels, and their uses in intersystem
requests.

System action: The communications conversation has
not been started, or has been terminated.

User response: Examine the CD entry that the request
uses. Check whether the ConnectionType is correct.
Check the type of intersystem request that the
application is making, and that the synchronization
level that is requested is supported on the connection.
If using distributed transaction processing (DTP), check
the SYNCLEVEL option that is used on CONNECT
PROCESS. Refer to the [TXSeries for Multiplatforms|
|Application Programming Reference| for more information.
Make any necessary changes to the CD entry or the
application, and rerun the request.

15a00004/15a00103 Invalid Convid

Explanation: An invalid conversation identifier has
been used on a call to an intersystem communications
function.

System action: The communications function is not
processed.

User response: If using distributed transaction
processing (DTP), check whether the CONVID option
on EXEC CICS calls is set correctly. If the problem
remains, contact your service representative.

15a00004/15a00104 Invalid Mode/Partner LU alias

Explanation: An intersystem request was unsuccessful
because either the modename, or the remote system
name is not correctly configured in SNA.

224 TXSeries for Multiplatforms: CICS Intercommunication Guide

The modename can be specified in:
¢ The PROFILE option of an EXEC CICS ALLOCATE
command

¢ The SNAModeName attribute of the Transaction
Definitions (TD) entry for the transaction that is
issuing the intersystem request

e The DefaultSNAModeName attribute of the
Communications Definitions (CD) entry

* The local SNA product

Refer to [“Default modenames” on page 110| for more
information about SNA modenames.

The remote system name is specified by using the
RemoteLUName, RemoteNetworkName, and
SNAConnectName attributes of the Communications
Definitions (CD) entry that the intersystem request
uses. Those attributes must be consistent with the
configuration in both your local SNA product and the
remote system.

System action: The intersystem request is
unsuccessful.

User response: Examine the CICS message logs and
the definitions that are used by the issuing transaction,
to determine which remote system and modename is
requested. Ensure that the configuration in CICS is
consistent with the configuration that is in your local
SNA product and remote system. Rerun the request
after you have corrected the error.

15a00004/15a00105 Invalid Parameter

Explanation: An unrecognized parameter, such as a
local or partner LU name, has been used on an
intersystem request. If the intersystem request was
received from a remote system, the error might be that
the remote system is not correctly defined in the
Communications Definitions (CD). If the intersystem
request is issued by a local transaction, the error might
be that the application has requested invalid options.
Possible reasons for this are:

¢ The local LU name that is used on the request is not
correctly defined to your SNA product.

* The local LU name is being used by more than one
PPC Gateway server or CICS region.

* The remote system names that are configured in the
RemoteLUName and SNAConnectName attributes
of the CD entry are incorrect or are not configured in
your SNA product.

¢ The application has requested an invalid option.

If the CD entry for the remote system is correct and a
valid intersystem request is being issued, this error
could be caused by incompatible versions of the
software that your region is using.

System action: The parameter is ignored and the
intersystem request might abnormally terminate.

User response: Examine the console.nnnnnn file and
the CSMT log for additional messages that might
describe the cause of this error. If additional messages
are produced, follow the instructions for these
messages. Also look for messages from your SNA
product or PPC Gateway server if you are using one. If
no additional messages are produced, check whether
the levels of software that are used by your region are
compatible. In addition, if you are using a SNA
product, a PPC Gateway server, or both, ensure that
they are also compatible with your CICS region.

15a00004/15a00110 Exchange log name failed

Explanation: The PPC Gateway server attempted to
set up a synchronization level 2 conversation with a
remote system across SNA, but was unable to exchange
log names with it.

System action: The communication conversation has
not been started.

User response: See ['PPC Gateway server message|
|descriptions” on page 232| for a description of how to
find the PPC Gateway server message file, and how to
use it to solve the exchange log name problem. Search
the message file for messages about log name exchange
for the local and remote systems, and follow the
instructions for the message. When the exchange has
completed successfully, retry the request.

15a00005/15a00108 State Error

Explanation: The communications verb is not allowed
in this particular conversation state.

System action: The communications conversation is
abnormally terminated.

User response: If using distributed transaction
processing (DTP) check whether the front-end and
back-end transactions that are involved in the
communications conversation are correct. Refer to
[state numbers” on page 331| for more information. If
this problem remains, contact your service
representative.

15a00005/15a00111 Backout required

Explanation: The transaction is in backout (or
rollback) required state, because it received a backout
request from the remote system, or because a previous
synchronization level 2 intersystem request abnormally
terminated. When in this state, the transaction must
issue an EXEC CICS SYNCPOINT ROLLBACK
command. The transaction did not issue a rollback
command, and the command that it did issue failed
with this error code.

System action: CICS abnormally terminates the
intersystem request.

User response: Examine, then correct, the logic of the
transaction program to ensure that it issues an EXEC

Chapter 9. Intersystem problem determination 225

CICS SYNCPOINT ROLLBACK command when in
backout required state. The CSMT log might show
additional messages that help you identify the
command that was issued and caused this error.

15a00006/15a0010c Local SNA not initialized

Explanation: An intersystem request is using a
Communications Definitions (CD) entry that is
configured to use local SNA. However, local SNA is not
enabled in your region.

System action: CICS abnormally terminates the
intersystem request.

User response: Configure your region to use local
SNA (as described in [‘Configuring CICS for local SNA|
[support” on page 70), and retry the request.

15a00006/15a00106 Communications Protocol Specific
Error

Explanation: A communications protocol specific
failure has occurred. This might occur if a transaction
has been abnormally terminated.

System action: The communications conversation fails.

User response: If the problem remains, contact your
service representative.

15a00007/a0000100 Conversation Failure

Explanation: The conversation to the remote system
has failed.

System action: The communications conversation has
been terminated.

User response: Check whether the remote system is
available and whether the link between the local
system and the remote system is working.

15a00007/10086021 Transaction Unknown on Remote
System

Explanation: The transaction is not known by the
remote system.

System action: The communications conversation has
not been started, or has been terminated.

User response: Check whether the transaction is
defined on the remote system.

Check whether the communication products that are
used by the remote system are available.

15a00007/10086031 PIP Data Not Supported by the
Remote System

Explanation: A CICS transaction sent Process
Initialization Parameter (PIP) data to a remote system
that does not support PIP data. The use of PIPLENGTH
and PIPLIST on the EXEC CICS CONNECT PROCESS

is not allowed on this conversation.

System action: The conversation state is switched to
FREE.

User response: If using distributed transaction
processing (DTP), check the usage of PIPLENGTH and
PIPLIST on the calls to EXEC CICS CONNECT
PROCESS. Refer to the [TXSeries for Multiplatforms)
|Application Programming Reference| for more information.
Also check the SNA configuration in the remote system
because it might be possible to enable PIP data.

15a00007/10086032 PIP Data Incorrectly Specified

Explanation: A CICS transaction sent incorrectly
specified Process Initialization Parameter (PIP) data to a
remote system. The remote system rejected the PIP
data. PIP data is passed by using the PIPLENGTH and
PIPLIST options on the EXEC CICS CONNECT
PROCESS is command.

System action: The connection will not be made.

User response: If using distributed transaction
processing (DTP), check the usage of PIPLENGTH and
PIPLIST on the calls to EXEC CICS CONNECT
PROCESS. If the problem remains, contact your service
representative. Refer to the|TXSeries for Multiplatforms)
|Application Programming Reference| for more information.

15a00007/10086034 Conversation Type Mismatch

Explanation: An attempt has been made to allocate a
mapped conversation, but the remote system was
expecting a basic conversation. CICS supports only
mapped conversations, so the remote system and
program need to be changed.

This error can also occur if CICS receives a request
from a remote system to attach a basic conversation

System action: The communications conversation has
not been started, or has been terminated.

User response: Change the configuration and the
program in the remote system so that it can accept a
mapped conversation from your region. then rerun the
request.

15a00007/10086041 Sync Not Supported by Remote
Program or System

Explanation: Indicates that synchronization level 2
conversations are not supported.

System action: CICS abnormally terminates the
intersystem request.

User response: If using distributed transaction
processing (DTP), check the SYNCLEVEL option that is
used on CONNECT PROCESS. Refer to theiTXSeries fo;l
[Multiplatforms Application Programming Reference| for
more information.

226 TXSeries for Multiplatforms: CICS Intercommunication Guide

15a00007/80£f6051 Security Violation

Explanation: The remote system has rejected an
intersystem request because the local transaction, or the
local region, does not have the authority to access the
required resource. The reason could be:

¢ The Communications Definitions (CD) entry that is
defined in your region for the remote system is not
configured to send user IDs. (Refer to the
OutboundUserlds attribute of the CD.)

* The user ID that is associated with the local
transactions does not have enough authority on the
remote system to access the resources that are
requested in the intersystem request.

System action: CICS abnormally terminates the
intersystem request.

User response:

¢ Check whether the CD entry is configured to flow
user IDs (OutboundUserlds=sent).

* Check whether the security configuration in the
remote system allows your local region, and the user
ID of the user who is making the intersystem
request, to gain access to the required resource.

Refer to [Chapter 6, “Configuring intersystem security,”|
I(_)n page 123| for more information about how to
configure for security.

User response: Look for additional error messages in
both the local and remote system that might indicate
the cause of the network failure. If using distributed
transaction processing (DTP), check whether the
front-end and back-end transactions that are involved
in the communications conversation are correct. Refer
to|“Communicating errors across a conversation” on|

|Eage 295| for more information.

If the problem remains, contact your service
representative.

15a00007/8640001 Conversation Abnormal Termination

Explanation: The remote system has performed an
EXEC CICS ISSUE ABEND.

System action: The communications conversation is
abnormally terminated.

User response: Look for additional error messages in
both the local and remote system that might indicate
the cause of the network failure. If using distributed
transaction processing (DTP), check whether the
front-end and back-end transactions that are involved
in the communications conversation are correct. Refer
to [“Communicating errors across a conversation” on|

|Eage 295| for more information.

If the problem remains, contact your service
representative.

15a00007/84b6031 Remote Transaction Temporarily
Not Available

Explanation: The transaction is known at the remote
system, but cannot be started.

System action: The communications conversation has
not been started, or has been terminated.

User response: Look at the errors that are logged by
the remote system. Determine why the transaction is
not available on the remote system at the present time.

15a00007/84c0000 Remote Transaction Not Available

Explanation: The transaction is known at the remote
system, but cannot be started.

System action: The communications conversation has
not been started, or has been terminated.

User response: Look at the errors that are logged by
the remote system. Determine why the transaction is
not available on the remote system.

15a00007/8640000 Conversation Abnormal Termination

Explanation: The remote program or system has
performed an EXEC CICS ISSUE ABEND.

System action: CICS abnormally terminates the
intersystem request.

15a00007/8640002 Conversation Abnormal Termination

Explanation: The remote system has abnormally
terminated the conversation because of a timeout.

System action: The communications conversation is
abnormally terminated.

User response: Look for additional error messages in
both the local and remote system that might indicate
the cause of the network failure. If using distributed
transaction processing (DTP), check whether the
front-end and back-end transactions that are involved
in the communications conversation are correct. Refer
to [“Communicating errors across a conversation” on|
|Eage 295| for more information.

If the problem remains, contact your service
representative.

15a00008/15a00107 Conversation Terminated Normally

Explanation: The remote system has terminated the
conversation normally.

System action: The communications conversation ends
normally, but unexpectedly.

User response: Look for additional error messages in
both the local and remote system that might indicate
the cause of the network failure. If using distributed
transaction processing (DTP), check whether the
front-end and back-end transactions that are involved

Chapter 9. Intersystem problem determination 227

in the communications conversation are correct. Refer
to the description of FREE in the [TXSeries for]
Multiplatforms Application Programming Reference for
more information.

If the problem remains, contact your service
representative.

15a00009/8240000 Backed Out

Explanation: The remote system has requested that

work that has been done since the last sync point be
backed out. This indicates that the transaction has been
abnormally terminated.

System action: The local transaction will back out to
the previous sync point.

User response: Check for any error messages that are
logged by the remote system. Refer to the description
of the [[XSeries for Multiplatforms Application|
|Programming Referencd for more information.

PPC Gateway server problem determination

The PPC Gateway server uses the standard CICS Toolkit trace facilities to generate
its messages and its trace. This means that the style and content of its output is
very different from the CICS messages and trace that is described in [TXSeries fo;i

Multiplatforms Messages and Codes|and [TXSeries for Multiplatforms Problem|

Determination Guide] The following information describes the general layout of the

PPC Gateway server’s messages and trace and provides explanations of some of
the messages that you might see.

Format of PPC Gateway server messages and trace

The PPC Gateway server produces messages and trace that are in the same format.
Below is an example of a PPC Gateway server message, showing the information

that it contains.

message header

message text

[

\ (
1 37944 94/10/11 12:02:08.828956 74183c38 A Initialized....

\

L——» Thedate

— Thethreadidentifier

L Thetype of message ortrace entry

L——» Themessage catalognumber

L—— Thetime

L—» Theoperating system process identifier (pid)

Figure 87. Example PPC Gateway server message

Table 41] shows the different message types the PPC Gateway server uses. Refer to

“PPC Gateway server message descriptions” on page 232|for descriptions of

individual messages.

Table 41. Message types

Designator |Description

A These messages are named audit messages. They record significant events
that occur while the PPC Gateway server is running. The text that appears in
the message is free format. Here is an example (this message is produced
when the PPC Gateway server has completed initialization):

31 22644 96/01/01-19:43:43.744425 74182e16 A Ready...

228 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 41. Message types (continued)

Designator

Description

W

These messages are named attention messages. They record unexpected
events that occur while the PPC Gateway server is running. Here is an
example of an attention message:

31 22644 96/01/01-19:43:43.744425 a0040437 W System crash
imminent, machine Tow on swap space. (0x74183027) : ppc_gwy

The first line of text describes the error condition. The second line, that
describes where in the PPC Gateway server code the message was produced,
is in two parts. The first part contains the value, in parentheses, of the NLS
message number (0x74183027 in the example). The second part, which is
separated by a colon (:), is the name of the component within the PPC
Gateway server that produced the attention (ppc_gwy in our example). The
component name is useful if you have to investigate a problem, because it is
possible to switch on the PPC Gateway server trace so that it is produced
only by a particular component. The attention message might indicate which
component is failing and, therefore, which component to trace.Need to
replace this with an example that does not mention

These messages are named fatal messages and are issued just before the PPC
Gateway server exits. They indicate that an event has occurred which the
PPC Gateway server can not process. Here is an example of a fatal error
message that was produced by the PPC Gateway server. Notice that it
follows a similar format to the format of the attention message above:

31 22644 96/01/01-19:43:43.744425 50400415 F unable to
create signal handler thread

When these messages occur, the PPC Gateway server writes as much
debugging information as it has to a file named EncinaBacktrace.pid, where
pid is the operating system process identifier for the failed PPC Gateway
server process. This file is written to the directory in which you started the
PPC Gateway server. You can format it by using the interpretTrace utility as
follows:

interpretTrace < EncinaBacktrace.pid > outputfile

The remaining types of PPC output are trace entries. This trace is designed for use
by the PPC developers. Therefore, a precise definition of the contents of the PPC
Gateway server trace is not published. Because it is often possible to follow the
trace output, a general overview is given below:

Table 42. Trace types

Designator

Description

>

This is a function entry trace point. It is produced on entry to a function if
trace is switched on. Here is an example that contains the function name,
followed by the source file and component to which the function belongs:

31 22644 96/01/01-19:43:43.744425 30349826 > ppc_sna0S_Open
ppc_sna0S.c ppc_sna

Chapter 9. Intersystem problem determination 229

Table 42. Trace types (continued)

Designator

Description

<

This is a function exit trace point. It is produced on exit from a function if
trace is switched on. Two types of exit trace are possible. Which trace is used
depends on whether the function returns datat. An example of each is shown
below:

31 22644 96/01/01-19:43:43.744425 00000006 < ppc_sna0S_Init
ppc_sna0S.c ppc_sna

31 22644 96/01/01-19:43:43.744425 28040c00 <R ppc_sna0S_Open
ppc_sna0S.c ppc_sna -> 7601a003

The first example shows the exit from ppc_snaOS_Init, which is a function
that returns no data (a void function). The second example shows the exit
from ppc_snaOS_Open which returns a return code. Most (but not all, so
beware when reading the trace) of these PPC functions return a ppc_status_t
return code, which are defined in:

install_directory/include/ppc/ppc_status.h

A value of 00000000 means that the function was successful; a hexadecimal
value that begins with 7601a indicates an unsuccessful response. The
translateError command can be used to find out what the unsuccessful
response was. This is how you would find out what the 7601a003 response
meant:

§ translateError 0x7601a003
ENC-ppc-003: Allocate failure, retry

The output of translateError is in the same format as that which CICS uses
to display return codes from the PPC Gateway server in the CICS messages.
Note that translateError is NLS enabled. If you see the following output:

$ translateError 0x7601a003
ENC-ppc-003

Check that your LANG environment variable is set up correctly.

This is a trace entry that shows the parameters that are passed to a function.
The contents of this type of trace entry varies widely, depending on the
function, and might span several lines. Here are some examples:

31 22644 96/01/01-19:43:43.744425 28040c23 P address:
0x202359a8
31 22644 96/01/01-19:43:43.744425 28040c01 P =datalengthP:
16, *requesttosendP: 0
*whatDataReceivedP: PPC_RECEIVED_DATA COMPLETE,
*whatControlReceivedP: PPC_RECEIVED_CONTROL_SEND

This final type of trace is an event trace. It can be used to show the data that
the PPC Gateway server is processing, or error conditions. Here are some
examples:

31 22644 96/01/01-19:43:43.744425 04800017 E ppc Config:
Adding SNA tpn[3] : CEMT

31 22644 96/01/01-19:43:43.744425 10043819 E result mask:
00000000

Tracing a PPC Gateway server

Tracing in a PPC Gateway server is controlled by the -t and -T parameters of the

cicsppcgwy.

The -t option tells the PPC Gateway server which components in the PPC Gateway
server to trace. Here are some examples of PPC Gateway server components:

230 TXSeries for Multiplatforms: CICS Intercommunication Guide

ppc_sna
This component issues the calls to your SNA product. Tracing ppc_sna
shows you the calls that are being made and the responses given.

ppc_gwy
This component provides the overall control for the PPC Gateway server.
Tracing ppc_gwy shows you the requests that the PPC Gateway server is

processing.

ppc_tcp
This component controls the communications to your CICS region across
TCP/1P.

ppc_snp
This component controls sync point and backout processing.

ppc_rsn
This component controls resynchronization.

To turn tracing on in a component, specify the component name followed by :0x1f.
For example:

-t ppc_sna:0x1f
You can specify more than one component as follows:
-t ppc_sna:0x1f:ppc_gwy:0x1f

The -T parameter specifies where the trace information is written to. If you do not
specify a -T parameter, the destination for trace is the internal ring buffer in the
PPC Gateway server. This is a cyclic buffer so only the most recent trace is kept.
You can display the contents of the ring buffer by using the tkadmin dump
ringbuffer. The trace information is also dumped to the EncinaBacktrace file that
the PPC Gateway server produces when it exits unexpectedly. Using the ring
buffer is useful if the PPC Gateway server has to run for a while before the
problem that you are trying to trace occurs. If you want the trace to be written to
the same file asare the PPC Gateway server messages, specify -T all:stdout. If you
want the trace to be written to another file, specify -T all:filename. This command
also causes the PPC Gateway server messages to be written to this file.

The example below shows the:
/.:/cics/ppc/gateway/cicsgwy

PPC Gateway server being started with components ppc_sna and ppc_gwy tracing.

The output will be written to the PPC Gateway server’s message file:

/var/cics_servers/GSD/cics/ppc/gateway/cicsgwy/msg

% cicsppegwy /.:/cics/ppc/gateway/cicsgwy -t ppc_sna:0x1f:ppc_gwy:\
0x1f -T all:/var/cics_servers/GSD/cics/ppc/gateway/cicsgwy/msg

Note: Your PPC Gateway server can produce a large amount of trace output so, if
you have requested that the trace be sent to a file, ensure that there is plenty
of disk space available. Trace also slows down the PPC Gateway server.
Therefore, use it only when you are trying to solve a problem.

Chapter 9. Intersystem problem determination 231

PPC Gateway server message descriptions

While the PPC Gateway server is running it writes messages to a file that is in a
directory under /var/cics_servers. For example, if the PPC Gateway server is

named:

/.:/cics/ppc/gateway/cicsgwy

the message file is named:

/var/cics_servers/cics/ppc/gateway/cicsgwy/msg

Below are descriptions for common PPC Gateway server messages. They are
sequenced by message type as follows:

* Audit messages (A)
* Attention messages (W)
* Fatal messages (F)

(Refer to [“Format of PPC Gateway server messages and trace” on page 228| for

information about PPC Gateway server message types.) Within each message type,
the messages are shown in alphabetical sequence.

Audit messages

A connection down: regionLU

Example:

A connection down: OPENCICS

Explanation: The PPC Gateway server cannot start a
listener for your CICS region’s Logical Unit (LU)
regionLU because your SNA product is unavailable. The
PPC Gateway server needs a listener in order to receive
intersystem requests from remote SNA systems.

System action: The PPC Gateway server repeatedly
tries to start the listener.

User response: Restart your SNA product.

A Connection Failure during Resynchronization for
tid: tld, luwid: luwld. localLu: regionLU - partnerLu:
remoteSystem

Example:
A Connection Failure during Resynchronization for tid: 0x2, luwid: 0x207e797c
{length: 16, TuName: MYSNANET.TESA232, instance: 7f09b9643173,
sequence: 1}. locallLu: OPENCICS - partnerLu: CICSESA
Explanation: The PPC Gateway server needs to
communicate with a remote system remoteSystem in
order to exchange log names or resolve the outcome of
a particular Logical Unit of Work (LUW). However, the
gateway cannot allocate a conversation to this remote
system. This could be because:
* Your SNA product is not running, or
* The link/connection to the remote system is down,
or
¢ The remote system itself is unavailable

The luwld is the SNA identifier for the LUW. It is
displayed in the following format:

luwid: address {length: [uNameLen, luName: [uName ,
instance: instance, sequence: seqo}

where:

* address is the address of the LUW record in the PPC
Gateway server’s storage

* [uName is the Logical Unit (LU) name of the
system/terminal that started the LUW

* [uNameLen is the length of [uName

* instance and segno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server will retry the
allocate request.

User response: Restore the connection to the remote
system so that the PPC Gateway server can
communicate with the remote system.

A Connection Failure during Resynchronization for
localLu: regionLU - partnerLu: remoteSystem

Example:
A Connection Failure during Resynchronization for locallu:

OPENCICS - partnerLu: CICSESA
Explanation: The PPC Gateway server needs to
communicate with a remote system remoteSystem in
order to exchange log names or resolve the outcome of
a particular Logical Unit of Work (LUW). However, the
gateway cannot allocate a conversation to this remote
system. This could be because:
* Your SNA product is not running or
* The link/connection to the remote system is down or
* The remote system itself is unavailable

System action: The PPC Gateway server will retry the
allocate request.

232 TXSeries for Multiplatforms: CICS Intercommunication Guide

User response: Restore communications with the
remote system so that the PPC Gateway server can
communicate with it.

A connection not available: regionLU

Example:

A connection not available: OPENCICS

Explanation: The PPC Gateway server cannot start a
listener for your CICS region’s Logical Unit (LU)
regionLU because your SNA product is unavailable. The
PPC Gateway server needs a listener in order to receive
intersystem requests from remote SNA systems.

System action: The PPC Gateway server repeatedly
tries to start the listener.

User response: Restart your SNA product.

A connection up: regionLU

Example:

A connection up: OPENCICS

Explanation: The PPC Gateway server has
successfully started a listener for your CICS region’s
Logical Unit (LU) regionLU. Inbound intersystem
requests to the CICS region will now be passed from
Communications Server for AIX to the PPC Gateway
server.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A gateway configuration local lu data written to log

Explanation: A CICS region has passed configuration
information to the PPC Gateway server and the PPC
Gateway server has saved this to its log file stored in
its logical volume.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A gateway configuration restore from log

Explanation: The PPC Gateway server has read all the
configuration information from its log file that is stored
in its logical volume.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A Initialized ...

Explanation: This message means that the PPC
Gateway server has completed initialization and is
ready for requests. When this message is displayed the
PPC Gateway server will accept acl_edit commands,
CICS configuration calls and intersystem requests from
both remote SNA systems and from your local CICS
region.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A local lu entry regionLU deleted

Example:

A local Tu entry OPENCICS deleted

Explanation: All configuration information for a
particular CICS region (for example, the region name)
has been deleted from the PPC Gateway server.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A local lu entry regionLU created

Example:

A Tocal lu entry OPENCICS created

Explanation: A CICS region has passed its region
name to the PPC Gateway server. The PPC Gateway
server needs this information to pass intersystem
requests from remote SNA systems to the CICS region.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A Log Name Mismatch during Resynchronization for
tid: tId, luwid: luwld. localLu: regionLU - partnerLu:
remoteSystem

Example:

A Log Name Mismatch during Resynchronization for tid: 0x2, Tuwid: 0x207e797c
(length: 16, TuName: MYSNANET.TESA232, instance: 7f09b9643173, sequence: 1)
locallLu: OPENCICS - partnerLu: CICSESA

Explanation: This message indicates that either the

PPC Gateway server, or the remote system, has been

cold started while one or more incomplete logical units

of work (LUW) are outstanding. This is a potentially
serious condition because when a system is cold

started, its old log file is discarded and replaced by a

new, empty, log file. Therefore, it loses all the

information about incomplete LUWs. When this
happens, the PPC Gateway server and the remote
system cannot decide the outcome (commit or backout)

Chapter 9. Intersystem problem determination 233

for these incomplete LUWSs, and human intervention is
required.

The luwld is the SNA identifier for the LUW. It is
displayed in the following format:

luwid: address {length: [uNameLen, luName: [uName ,
instance: instance, sequence: seqno}

where

* address is the address of the LUW record in the PPC
Gateway server’s storage

* [uName is the Logical Unit (LU) name of the system
or terminal that started the LUW

* IluNameLen is the length of [uName and

* instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server continues
processing. It might retry the request to resolve the
LUW outcome with the remote system. Until this
condition is resolved, your CICS region cannot use
synchronization level 2 intersystem requests to the
remote system.

User response: Work down the instructions shown
that are below. After you have completed each step,
check whether the problem is solved. If it is, stop. Each
step that you take is more severe and the affects might
be more widespread, so your aim is to solve the
problem with as little intervention as possible.

1. Stop the PPC Gateway server, then restart by using
an auto start.

2. Delete the resynchronization records from the PPC
Gateway server. (Refer to [‘Canceling pending]
resynchronizations in the PPC Gateway server” on|
[page 206| for information about how to do this).
Then shutdown and auto start the PPC Gateway
server. (See [“Starting a PPC Gateway server” on|
page 186 |['Starting a PPC Gateway server” on page|
191| or [“Starting a PPC Gateway server” on page|
197.

3. Allow all current intersystem requests that are
running in the PPC Gateway server to complete
normally, then prevent new intersystem requests
from starting. Ensure that none of the remote
systems that have been communicating with the
PPC Gateway server has outstanding
resynchronizations. (If the remote system is CICS
Transaction Server for z/OS, outstanding or
pending resynchronizations exist if the Pen
indicator is set for the connection to your CICS
region when you issue CEMT INQUIRE
CONNECTION.) If outstanding resynchronizations
exist, activate the connection and allow the
resynchronizations to complete.

4. If these resynchronizations will not complete, delete
the resynchronization records from the remote
system. (For example if the remote system is CICS
Transaction Server for z/OS, refer to the CEMT SET
CONNECTION((xxxx) NOTPENDING command.)

5. Finally, shutdown the PPC Gateway server, and
restart by using a cold start. Then shutdown and
restart each of your local CICS regions that use the
PPC Gateway server.

A Log Name Mismatch during Resynchronization for
localLu: regionLU - partnerLu: remoteSystem

Example:

A Log Name Mismatch during Resynchronization for
locallLu: OPENCICS - partnerLu: CICSESA

Explanation: This message indicates that either the
PPC Gateway server, or the remote system, has been
cold started while one or more incomplete logical units
of work (LUW) are outstanding. This is a potentially
serious condition because when a system is cold
started, its old log file is discarded and replaced by a
new, empty, log file. Therefore, it loses all the
information about incomplete LUWs. When this
happens the PPC Gateway server and the remote
system cannot decide the outcome (commit or backout)
for these incomplete LUWSs, and human intervention is
required.

System action: The PPC Gateway server continues
processing. It might retry the request to resolve the
LUW outcome with the remote system. Until this
condition is resolved, your CICS region cannot use
synchronization level 2 intersystem requests with the
remote system.

User response: Work down the instructions shown
below. After you have completed each step, check
whether the problem is resolved. If it is, stop. Each step
that you take is more severe and the affects might be
more widespread, so your aim is to solve the problem
with as little intervention as possible.

1. Stop the PPC Gateway server, then restart by using
an auto start.

2. Delete the resynchronization records from the PPC
Gateway server. (Refer to[|“Canceling pending]

resynchronizations in the PPC Gateway server” onl|
page 20§| for information about how to do this).
Then shutdown and auto start the PPC Gateway
server. (See [“Starting a PPC Gateway server” on|

age 186)|“Starting a PPC Gateway server” on pagel
%or [‘Starting a PPC Gateway server” on page|
197,

3. Allow all current intersystem requests that are
running in the PPC Gateway server to complete
normally, then prevent new intersystem requests
from starting. Ensure that none of the remote
systems that have been communicating with the
PPC Gateway server has outstanding
resynchronizations. (If the remote system is CICS
Transaction Server for z/OS, outstanding or
pending resynchronizations exist if the Pen
indicator is set for the connection to your CICS
region when you issue CEMT INQUIRE
CONNECTION.) If outstanding resynchronizations

234 TXSeries for Multiplatforms: CICS Intercommunication Guide

exist, activate the connection and allow the
resynchronizations to complete.

4. If these resynchronizations will not complete, delete
the resynchronization records from the remote
system. (For example if the remote system is CICS
Transaction Server for z/OS, refer to the CEMT SET
CONNECTION (xxxx) NOTPENDING command.)

5. Finally, shutdown the PPC Gateway server, and
restart by using a cold start. Then shutdown and
restart each of your local CICS regions that use the
PPC Gateway server.

A Logging new Log name: logName for partner:
remoteSystem

Example:

A Logging new Log name: OBBF2D7A for partner: CICSESA

Explanation: The PPC Gateway server is about to
write to its local log file the name of the log file that is
used by the remote system remoteSystem. The PPC
Gateway server and the remote system send each other
their log file names whenever the connection between
them is acquired. By storing the name of a remote
systems’ log file, it is possible for the PPC Gateway
server to check whether the remote system is still using
the same log file when the PPC Gateway server
requests the outcome of a particular LUW.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A lu pair regionLU/remoteSystem will use old rule state
after bo and cc

Example:

A Tu pair OPENCICS/CICSMVS will use old rule state after bo and cc

Explanation: The remote CICS system has informed
the PPC Gateway server that it was written before
changes were made to the sync point part of the SNA
LU 6.2 architecture. This means that:

* If a TXSeries for Multiplatforms distributed
transaction processing (DTP) program has
conversations with one or more DTP programs that
are running on this remote system, and a rollback
(backout) occurs, the state of these conversations will
be:

— Send (state 2) if a backout request was sent to the
remote system on this conversation by use of the
EXEC CICS SYNCPOINT ROLLBACK command.

— Receive (state 5) if the conversation received a
backout request in the EIBSYNRB flag of the
EXEC Interface Block (EIB), and responded with
an EXEC CICS SYNCPOINT ROLLBACK
command.

¢ The remote system does not use a fully qualified
conversation correlator (CC) in resynchronization
requests. (This is part of the S.4 sync point option

set that is described in the SNA LU 6.2 Reference:
Peer Protocols (SC31-6808) manual.)

This behavior does not affect the PPC Gateway server’s
ability to participate in distributed logical units of work
(LUWSs) with this remote system. The only difference
that you might notice is that the state of DTP
conversations to this remote system after a DTP
program issues an EXEC CICS SYNCPOINT
ROLLBACK command might be different from what
you would have expected if the remote system used
the new SNA architected rules. (These new rules set the
conversation state to the value that it was at the
beginning of the LUW, if a backout occurs.)

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A lu pair regionLU/remoteSystem will not use flag byte
or bo with rip

Example:

A Tu pair OPENCICS/CICSESA will not use flag byte or bo with rip

Explanation: The remote system has informed the

PPC Gateway server that it:

* Does not support the use of the flag byte in SNA
presentation headers and

* Will not send a resynchronization in progress (RIP)
indicator with a backout request

These functions are part of the S.4 sync point option
set that is described in the SNA LU 6.2 Reference: Peer
Protocols (SC31-6808) manual. The absence of support
for these functions in the remote system does not affect
the PPC Gateway server’s ability to participate in
distributed logical units of work with this remote
system.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A LU pair disconnect: regionLU/remoteSystem

Example:

A LU pair disconnect: OPENCICS/CICSESA

Explanation: The connection between the local CICS
region regionLU and the remote system remoteSystem
has been released (shutdown). This might have
occurred because the remote system or the network has
failed, or it might be as a result of operator action.

System action: The PPC Gateway server continues
processing.

User response: Determine why the connection was
released. If it is because of a network failure and the

Chapter 9. Intersystem problem determination 235

connection is currently required, attempt to restore it.

A new config data

Explanation: This message means that the PPC
Gateway server has been cold started and so has no
record of your CICS region and its transactions. Until
your CICS region has configured the PPC Gateway
server, the PPC Gateway server cannot send or receive
intersystem requests on behalf of your CICS region.
Also, it cannot exchange log names with a remote
system for your region.

System action: The PPC Gateway server continues
processing.

User response: When the PPC Gateway server
displays the "Initialized...” message, restart your CICS
region. This causes CICS to pass to the PPC Gateway
server all the information that is needed in order to
send and receive intersystem requests on behalf of your
CICS region.

A Normal gateway server shutdown scheduled

Explanation: The PPC Gateway server has been
requested to shutdown normally. The PPC Gateway
server exits when all the intersystem requests that are
running in the PPC Gateway server have completed.

System action: The PPC Gateway server stops
accepting new intersystem requests. It monitors the
intersystem requests that are still running, and when
they are completed, the PPC Gateway server shuts
down.

User response: This message is for information only.
No action is required.

A Normal gateway server shutdown with no
conversations

Explanation: The PPC Gateway server is about to
shutdown. No outstanding intersystem requests are
running in the PPC Gateway server.

System action: The PPC Gateway server shuts down.

User response: This message is for information only.
No action is required.

A Partner Detected Protocol Violation:
Resynchronization for tid: tId, luwid: luwld. localLu:
regionLU - partnerLu: remoteSystem

Example:
A Partner Detected Protocol Violation: Resynchronization for tid: 0x2, Tuwid: 0x207e797c

{length: 16, TuName: MYSNANET.TESA232, instance: 70f9b9463713, sequence: 1}.
TocallLu: OPENCICS - partnerLu: CICSESA

Explanation: The remote system remoteSystem
abnormally terminated a conversation with the PPC
Gateway server that was being used to resolve the
outcome of a particular LUW. The reason for this could
be that the process on the remote system that was

controlling the conversation was canceled, or it failed.
(For example, if the remote system is CICS Transaction
Server for z/OS, CICS/MVS, or CICS/VSE, this would
occur if the CLS2 transaction was purged.)
Alternatively, the remote system might have detected a
protocol error that the PPC Gateway server made.

The Iuwld is the SNA identifier for the LUW. It is
displayed in the following format:

luwid: address {length: [uNameLen, luName: [uName ,
instance: instance

where

* address is the address of the LUW record in the PPC
Gateway server’s storage

* [uName is the Logical Unit (LU) name of the system
or terminal that started the LUW

* [uNameLen is the length of luName

* instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server retries the
request.

User response: Look for messages on the remote
system that might explain why the conversation was
abnormally terminated. If this is a persistent problem,
take a trace of the SNA link while the PPC Gateway
server is trying the request and contact the service
representative.

A Partner Detected Protocol Violation:
Resynchronization for localLu: regionLU - partnerLu:
remoteSystem

Example:
A Partner Detected Protocol Violation: Resynchronization for

TocallLu: OPENCICS - partnerLu: CICSESA
Explanation: The remote system remoteSystem
abnormally terminated a conversation with the PPC
Gateway server that was being used to exchange log
names. The reason for this could be that the process on
the remote system that was controlling the conversation
was canceled, or it failed. (For example, if the remote
system is CICS Transaction Server for z/OS,
CICS/MVS, or CICS/VSE, this would occur if the CLS2
transaction was purged.) Alternatively, the remote
system might have detected a protocol error that the
PPC Gateway server made.

System action: The PPC Gateway server retries the
request.

User response: Look for messages on the remote
system that might explain why the conversation was
abnormally terminated. If this is a persistent problem,
take a trace of the SNA link while the PPC Gateway
server is trying the request, and contact the service
representative.

236 TXSeries for Multiplatforms: CICS Intercommunication Guide

A Ready for additional configuration ...

Explanation: The PPC Gateway server is part way
through initializing. When the A Initialized ...
messages is displayed, the PPC Gateway server is
ready for intersystem requests.

System action: The PPC Gateway server continues
initializing.

User response: This message is for information only.
No action is required.

A security disabled

Explanation: The PPC Gateway server writes this
messages during its initialization if it was started with
a ProtectionLevel set to none. (Refer to section

“Viewing the attributes of a PPC Gateway server” on|

A Resynchronization Completed Successfully: for tid:

tld, luwid: luwld. localLu: regionLU - partnerLu:
remoteSystem

Example:
A Resynchronization Completed Successfully: for tid: 0x6, luwid

0x205a3990 {length: 16, luName: MYSNANET.TESA232, instance:

eaf6l2febe30, sequence: 1}. TocalLu: OPENCICS - partnerLu: CICSESA
Explanation: The PPC Gateway server has
successfully completed a resynchronization request
with remoteSystem.

The luwld is the SNA identifier for the LUW. It is
displayed in the following format:

luwid: address {length: [uNameLen, luName: [uName ,
instance: instance

where

* address is the address of the LUW record in the PPC
Gateway server’s storage

* [uName is the Logical Unit (LU) name of the system
or terminal that started the LUW

* [uNameLen is the length of luName

* instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A Resynchronization Completed Successfully: for
localLu: regionLU - partnerLu: remoteSystem

Example:

A Resynchronization Completed Sucessfully: for
TocallLu: OPENCICS - partnerLu: CICSESA

Explanation: The PPC Gateway server has
successfully completed a exchange log names request
with remoteSystem.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

page 188 for information about viewing the attributes
of the PPC Gateway server.) This means that the PPC
Gateway server does not check the identity of any
CICS region (or PPC executive application such as
ppcadmin) that makes requests to it.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

A Signal -- Forced gateway server shutdown

Explanation: The PPC Gateway server has been
requested to shutdown immediately. Before exiting, it
closes its log file and abnormally terminates any
intersystem requests that are using the PPC Gateway
server.

System action: The PPC Gateway server abnormally
terminates all intersystem requests that are running in
the PPC Gateway server, and shuts down.

User response: This message is for information only.
No action is required.

A Signal -- Normal gateway server shutdown

Explanation: The PPC Gateway server has been
requested to shutdown normally. The PPC Gateway
server exits when all the intersystem requests that are
running in the PPC Gateway server have completed.

System action: The PPC Gateway server stops
accepting new intersystem requests. It monitors the
intersystem requests that are still running, and when
they are completed, the PPC Gateway server shuts
down.

User response: This message is for information only.
No action is required.

A SIGUSR1 received (probably from AIX SNA) and
ignored

Explanation: The operating system has passed a
SIGUSRI (value 30) signal to the PPC Gateway server.
This signal usually indicates that a SNA connection to a
remote system has shutdown unexpectedly.

System action: The PPC Gateway server continues.
Any intersystem requests that are using the SNA
connection that has shutdown might abnormally
terminate.

User response: Look for further messages that are
produced by the PPC Gateway server. These might

Chapter 9. Intersystem problem determination 237

indicate which connection has shut down. Follow the
instructions for these messages.

A sna relay allocate failure, local LU = regionLU,
remote LU = remoteSystem, tpn = transld, status =
returnCode

Example:
A sna relay allocate failure, local LU = OPENCICS, remote LU = CICSESA,

tpn = CRSR, status = ENC-ppc-0001: Allocation failure, all sessions busy
Explanation: This message means that the PPC
Gateway server cannot route an intersystem request
from your CICS region (regionLlU) to a remote SNA
System (remoteSystem). The transld is the name of the
CICS transaction that failed and the returnCode
indicates why the request failed. Here are some
examples:

* ENC-ppc-0001: Allocation failure, all sessions busy

All the contention winner sessions that are currently
bound to the remote system are busy. If this is a
persistent error, and if you are using CICS for AIX,
use the sna -display sl command to determine how
many contention winner sessions are currently
bound between the remote system and your region.
These are shown in the Act ConW column. At least
one contention winner session should be shown for
each of the mode groups that are used between your
CICS region and the remote system. If this problem
is persistent, activate some more contention winner
sessions for your connection. If this fails, check your

SNA definitions to determine why contention winner

sessions cannot be bound.

* ENC-ppc-0002: Allocation failure, conversation type
mismatch

The remote SNA system has rejected the request for
transld because CICS is using an SNA mapped
conversation and the remote system expected a basic
conversation.

¢ ENC-ppc-0003: Allocation failure, no retry

Your SNA configuration has a problem that is
preventing your SNA product from starting an
intersystem request on the remoteSystem.

* ENC-ppc-0004: Allocation failure, retry

Your SNA product cannot start an intersystem
request on the remoteSystem. Check whether the
remote system is available. If it is running, you
might have an SNA configuration problem.

¢ ENC-ppc-0005: Allocation failure, PIP data not
supported

CICS has sent Process Initialization Parameter (PIP)
data with an intersystem request, but the remote
system does not support PIP data. If the intersystem
request is a:

Function shipping

Distributed program link

Asynchronous processing or

— Transaction routing request

CICS retries the request without PIP data. If the
intersystem request is a distributed transaction
processing (DTP) conversation, modify the CICS
transaction that issued the EXEC CICS CONNECT
PROCESS PROCNAME(transld) to start the DTP
conversation, so that the EXEC CICS CONNECT
PROCESS command does not specify the PIPLIST
and PIPLENGTH parameters.

* ENC-ppc-0006: Allocation failure, PIP data incorrectly
specified
A CICS transaction that is running on regionLU has
issued an EXEC CICS CONNECT PROCESS
command that specifies, using the PIPLIST and
PIPLENGTH parameters, Process Initialization
Parameter (PIP) data that has either:
— More than 16 PIP elements or
— A PIP elements that is longer than 64 bytes
— A PIP elements that contains a space character

* ENC-ppc-0008: Allocation failure, security violation

The intersystem request does not have enough
authority to run in the remote system.

* ENC-ppc-0009: Allocation failure, LU does not
support synchronization level

regionLU has requested a synchronization level 2
conversation, but the SNA remote system
remoteSystem does not support it. If the intersystem
request is a:

— Function shipping

— Distributed program link

— Asynchronous processing or

— Transaction routing request

CICS retries the request by using synchronization
level 1. If the intersystem request is a distributed
transaction processing (DTP) conversation, modify
the CICS transaction that issued the EXEC CICS
CONNECT PROCESS PROCNAME(transld)
SYNCLVL(2) to use synchronization level 0 or 1.

* ENC-ppc-0010: Allocation failure, TPN does not
support synchronization level

Transaction transld on the remote system does not
support the synchronization level that is requested
on the intersystem request.

¢ ENC-ppc-0011: Allocation failure, TPN unavailable,
no retry
A configuration error has occurred that is preventing
the remote system from starting the requested
transaction transld.

e ENC-ppc-0012: Allocation failure, TPN unavailable,
retry

The remote transaction transld is temporarily
unavailable.

¢ ENC-ppc-0013: Allocation failure, TPN unknown

The transaction transld is not recognized by the
remote system.

* ENC-ppc-0016: Connection failure, no retry

238 TXSeries for Multiplatforms: CICS Intercommunication Guide

A configuration error is either in your SNA product,
or in the SNA network. This error is preventing
suitable sessions from being bound between your
SNA product and the remote system.

¢ ENC-ppc-0017: Connection failure, retry

This could mean that:

— The remote system is unavailable

— The session that is being used for the intersystem
request has failed

— Not enough sessions are available for the request

— The connection to the remote system cannot be
started

¢ ENC-ppc-0025: Failure

The intersystem request has failed in an unexpected
way. Look for other messages that the PPC Gateway
server has produced that might indicate the cause of
the error.

¢ ENC-ppc-0032: Invalid LU name
This could mean that either of the following:

— Your CICS region has not configured the PPC
Gateway server. This means that the PPC Gateway
server is unable to process intersystem requests
from your region. Run the CGWY transaction to
configure the PPC Gateway server. Then rerun the
intersystem request.

— The regionLU or remoteSystem values contain
incorrect characters.

¢ ENC-ppc-0033: Invalid mode name

The transaction that is running on your region and
that issued the intersystem request, specified a
modename that the remote system does not
recognize. The modename might have been explicitly
specified either in the PROFILE option of the EXEC
CICS ALLOCATE command, or by the
SNAModeName attribute of the Transaction
Definitions (TD) entry. Alternatively, if a modename
was not specified in the PROFILE or the
SNAModeName attribute in the TD entry, CICS
would have used the default modename that was
specified in the DefaultSNAModeName attribute of
the Communications Definitions (CD) entry.

Refer to[“Default modenames” on page 110|for
further information on default modenames.

¢ ENC-ppc-0036: Invalid security level

Your region passed a user ID with the intersystem
request. However, the remote system does not expect
to receive user IDs. Either:

— Set OutboundUserIds=not_sent in the
Communications Definitions (CD) entry for the
remote system or

— Change the connection definition in the remote
system so that it can accept user IDs. For example,
if the remote system is CICS Transaction Server
for z/0OS, CICS/MVS, or CICS/VSE, set the
ATTACHSEC=IDENTIY in the CONNECTION
definition.

* ENC-ppc-0073: Connection failure, no retry BO

A configuration error is in either your SNA product,
or in the SNA network. This error is preventing
sessions from being bound between your SNA
product and the remote system.

* ENC-ppc-0074: Connection failure, retry BO

This could mean that:

— The remote system is unavailable

— The session that is being used for the intersystem
request has failed

— Not enough sessions are available for the request

— The connection to the remote system cannot be
started

* ENC-ppc-0079: Failure BO

The intersystem request has failed in an unexpected
way. Look for other messages that the PPC Gateway
server produces that might indicate the cause of the
€rTor.

A x [TCP & SNA] conversations active at the
Gateway. Waiting for all conversations to complete ...

Example:
A 2 [TCP & SNA] conversations active at the Gateway.

Waiting for all conversations to complete ...
Explanation: The PPC Gateway server is about to
shutdown. However, Outstanding intersystem requests
are running in the PPC Gateway server.

System action: The PPC Gateway server waits until:

 All intersystem requests that are using the PPC
Gateway server have completed, or

* It is requested to shut down immediately (in which
case it abnormally terminates all remaining
intersystem requests before it shuts down).

User response: This message is for information only.
No action is required.

A tcp relay allocate failure, local LU = regionLU,
remote LU = remoteSystem, tpn = transld, status =
returnCode

Example:
A tcp relay allocate failure, local LU = OPENCICS, remote LU = CICSESA,

tpn = XEMT, status = ENC-ppc-0013: Allocation failure, TPN unknown
Explanation: The PPC Gateway server cannot route an
intersystem request from a remote SNA system
(remoteSystem) to your cics region (regionLU). The
transld is the name of the CICS transaction that failed
and the returnCode indicates why the request failed.
Here are some examples:

* ENC-ppc-0002: Allocation failure, conversation type
mismatch

Your region has rejected the request for transid
because the remote system is using an SNA basic
conversation and your CICS region supports only
mapped conversations.

* ENC-ppc-0007: Allocation failure, transaction
scheduler failure

Chapter 9. Intersystem problem determination 239

The PPC Gateway server cannot contact regionLU.
Check whether regionLU is running and whether the
PPC Gateway server has been set up correctly to
communicate with it.

* ENC-ppc-0012: Allocation failure, TPN unavailable,
retry
Your CICS region is not running.

e ENC-ppc-0013: Allocation failure, TPN unknown

Your CICS region does not recognize the transaction
transld.

* ENC-ppc-0017: Connection failure, retry

Your CICS region, or the transaction transld failed
part way through the intersystem request.

¢ ENC-ppc-0025: Failure
The intersystem request has failed in an unexpected
way. Look for other messages that the PPC Gateway

server produces that might indicate the cause of the
error.

* ENC-ppc-0079: Failure BO
The intersystem request has failed in an unexpected
way. Look for other messages that the PPC Gateway

server produces that might indicate the cause of the
error.

A Time expired; Forced gateway server shutdown
with x SNA conversations

Example:

A Time expired; Forced gateway server shutdown with 3 SNA conversations

Explanation: The PPC Gateway server is shutting
down. x outstanding intersystem requests are running
in the PPC Gateway server, and these will be
abnormally terminated when the PPC Gateway server
shuts down.

System action: The PPC Gateway server abnormally
terminates the remaining intersystem requests, closes
its log file, and exits.

User response: This message is for information only.
No action is required.

A tpn not added: transld

Example:
A tpn not added: CEMT

A tpn not added: * resync *\

Explanation: The PPC Gateway server cannot listen

for intersystem requests for the transaction transld on

behalf of one of your CICS regions. The cause of this

problem could be:

* Your SNA product is not running.

¢ The SNA TPN profile that is configured in the
TPNSNAProfile attribute of the Transaction
Definitions (TD) entry for the transaction is not
defined and verified in your SNA product. A
possible reason for this is that the tpn profile name is

TDEFAULT, which was valid for CICS/6000® and
SNA services, but is not valid for AIX SNA
Server/6000 Version 2., or for Communications
Server for AIX.

* Another operating system process is already listening
for this transaction on behalf of your CICS region.
(Your SNA product will not allow two processes to
listen for your CICS region’s transactions if those
processes are using the same local LU name, because
it would not know to which process to pass inbound
requests.)

Refer to|“Configuring CICS for local SNA from the|
|command line” on page 75| for information about how
to configure Listener Definitions (LD) entries.

System action: The PPC Gateway server retries to
start the listener for your CICS region.

User response: First ensure your SNA product is
running and start it if necessary. If your SNA product is
running, check whether the TPN SNA profile is defined
in your SNA product. If it is, you must determine
which process is also listening for the transaction on
behalf of your CICS region. This could be an
independent SNA application program, or another PPC
Gateway server, or your CICS region’s local SNA
listener.

Check whether you are using a PPC Gateway server
and CICS local SNA support and whether the Gateway
Definitions (GD) entry in your region for the PPC
Gateway server has a different GatewayLUName from
that which is coded in the LocalLUName attribute of
the Region Definitions (RD). The easiest way to do this
is to look at your region’s startup messages because
they show the default LU name for your region (this is
used by your region’s local SNA listener) and the LU
name that is to be used by the PPC Gateway server.

If you have more than one CICS region, check whether
each region is using a different LU name.

List the PPC Gateway servers that are running on your
machine. (See [‘Listing the PPC Gateway servers|
[running on a machine” on page 189)) Look for two
copies of the same PPC Gateway servers running. (If
you discover that two PPC Gateway servers are
running for your CICS region, stop both of them by
using the kill command. Then restart a new copy of the
PPC Gateway server.)

Finally look for SNA applications that are running on
your machine and ensure that the SNA configuration
that they are using is different from the configuration
that your CICS regions are using.

A Unrecognized Error Occurred during
Resynchronization for tid: tid, luwid: [uwid. localLu:
regionLU - partnerLu: remoteSystem

Example:

240 TXSeries for Multiplatforms: CICS Intercommunication Guide

A Unrecognized Error Occurred during Resynchronization for tid: 0x10000,

Tuwid: 0x2081b97c {length: 16, luName: MYSNANET.TESA218,

instance: 8b706bb88c78, sequence: 1}. Tocallu: OPENCICS

- partnerLu: CICSESA
Explanation: This message means that a
resynchronization request to remoteSystem has failed.
Usually, the cause of this is that the ppcadmin
command has been used to cancel all resynchronization
requests to remoteSystem. However, this message might
also appear as a result of other events occurring when
the PPC Gateway server does not expect them.

The luwld is the SNA identifier for the LUW. It is
displayed in the following format:

luwid: address {length: [uNameLen, luName: [uName ,
instance: instance

where

* address is the address of the LUW record in the PPC
Gateway server’s storage

* [uName is the Logical Unit (LU) name of the system
or terminal that started the LUW

* [uNameLen is the length of [uName

* instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server might retry
the resynchronization request.

User response: Look for other error messages that

Attention messages

were produced at the same time as was this message,
and follow the instructions that are associated with
those messages. No specific action is required for this
message.

A Unrecognized Error Occurred during
Resynchronization for localLu: regionLU - partnerLu:
remoteSystem

Example:

A Unrecognized Error Occurred during Resynchronization for
TocallLu: OPENCICS - partnerLu: CICSESA

Explanation: An exchange log names request to
remoteSystem has failed. Usually, the cause of this that
the ppcadmin command has been used to cancel all
resynchronization requests to remoteSystem. However,
this message might also appear as a result of other
events occurring when the PPC Gateway server does
not expect them.

System action: The PPC Gateway server might retry
the exchange log names request.

User response: Look for other error messages that
were produced at the same time as was this message,
and follow the instructions that are associated with
those messages. No specific action is required for this
message.

W CreateLuEntry failed after add of local lu
ENC-ppc-0025: Failure

Explanation: The PPC Gateway server cannot use the
local LU name that CICS passes. This local LU name is
configured in the GatewayLUName attribute of the
Gateway Definitions (GD) entry fort the PPC Gateway
server.

System action: The PPC Gateway server cannot
receive incoming intersystem requests. Further
messages will be logged.

User response: Look at additional messages in the
PPC Gateway server message file, and follow the
instructions that are given in these messages.

W failed to restore local lu regionLU from config:
ENC-ppc-0025: Failure

Example:

W failed to restore Tocal Tu OPENCICS from config: ENC-ppc-0025: Failure
Explanation: This message might occur if the PPC

Gateway server is started while your SNA product is
not running.

System action: The PPC Gateway server keeps polling
to check whether your SNA product has been restarted.

User response: Start your SNA product and the links
and connections to remote systems.

W failed to restore tpn entries [regionLU] from config:
ENC-ppc-0055: SNA TPNs not configured

Example:

W failed to restore tpn entries [OPENCICS] from config:
ENC-ppc-0055: SNA TPNs not configured

Explanation: This message might occur if the PPC
Gateway server is started while your SNA product is
not running.

System action: The PPC Gateway server keeps polling
to check whether your SNA product has been restarted.

User response: Start your SNA product and the links
and connections to remote systems.

W listener getStatus error

Explanation: Your SNA product failed while the PPC
Gateway server was receiving a new intersystem
request from a remote SNA system.

System action: The intersystem request is discarded
and the PPC Gateway server starts polling to determine
whether your SNA product has been restarted.

User response: Start your SNA product and the links
and connections to remote systems.

W ppc_Extract failed (sna): returnCode

Example:

Chapter 9. Intersystem problem determination 241

W ppc_Extract failed (sna): ENC-ppc-0016: Connection failure, no retry

Explanation: The PPC Gateway server cannot receive
an intersystem request from a remote system.

System action: The PPC Gateway server abnormally
terminates the intersystem request.

User response: Look for other error messages that
were produced at the same time as was this message,
and follow the instructions that are associated with
those messages. No specific action is required for this
message.

W (SNA)EPERM: Primary group must be system

Explanation: The PPC Gateway server’s user ID does
not have its primary group set to a group name that is
trusted by Communications Server for AIX. Until this is
changed, the PPC Gateway server cannot receive:

e CICS user IDs

¢ Exchange lognames requests

* Resynchronization request

from remote systems.

System action: The PPC Gateway server continues
processing but all synchronization level 2 intersystem
requests and inbound security requests fail.

User response: List the attributes of the PPC Gateway
server to determine the user ID. (See ["Viewing the]
[attributes of a PPC Gateway server” on page 188) View
the attributes for the user ID by using the lsuser userid
command. The primary group is shown as the pgrp (it
is usually set to cics). Add the primary group name to
the SNA configuration, and activate this configuration.
Finally, stop and restart SNA and the link stations to
pick up the new group name.

W SNA_FAIL: Check sna system status (Issrc -s sna)
Explanation: Your SNA product is not running.

System action: The PPC Gateway server keeps polling
to check whether SNA has been restarted.

User response: Start your SNA product and the links
and connections to remote systems.

W SNA_NSLMT: Session resource limit encountered

Explanation: Your SNA product cannot bind any
additional session for the connection because the
session limit for the modename has been reached. The
causes of this problem are:

* Your CICS region is sending more simultaneous
intersystem requests that the modename is
configured to allow.

* Your CICS region has issued a synchronization level
2 request but your SNA product is not configured to
support synchronization level 2 requests. This means
that all the sessions for the connection are bound at

synchronization level 1. When the synchronization
level 2 request is made, your SNA product tries to
bind another session.

System action: The PPC Gateway server abnormally
terminates the intersystem request.

User response: Check whether your SNA product is
configured for synchronization level 2. If it is, ensure
that the definition of your modenames in your SNA
product allows for the number of simultaneous
intersystem requests that your CICS region might issue.

W SNA_PARMS: Internal bad parameter

Explanation: Your CICS region has issued an
intersystem request to a remote SNA system. This
request has failed because one of your SNA
configuration profiles contains an error. For example:

* A Communications Server for AIX LU 6.2 side
information profile does not exist for your CICS
region’s LU name.

* The default mode name is not set up in the
Communications Server for AIX LU 6.2 side
information profile for your CICS region.

* A Communications Server for AIX LU 6.2 partner
profile does not exist or is not set up correctly for the
remote system. (For example, the Partner LU alias
field is not set up.)

System action: The PPC Gateway server abnormally
terminates the intersystem request.

User response: Correct your SNA configuration so
that your SNA product has the information that it
needs to process the intersystem request.

W SNA_PROTOCOL: System protocol error

Explanation: The PPC Gateway server has called
Communications Server for AIX incorrectly. This
mighty be because of incorrect SNA configuration, or it
might be a programming error in the PPC Gateway
server code.

System action: The PPC Gateway server abnormally
terminates the current request. Further messages might
be logged.

User response: Look for additional messages in the
PPC Gateway server message file, and follow the
instructions that are given in these messages. Check the
SNA configuration that the PPC Gateway server uses,
and make any necessary correction.

If you cannot solve the problem yourself, contact your
support organization. |“Getting further help” on page|
describes the information that your support
organization requires.

242 TXSeries for Multiplatforms: CICS Intercommunication Guide

W sp support bits mismatch

Explanation: One of the remote SNA systems with
which the PPC Gateway server is communicating has
been upgraded so that it now supports a different set
of SNA options. This message does not affect
intercommunications with the remote system.

System action: The PPC Gateway server continues
processing.

User response: This message is for information only.
No action is required.

W System crash imminent, machine low on swap
space.

Explanation: The PPC Gateway server has received
the SIGDANGER signal from the operating system
kernel. This means that your machine is running short
of paging (swap) space. The PPC Gateway server
ignores this signal, but Communications Server for AIX
does not and terminates immediately.

System action: The PPC Gateway server continues
processing.

User response: If required, restart your SNA product.
If this error condition occurs regularly, you must
increase the paging space for your machine. Refer to
your AIX books for information about how to increase

paging space.

W unable to listen for resync tp on local LU regionLU:
returnCode

Example:

W unable to listen for resync tp on Tocal LU OPENCICS:
ENC-ppc-0055: SNA TPNs not configured

Fatal messages

F Invalid trace specification -- traceParameter

Example:

F Invalid trace specification -- "/var/cics_servers/ ... /cicsgwy/msg"

Explanation: The PPC Gateway server has been
started with an invalid -t or -T parameter. This is
shown in traceParameter.

Explanation: The PPC Gateway server cannot start a
listener for the SNA resynchronization transaction. The
returnCode indicated the reason for the failure.
* ENC-ppc-0055: SNA TPNs not configured

This means that either:

— Your SNA product is not running.

— The RESYNCTP TPN profile is not configured in
Communications Server for AIX. Enter

Issnaobj -t local_tp | grep RESYNCTP.

- You have previously configured your CICS region
to use a different gateway on this machine, and
the other gateway is still running. Either stop the
other gateway, or use ppcadmin to delete the
luentries.

— More than one copy of this PPC Gateway server is
running with the same LU name. Refer to the
description of the:

A tpn not added: transld
message for information about this problem.
* ENC-ppc-0088: Unknown LU Name

The local CICS region configured the PPC Gateway
server when your SNA product was unavailable.
Ensure that your SNA product is running, then
either:

— Stop and restart your region or

— Run the CGWY transaction

to reconfigure the PPC Gateway server with the
CICS region details.

System action: The PPC Gateway server retries the
request to start the listener.

User response: Correct the cause of the problem.

System action: The PPC Gateway server terminates
immediately.

User response: Restart the PPC Gateway server with
correct parameters.

Table 43. Authority required by PPC Gateway Server

CDS directory Access required by the cics_ppcgwy group.
/. r--t---

/.:/cics r—-t-—

/.:/cies/trpe rwdtcia

/.:/cics/ppc rwdtcia

/.:/cics/ppc/gateway rwdtcia

Chapter 9. Intersystem problem determination 243

244 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 4. Writing application programs for intercommunication

This part describes how to write application programs that will be used in a
distributed CICS network.

Table 44. Road map

If you want to... Refer to...

Read about writing applications that use Chapter 10, “Distributed program link|
distributed program link (DPL),” on page 247

Read about writing applications that use Chapter 11, “Function shipping,” on paged
function shipping 257

Read about writing applications that use Chapter 12, “Transaction routing,” on page|
transaction routing 263

Read about writing applications that use Chapter 13, “Asynchronous processing,” on|
asynchronous processing page 273|

Read about writing applications that use Chapter 14, “Distributed transaction|
distributed transaction processing brocessing (DTP),” on page 279

© Copyright IBM Corp. 1999, 2005 245

246 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 10. Distributed program link (DPL)

When a CICS program issues an EXEC CICS LINK command, control passes to a
second program (referred to as the linked-to program) that is named in the EXEC
CICS LINK command. The second program executes and, after completion, returns
control to the first program (referred to as the linking program) at the instruction
that follows the EXEC CICS LINK command. The linked-to program can return
data to the linking program if the EXEC CICS LINK command has used the
COMMAREA option to pass the address of a communication area.

Distributed program link (DPL) extends the use of the EXEC CICS LINK command
so that the linked-to program can be on a remote CICS system. When the linked-to
program is on a remote CICS system, it is referred to as a back-end program.

The following are some reasons why you might use DPL:

* To separate the end-user interface (for example, BMS screen handling) from the
application business logic (for example, accessing and processing data). This
makes it easier to port part of an application between systems, such as moving
the end-user interface from a IBM mainframe-based CICS system to a TXSeries
for Multiplatforms system.

* To obtain performance benefits from running programs closer to the resources
that they access, therefore reducing the need for function shipping requests and
reducing the number of flows of data between the connected CICS regions.

* Where applicable, to provide a simpler solution than distributed transaction
processing (DTP).

* To access relational database management systems (RDBMSs) with a program
using Structured Query Language (SQL).

DPL is used when either the linked-to program is defined as remote in the
Program Definitions (PD) for that program, when the SYSID option is specified on
the EXEC CICS LINK command, or when the program is linked with the dynamic
distributed program link user exit. This is described in[“Using the dynamic|
(distributed program link user exit” on page 252.|

Comparing DPL to function shipping

DPL is similar to function shipping in that it provides a way of executing an EXEC
CICS call on a remote system. The difference is that the DPL function is used when
the EXEC CICS LINK command is called, whereas function shipping is used for
those EXEC CICS calls that access remote resources. In either case, CPMI and the
mirror program are used on the remote system to execute the calls.

An example of a DPL request is given in [Figure 88 on page 248 In this figure, the
linking program issues a program-control EXEC CICS LINK command to a
program named PGA. From the Program Definitions (PD), CICS discovers that
PGA is owned by a remote CICS system named CICB. CICS changes the EXEC
CICS LINK request into a suitable transmission format, then ships it to the remote
system for execution.

In the remote system, a mirror transaction is attached. The mirror program,
DFHMIRS, which is invoked by the mirror transaction, recreates the original
request, issues it on the remote system, and, when the back-end program has run

© Copyright IBM Corp. 1999, 2005 247

to completion, returns any communication-area data (COMMAREA) to the local

region.
CICA CiCB
DEFINE DEFINE
PROGRAM('PGA') PROGRAM('PGA")
REMOTESYSTEM(CICB)
EXEC CICSLINK 1SC CICS mirror
PROGRAM('PGA’) session transaction
COMMAREA(...) <+——————————(issuesLINK
. command and
passesback
commarea)

Figure 88. Distributed program link

It is possible for a back-end program to be defined on the remote system as
remote. If this is the case, the link request is passed on. When this occurs, the
systems are said to be serially connected.

CICA CICB CICC
DEFINE DEFINE DEFINE
PROGRAM('PGA") PROGRAM('PGA") PROGRAM('PGA")
REMOTESYSTEM(CICB) REMOTESYSTEM(CICC)
EXEC CICSLINK ISC CICS mirror ISC CICS mirror
PROGRAM('PGA") session transaction session transaction
COMMAREA(...) «——————— > (issuesLINK <+———————» (issuesLINK
. commandand commandand
passesback passesback
commarea) commarea)

Figure 89. Serially connected systems

BDAM files, and IMS, DL/I, and SQL databases
DPL enables TXSeries for Multiplatforms application programs to access BDAM

files and IMS™, DL/I, and SQL databases that are on a IBM mainframe-based CICS
system. The TXSeries for Multiplatforms program links to a IBM mainframe-based

CICS application program that reads and updates the databases or files.

Performance optimization for DPL

The performance of DPL can be affected by the amount of data transmitted, which
includes the optional COMMAREA that is specified in an EXEC CICS LINK
command. The length of the COMMAREA is 1 through 32767 bytes. CICS reduces
the number of bytes transmitted by removing some trailing binary zeros from the
COMMAREA before transmission and restoring them after transmission. This is
transparent to the application programs, which always see the full-size
COMMAREA.

248 TXSeries for Multiplatforms: CICS Intercommunication Guide

When transmission time accounts for a significant part of the response time at a
user terminal or workstation, application programs might be able to improve
performance by using the DATALENGTH and LENGTH attributes in the EXEC
CICS LINK command. LENGTH gives the number of bytes that are returned from
the remote region in the COMMAREA, while DATALENGTH specifies a smaller
size of COMMAREA that is sent from the local region to the remote region. If
DATALENGTH is not specified, LENGTH is used to specify the number of bytes
that are sent.

If the SYNCONRETURN option is not specified in the EXEC CICS LINK
command, the mirror transaction remains active, and does not commit changes to
resources, until the front-end program takes a sync point. This can produce
unnecessary delays. Using SYNCONRETURN can prevent these delays, and also
avoids communication between the front-end and back-end when the back-end
resources are committed. The SYNCONRETURN option is not suitable for use,
however, when the two regions share resources.

The dynamic distributed program link user exit can also be used to improve
performance. This user exit is used to link a program dynamically, based on
conditions that are specified in the user exit program. This is described further in
[“Using the dynamic distributed program link user exit” on page 252

Restrictions on application programs that use DPL

Because the back-end program resides on a remote system, unpredictable results
can occur that would not normally occur if the program were on the local system.
Therefore, ensure that the back-end program is restricted to those functions that
can perform reliably in a DPL condition. For example, do not attempt to link to
back-end programs that share either a transient data queue or a temporary storage
queue with the linking program. Use function shipping instead.

TXSeries for Multiplatforms enforces a subset of the full execution set of EXEC
CICS calls. This subset is known as the DPL subset. If an attempt is made to issue a
call that is not in the DPL subset, an INVREQ is returned to the linking program
from the mirror program. To stay within the boundaries of the DPL subset, do not
link to:

* Back-end programs that issue EXEC CICS XCTL commands.

* Back-end programs that issue EXEC CICS SYNCPOINT commands, unless
SYNCONRETURN was specified in the EXEC CICS LINK command.

* Back-end programs that issue terminal control commands. Those commands are
EXEC CICS CONVERSE, EXEC CICS HANDLE AID, EXEC CICS RECEIVE,
EXEC CICS SEND, EXEC CICS WAIT TERMINAL, and EXEC CICS SEND TEXT.

* Back-end programs that issue Basic Mapping Support (BMS) commands. Those
commands are EXEC CICS RECEIVE MAP, EXEC CICS SEND CONTROL, and
EXEC CICS SEND MAP.

* Back-end programs that issue data interchange commands.

* Back-end programs that address the terminal user area (TCTUA), such as EXEC
CICS ADDRESS TCTUA. Note that while you can use the transaction work area
(TWA) in back-end programs, it is separate from the front-end TWA. You must
use the COMMAREA to pass data between regions.

¢ Back-end programs that inquire on terminal attributes and that use the EXEC
CICS ASSIGN command with the following options:

- BTRANS
- COLOR

Chapter 10. Distributed program link (DPL) 249

- EXTDS

— FACILITY

- FCI

- GCHARS

- GCODES

— HILIGHT

- KATAKANA
- MAPCOLUMN
- MAPHEIGHT
- MAPLINE

- MAPWIDTH
— MSRCONTROL
- NETNAME

— NEXTTRANSID
— OPCLASS

— OPERKEYS

— OPSECURITY
— OUTLINE

- PS

- QNAME

— SCRNHT

- SCRNWD

— SIGDATA

- S0SI

- TCTUALENG
- TERMCODE

— UNATTEND
— VALIDATION

* Back-end programs that refer to the principal facility by using the following

commands:

— EXEC CICS ALLOCATE

— EXEC CICS CONNECT PROCESS
— EXEC CICS SEND

— EXEC CICS RECEIVE

— EXEC CICS CONVERSE

— EXEC CICS FREE CONVID

— EXEC CICS WAIT CONVID

— EXEC CICS ISSUE ABEND

— EXEC CICS ISSUE CONFIRMATION
— EXEC CICS ISSUE ERROR

— EXEC CICS ISSUE PREPARE

— EXEC CICS ISSUE SIGNAL

— EXEC CICS EXTRACT PROCESS

Security and DPL

If you specify the RSLCheck attribute as internal or external in the Transaction
Definitions (TD) entry for a transaction, CICS raises the NOTAUTH condition on
the local system if the transaction attempts to issue an EXEC CICS LINK command
with the SYSID option specified. This prevents transactions from bypassing local
security checking. Therefore, you must set the RSLCheck attribute to none for

those transactions that invoke programs that use DPL.

In addition, you should be aware that when you are accessing DB2® data that is
located on a IBM mainframe-based CICS system from a transaction in TXSeries for
Multiplatforms, the mirror transaction (which is CPMI unless a different

250 TXSeries for Multiplatforms: CICS Intercommunication Guide

transaction is specified either with the EXEC CICS LINK command or in the
Program Definitions (PD)) must have access to DB2 data. In all other respects (for
example, security attributes and task priority) the mirror transaction on the IBM
mainframe-based CICS system operates normally.

See [“Security and function shipping” on page 141| for information about how to
implement security checking when DPL is used.

Abends when using DPL

If the back-end program terminates abnormally, the mirror program returns an
abend code. The code returned is that which would have been returned by an
EXEC CICS ASSIGN ABCODE command. Note that the abend code that is
returned to the linking CICS system represents the last abend to occur in the
back-end program, which may have handled other abends before terminating.

Taking sync points when using DPL or function shipping

If the SYNCONRETURN option is not specified in an EXEC CICS LINK command,
or for any type of function shipping, CICS initiates the commit procedure when
the front-end program takes a sync point, by requesting the back-end CICS region
to commit data changes. CICS then commits changes itself, after receiving
confirmation of attached region commitment through the link.

You can, of course, have a number of connected CICS regions. In the case of
multiple connected regions, the commit request is propagated through all the
region connections. However, this is not safe with synchronization level 1.

You cannot take sync points in a back-end region unless the SYNCONRETURN
option was specified on the EXEC CICS LINK command. If it was, sync points that
are taken in the back-end program (either explicitly in the program, or implicitly
taken by CICS when the linked-to program finishes) are not propagated to the
front-end region. Because of this, no sharing of resources should occur between the
front-end and back-end programs.

To determine whether the back-end program was invoked with the
SYNCONRETURN option, the program can issue the EXEC CICS ASSIGN
STARTCODE (or EXEC CICS INQUIRE TASK STARTCODE) command. These
return a value of DS for a back-end DPL program that is started with the
SYNCONRETURN option, and D for one that is started without it.

Multiple DPL links to the same region

When a front-end program issues a LINK command with the SYNCONRETURN
option, the mirror transaction terminates as soon as control is returned to the
front-end program. It is therefore possible for the front-end program to issue a
subsequent LINK command to the same back-end region.

However, when a front-end program issues a LINK command without the
SYNCONRETURN option, the mirror transaction is suspended pending a sync
point request from the front-end region. The front-end program can issue
subsequent LINK commands to the same back-end region provided that the
SYNCONRETURN option is omitted and the TRANSID value is not changed. A
subsequent LINK command with the SYNCONRETURN option or with a different
TRANSID value is unsuccessful unless it is preceded by a SYNCPOINT command.

Chapter 10. Distributed program link (DPL) 251

These errors are indicated by the INVREQ condition. An accompanying RESP2
value of 14 indicates that a sync point is necessary before the failed LINK
command can be successfully attempted. A RESP2 value of 15 indicates that the
TRANSID value is different from that of the linked mirror transaction.

Two ways to implement DPL in your application program

An application program can use DPL in two ways, either ignoring the location of
the back-end program or explicitly specifying a remote system name. Dynamic
distributed program linking, which is described in [“Using the dynamic distributed]
[program link user exit,”| can be used both for implicit links and for explicit links.

Implicitly specifying the remote system
An application that uses DPL need not know the location of the back-end program;
it can issue an EXEC CICS LINK command as if the program were owned by the
local system. You specify that the back-end program is to run on a connected CICS
region by providing the RemoteSysld and RemoteName attributes in the Program
Definitions (PD) entry for the program. These attributes allow you to specify that
the named program is owned by a remote system. The request is routed to the
system that is named by the PD RemoteSysld attribute. Refer to the following
example:

EXEC CICS LINK PROGRAM('LOCLPGM')

If the PD for LOCLPGM has a RemoteSysld defined, the link request is forwarded
to that system.

Explicitly specifying the remote system
With the EXEC CICS LINK command, an application program can use the SYSID
parameter to specify the connection to the remote system that owns the program.
The advantage is that any system, including the local system, can be named in the
SYSID attribute. Refer to the following example:

EXEC CICS LINK PROGRAM('LOCLPGM') SYSID('SYS1')

The EXEC CICS LINK command is routed to the region that is defined by the
Communications Definitions (CD) SYS1. Any local Program Definitions (PD) entry
for LOCLPGM is bypassed. A PD entry must be defined on SYS1 for LOCLPGM.

Using the dynamic distributed program link user exit

When a program link is requested from an application program, CICS links either
to a program that is on the local system, or to a program that is on a remote
system, depending on how the program has been defined in the PD, or on the
parameters that are passed in the application program. The dynamic distributed
program link user exit allows you to select dynamically the system to which the
link request is routed.

CICS invokes the dynamic distributed program link user exit in the following
conditions:

* When the user exit has been declared by using the UserExitNumber attribute in
the PD for the user exit program. The user exit number is 50.

* When a program that has been specified in the PROGRAM field of the EXEC
CICS LINK command is about to be linked to.

* When an External CICS Interface (ECI) program invokes a link request to a CICS
application program.

252 TXSeries for Multiplatforms: CICS Intercommunication Guide

* When a link request that is made by a CICS application program or by an ECI
program specifies a program that does not have a PD for it.

* After a program that has been dynamically linked-to encounters a problem, and
the initial invocation requests reinvocation at termination.

* After a program that has been dynamically linked-to successfully completes, and
the initial invocation requests reinvocation at termination.

This user exit cannot be used:

* To link dynamically programs that are not started by using a link request
* When a short on storage problem occurs while the user exit is called

* To link dynamically a CICS-supplied transaction

Information passed to the user exit

CICS passes information to the dynamic distributed program link user exit by
means of a parameter list. The parameter list contains both a standard header
structure (cics_UE_Header_t) that is passed to all user exits, and a dynamic DPL
specific structure (cics_UE015050_t). Both of these structures are included in the
header file (cicsue.h).

References are made to the results of setting a parameter to a null string. A null
string is a string that begins with a null character "\0’. For example, a null string
could be placed into the SYSID parameter of the user exits specific structure by:

strcpy (UE_specificptr->UE _Dplsysid, "");

All other strings that are returned by the user exit must also be null terminated.

Initial invocation of the user exit

CICS invokes the dynamic distributed program link exit if a link request is issued
for a program. This link request can take the form of either an EXEC CICS LINK
command that is specified by an application program or a link request that is
made by an ECI program.

If the program that is specified on the link request has a valid PD entry, the user
exit is invoked with a reason of UE_LINKSEL. However, programs that are
specified on link request do not require PD entries. If a link request for a program
that does not have a database entry is received, the user exit is invoked with a
reason of UE_LINKUNKNOWN. It is the responsibility of the user exit to decide
whether to try rerouting the link request, or to decide that the program was
invalid (by returning a return code of UE_ProgramNotKnown).

When CICS invokes the dynamic distributed program link user exit, it passes in
information about where the program is to be run. This information consist of:

¢ The name of the remote system on which to run the program. This can be blank
if the local system is to be used.

e The name of the mirror transaction that is to be used. This can be blank if the
CICS-supplied mirror transaction CPMI is to be used.

* The name of the program that is to be run either on the local system, or on the
remote system.

e The CICS user ID under which to run the program, on either local systems, or
on remote systems. This is initially the user ID that is executing the EXEC CICS
LINK command. This can be updated if the request is to the local system.

Chapter 10. Distributed program link (DPL) 253

The above fields are set up by CICS to indicate the default action for a program
link request. When the user exit invocation reason is UE_LINKSEL, these fields
can remain as default, or be changed, depending on the action that y the user exit
decides.

If the invocation is UE_LINKUNKNOWN, either the remote SYSID or the name of
the program must be changed. Both of these fields (and the mirror transaction
name) can be changed if needed.

The defaults for the above fields are decided by using the following, depending on
whether an implicit or explicit request has been made, whether the program has a
PD entry, and also whether this is a local or remote link request:

* If this is an explicit link request (regardless of whether the program has a PD
entry):
1. The remote program name is taken from the PROGRAM field of the EXEC
CICS LINK command.
2. The remote SYSID is taken from the SYSID field of the EXEC CICS LINK
command.

3. The mirror transaction ID is either taken from the TRANSID option of the
EXEC CICS LINK, or, if no TRANSID option was specified, set to a null
string.

e If this is an implicit request for a program that does not exist:

1. The remote program name is taken from the PROGRAM field of the EXEC
CICS LINK command.

2. The remote SYSID is set to a null string.

3. The mirror transaction ID is either taken from the TRANSID option of the
EXEC CICS LINK, or, if no TRANSID option was specified, set to a null
string.

* If this is an implicit local request for a program that does exist:

1. The remote program name is taken from the PROGRAM field of the EXEC
CICS LINK command.

2. The remote SYSID is set to a null string.

3. The mirror transaction ID is either taken from the TRANSID option of the
EXEC CICS LINK, or, if no TRANSID option was specified, taken from the
Transld field of the PD.

e If this is an implicit remote request for a program that does exist:

1. The remote program name is taken from the RemoteName attribute of the
PD, or, if this is a null string, the PROGRAM field of the EXEC CICS LINK
command is used.

2. The remote SYSID is taken from the RemoteSysld option of the PD entry for
the program.

3. The mirror transaction ID is either taken from the TRANSID option of the
EXEC CICS LINK, or, if no TRANSID option was specified, taken from the
Transld field of the PD.

Changing the target CICS system

The user exit is passed the default remote SYSID that CICS works out by using the
rules that are shown in[“Two ways to implement DPL in your application|
[program” on page 252

254 TXSeries for Multiplatforms: CICS Intercommunication Guide

If the default SYSID is that of the local SYSID, a null string is passed to the user
exit.

The information that is passed to the dynamic distributed program link exit in the
user exit specific structure can be changed so that the distributed program link
request can be rerouted.

If you want to reroute the program link request to the local system, leave the
SYSID blank or set it to the local SYSID, which is passed in by using the parameter
UE_Dpllclsys.

Changing the remote program name

The user exit is passed the default program name that CICS works out by using
the rules that are shown in [“Two ways to implement DPL in your application|
[program” on page 252 If the request is local, this is the name of the program that
is to be run on the local system. If the request is remote, this is the name of the
program on the remote system.

Note: If the user exit returns a null string in the UE_Dplprog parameter, an abend
and message is issued.

Changing the mirror transaction name

The user exit is passed the default mirror transaction ID that CICS work out by
using the rules that are shown in [“Two ways to implement DPL in your]
lapplication program” on page 252 A blank mirror transaction ID indicates that the
CICS-supplied mirror transaction CPMI will be used as the default.

Changing the user ID

The user exit is passed the user ID that is executing the EXEC CICS LINK
command. If the request is to a remote system and the request is not already part
of an existing logical unit of work in that system, the DPL request can be executed
under the modified user ID at the remote system. The modified user ID does not
need to be configured on the CICS system that is executing the DPL user exit. The
user ID is sent the request as already verified; that is, any setting for the
OutboundUserids attribute in the Communication Definitions for the remote
system is ignored, and the user ID is sent without a password. If the exit changes
the field UE_Dpluserid to a null string, the request is sent with no security
attributes. If the user ID is unchanged, the security attributes are sent as
configured by the Communication Definitions for the remote system.

If further requests are made within the same unit of work to the same remote
system, the same user ID is used for all requests to that system for the particular
logical unit of work.

Invoking the user exit at end of routed program

If you want your dynamic distributed program link user exit program to be
invoked again when the routed program has completed, you must set the
UE_Dyropter field in the parameter list to UE_Yes before returning control to
CICS, on the initial invocation of the user exit.

The final exit is invoked either with a reason of UE_LINKTERM (the application
program that is linked-to completed successfully) or UE_LINKABEND (the
application program that is linked-to completed unsuccessfully). For both reasons,
the parameter list contains the values that are used to route the link request.

Chapter 10. Distributed program link (DPL) 255

Therefore, the final exit points can be used to keep statistics, such as which link
requests have been successful, or which systems seem to be unavailable.

For more information about DPL, see the [TXSeries for Multiplatforms Administration|

256 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 11. Function shipping

Function shipping enables CICS application programs to:
* Access CICS files that are owned by other CICS systems

* Transfer data to or from transient data and temporary storage queues in other
CICS systems

 Initiate transactions in other CICS systems. This form of communication is
described in ["How to use asynchronous processing” on page 273)|

Note: Function shipped commands cannot access BDAM files, or IMS, DL/I, or
DB2 databases in a IBM mainframe-based CICS. To access this data, use DPL
as described in [Chapter 10, “Distributed program link (DPL),” on page 247

How to use function shipping

Use the guidelines in this section to write application programs that use function
shipping. More information about function shipping is available in the CICS
Family: Interproduct Communication

Two ways to use function shipping

An application program can use function shipping in two ways, either ignoring the

location of resources, or explicitly specifying a remote system name.

* Implicitly specifying the remote system.
An application that uses function shipping need not know the location of the
requested resources; it can issue commands as if all resources are owned by the
local system. CICS resource definitions allow the system programmer to specify
that the named resource is owned by a remote system. The request is routed to
the system that is named by the resource definition RemoteSyslId attribute. Refer
to the following example:

EXEC CICS READ FILE(FILEA)

The File Definitions (FD) for FILEA would have a RemoteSysld defined.

* Explicitly specifying the remote system.
In a resource-accessing command, an application program can use the SYSID
parameter to specify the connection to the remote system that owns the resource.
The advantage is that any system, including the local system, can be named in
the SYSID attribute. Refer to the following example:

EXEC CICS READ FILE(FILEA)
SYSID(SYS1)

CICS routes the read request to the region that is defined by the
Communications Definitions (CD) entry SYS1. Any local FD for FILEA is
bypassed. A file should be defined on SYSI.

If the local SYSID is specified, the command is executed as if the SYSID option had
not been given.

Serial connections

A definition of the resource that is being accessed is required in the remote CICS
system to which the function shipping request is directed. This definition might

© Copyright IBM Corp. 1999, 2005 257

itself be a remote definition, causing the request to be relayed to another CICS
system. When this occurs, the linking system and the linked-to system are said to
be serially connected.

CICS file control data sets

Function shipping allows read and update access to files located on a remote CICS
system. Function ship of INQUIRE FILE and SET FILE are not supported.

Note: Take care when designing systems that use remote file requests that contain
physical record identifier values (for example, VSAM RBA files, and files
with keys not embedded in the record). Application programs that are in
remote systems must have access to the correct values following the
updating or reorganization of such files.

Transient data

When an application program accesses intrapartition or extrapartition transient
data queues on a remote system, the queue definition that is in the remote system
specifies whether the queue is protected, and whether it has a trigger level and
associated terminal.

If a transient data destination has an associated transaction, the named transaction
must be defined to be executed in the system that owns the queue; it cannot be
defined as remote. If a terminal is associated with the transaction, it can be
connected to another CICS system, and used through the transaction routing
facility of CICS.

Local and remote names

Any type of remote resource can be defined with a local name that is different
from its name in its owning system. This is useful when resources in different
systems have the same name. For example, a program can send data to the CICS
service destinations, such as CSMT, in both local and remote systems.

Synchronization

The CICS recovery and restart facilities ensure that when the requesting transaction
reaches a sync point, any mirror transactions that are updating protected resources
also take a sync point, so that changes to protected resources in remote and local
systems are consistent. The CICS control region receives notification of any failures
in this process, so that suitable corrective action can be taken. This action can be
taken manually or by user-written code.

When a transaction issues a sync point request, or terminates successfully, the
intercommunication component sends a message to the mirror transaction that
causes it also to issue a sync point request and terminate. The successful sync point
by the mirror transaction is indicated in a response sent back to the requesting
system, which then completes its sync point processing, so committing changes to
any protected resources.

Data security and integrity

Protection of data that is accessed by function shipping is the responsibility of the
data-owning system.

258 TXSeries for Multiplatforms: CICS Intercommunication Guide

A resource update that is caused by a function shipping request is committed
when the request-issuing program issues a sync point request or terminates
successfully. However, a risk occurs when shipping to more than one CICS region
with synchronization level 1.

Application programming for function shipping

You write a program to access resources in a remote region, in much the same way
as if the resources were on the local region.

The commands that you can use to access remote resources are:
* File control commands

e Temporary storage commands

* Transient data commands

Interval control commands are deliberately left out of this list. For information
about this subject, see [“ Application programming for asynchronous processing” onl

Your application can run in the CICS intercommunication environment, and use
the intercommunication facilities, without being aware of the location of the
resource that is being accessed. You define the resource location in the Remote
Sysld attribute of the appropriate CICS definition. Optionally, you can use the
SYSID option on EXEC commands to select the region on which the command is to
run. In this case, CICS does not reference the resource definitions on the local
region unless the SYSID option names the local SYSID that is configured in the
Region Definitions (RD) attribute localSysId.

When your application issues a command against a remote resource, CICS ships
the request to the remote region, where a mirror transaction is initiated. The mirror
transaction runs the request on your behalf, and returns any output to your
application program. The mirror transaction is therefore, in effect, a remote
extension of your application program.

Although the same commands are used to access local resources and remote
resources, several restrictions apply when the resource is remote. For details of
these restrictions, see [‘Exceptional conditions” on page 260

Some errors that do not occur in single regions can occur when function shipping.
For these reasons, you should always know whether resources that your program
accesses can possibly be remote.

Long-running function shipping transactions that start multiple application servers
can cause a degradation in performance when EXEC CICS SYNCPOINT is
frequently used. Therefore, when coding EXEC CICS SYNCPOINT in your
applications, decide the frequency with which you call it, by balancing your need
for data integrity with the requirement for efficient use of machine performance.

File control

Function shipping allows you to access Structured File Server (SFS) or Virtual
Sequential Access Method (VSAM) files that are on a remote region.

If you use the SYSID option to access a remote region directly, you must observe
the following rules.

Chapter 11. Function shipping 259

* For a file that is referencing a keyed file, you must specify KEYLENGTH if you
specify RIDFLD, unless you are using Relative Byte Addresses (RBA) or Relative
Record Numbers (RRN).

* If the file has fixed length records, you must specify the record length
(LENGTH).

These rules also apply if the File Definitions (FD) entry for the file does not define
the appropriate values.

Temporary storage

Function shipping allows you to send data to, or receive data from, temporary
storage queues that are on remote regions. You can define remote temporary
storage queues in the Temporary Storage Definitions (TSD). You can, however, use
the SYSID option on the EXEC CICS WRITEQ TS, EXEC CICS READQ TS, and
EXEC CICS DELETEQ TS commands, to specify the region on which the request is
to run.

Transient data

Function shipping allows you to access intrapartition or extrapartition transient
data queues that are on remote regions. You can define remote transient data
queues in the Transient Data Definitions (TDD). You can, however, use the SYSID
option on the EXEC CICS WRITEQ TD, EXEC CICS READQ TD, and EXEC CICS
DELETEQ TD commands, to specify the region on which the request is to run.

If the remote transient data queue has fixed length records, you must supply the
record length in the LENGTH option:

 If you do not specify the record length in the TDD entry for the transient data
queue
 If you use the SYSID option

Exceptional conditions

Requests that are shipped to a remote region can raise any of the exceptional
conditions for the command that can occur for a local resource. In addition, some
conditions are possible that apply only when the resource is remote.

Remote region not available

At the time that CICS issues a function shipping request, a link to the remote
region might not be available. If this is the case, CICS raises the SYSIDERR
condition in the application program.

CICS also raises this condition if the named region is undefined, but this error
should not occur in a production system unless the application obtains the name of
the remote region from a terminal user.

The default action for the SYSIDERR condition is to abnormally terminate the task.

Invalid request

The ISCINVREQ condition occurs when the remote region indicates an error that
does not correspond to a known condition. The default action is to terminate the
task abnormally.

260 TXSeries for Multiplatforms: CICS Intercommunication Guide

Mirror transaction abnormal termination
An application request against a remote resource can cause an abnormal

termination in the mirror transaction (for example, the requested TDD might have
been disabled).

In these conditions, CICS also abnormally terminates the application program, but
with an abnormal termination code of ATNL

Note: The ATNI abnormal termination, which is caused by a mirror transaction
abnormal termination, is not related to a terminal control command, and,
therefore, CICS does not raise the TERMERR condition.

Long-running mirror transactions

Mirror transactions normally terminate when they expect no more work from the
requesting system. This is usually when the requesting transaction executes a sync
point or terminates. The longevity of a mirror task is a compromise between the
overhead of using resources (such as an application server and, possibly, an SNA
session), while waiting for work, and the overhead of starting a mirror transaction
in an application server and possibly allocating an SNA session.

For this reason, a mirror transaction that is started on a TCP/IP connected system
at synchronization level 2 always waits for the requesting application to either
terminate, or perform a sync point before terminating itself.

A mirror transaction that is started on an SNA-connected system at
synchronization level 1 always terminates after each shipped request is completed,
or when the requesting application terminates. The exception to this is when the
mirror transaction has done recoverable work, or has a browse active, or when it
has executed a DPL command.

When designing applications that use function shipping, you should be aware of
the effects that long or short running mirror transactions have on system resource
use in the resource owning region, and on the performance of your application. In
this case, the mirror transaction terminates when the requesting transaction
executes a sync point, or terminates.

Timeout on function shipped requests

When CICS receives a function shipped request, the started transaction is the
mirror transaction. The CICS supplied definitions of the mirror transaction (CPMI,
CVMLI, and CSM*) all specify DeadLockTimeout=0. This means that the function
shipped request does not timeout if the resource that it is attempting to access is
locked. If you require function shipped requests to timeout in such a condition,
change the DeadLockTimeout value for the mirror transactions accordingly.

Chapter 11. Function shipping 261

262 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 12. Transaction routing

Transaction routing allows terminals that are connected to one CICS region, to run
with transactions that are in another connected CICS region. This means that you
can distribute terminals and transactions among your CICS regions and still have
the ability to run any transaction with any terminal.

In transaction routing, the two regions that are involved are referred to as:

The terminal-owning region

The CICS system on which the terminal is locally defined.
The application-owning region

The CICS system on which the application is locally defined.

For more information about transaction routing, see the CICS Family: Interproduct
Communication

Initiating a transaction from a terminal

Generally, the ability to perform transaction routing is implemented by the way
that the involved resources are defined to CICS. Those resources are:

¢ The initiating terminal

* The initiated transaction

The initiating terminal

How you define the terminal depends on whether or not the terminal definitions
are shipped from the terminal-owning region to the application-owning region. If a
terminal definition is shipped, enough data is passed with a transaction routing
request to enable the remote system to install dynamically (autoinstall) the
necessary remote terminal definitions. The benefit of shipping terminal definitions
is that you do not need to define the terminal on the application-owning region.

If the terminal definitions are not shipped, the terminal definitions that are on the
application-owning region require the following information to implement
transaction routing. (See also [‘Defining terminals to the application-owning]
fregion” on page 118|for details).

* The local name of the terminal

* The name of the connection to the terminal-owning region

¢ The name of the terminal in the terminal-owning region

* The network name of the terminal

When terminals are defined on the application-owning region, take care to ensure
that each terminal name is unique for that terminal wherever it is defined across
the network. If the terminal names cannot be unique, you can use the Terminal
Definitions (WD) RemoteName attribute to specify an alias, as described in the
(TXSeries for Multiplatforms Administration Reference|

The initiated transaction

The terminal-owning region requires a Transaction Definitions (TD) entry for the
remote transaction. This definition entry need only specify the information that is
needed to implement transaction routing, as follows:

© Copyright IBM Corp. 1999, 2005 263

* The local name of the transaction
* The name of the connection to the application-owning region
e The name of the transaction in the application-owning region

* The transaction is dynamically routed with the dynamic transaction routing user
exit. Refer to [“Dynamic transaction routing” on page 267

All other transaction characteristics are defined in the local definition of the
transaction in the application-owning region. See [“Defining remote transactions for|
ltransaction routing” on page 119|for details.

Application programming for transaction routing

If you are writing a transaction that might be used in a transaction routing
environment, you can design and code that transaction as you would for a single
region. You must, however, be aware of several restrictions, which are described in
this topic. The same considerations apply if you are migrating an existing
transaction to the transaction routing environment.

Any Basic Mapping Support (BMS) maps that your program uses must reside in
the application owning region. If you run a transaction from an EBCDIC system,
you must not use square bracket characters in maps. For more information, see the
[TXSeries for Multiplatforms Application Programming Guidel

Pseudo-conversational transactions

A routed transaction requires the use of an intersystem (LU 6.2) conversation for as
long as the transaction is running. For this reason, you should duplicate
long-running conversational transactions in the two regions, or you should design
the transactions as pseudo-conversational transactions.

Pseudo-conversational transactions are used in CICS application programs that
consist, internally, of multiple tasks that are designed to appear to the operator as a
continuous conversation. The program issues an EXEC CICS RETURN request with
the TRANSID option. The next input from the terminal causes the specified
transaction to be initiated unless the IMMEDIATE option is specified. If the
IMMEDIATE option is specified, the transaction is initiated without waiting for
any input from the terminal.

Take care when naming and defining the individual transactions that make up a
pseudo-conversational transaction, because CICS returns a TRANSID, which is
specified in an EXEC CICS RETURN command, to the terminal-owning region,
where the TRANSID might be a local transaction.

You can design a pseudo-conversational transaction that is made up of local and
remote transactions. However, if these transactions share a COMMAREA or
TCTUA, you might need to code a DFHTRUC program to convert the data
between the code pages that the two systems use. Refer to[“Data conversion for|
ftransaction routing” on page 164 for more details.

The terminal in the application-owning region

The terminal with which your transaction runs, is represented by a Terminal
Definitions (WD) entry, which is in many ways a copy of the real terminal
definition entry that is in the terminal-owning region. This copy is known as the
surrogate terminal definition entry. See [“Shipping terminal definitions” on pagel

264 TXSeries for Multiplatforms: CICS Intercommunication Guide

Using the assign command in the application-owning region

The EXEC CICS ASSIGN command might perform differently in a transaction
routing environment, from how it does in a single region. Therefore, you might
need to include different processing to reflect this.

You might find that three of the options to the EXEC CICS ASSIGN command
cause an unexpected reaction, or return unexpected values. A closer look at these
helps you to understand why:

PRINSYSID
This option returns the SYSID of the principal facility to the transaction.
This option requires that this facility be an LU 6.2 conversation. The
principal facility for a routed transaction is represented by the surrogate
terminal definition entry, which does not meet the requirement. Therefore,
CICS raises the INVREQ condition.

Note: You cannot use an EXEC CICS ASSIGN PRINSYSID command to
find the name of the terminal-owning region.

USERID
This option returns the user ID that is associated with the task. For a
routed transaction, the user ID that is returned is based on:

* Whether security for inbound requests is “local” or “trusted”. In CICS,
this would be specified with the Communications Definitions (CD)
RemoteSysSecurity attribute in the application-owning region.

* Whether or not a user ID is sent from the terminal-owning region to the
application-owning region. If the terminal-owning region is CICS, this is
specified in the terminal-owning region with the CD OutboundUserIds
attribute.

* Whether or not a link user ID is locally defined for the connection
between the terminal-owning region and the application-owning region.
In CICS, a link user ID is specified with the LinkUserld attribute.

* The value of the local default user ID (in those conditions when a user
ID is not available; for example, when a user ID is not flowed and a link
user is not defined.) In CICS, the default user ID is specified with the
Region Definitions (RD) DefaultUserld attribute.

See [“Link security and user security compared” on page 136 for
information about how a user ID is determined for inbound requests. See
also[“Using CRTE and CESN to sign on from a remote system” on page|

2]

OPERKEYS
This option returns a 64-bit mask that represents the TSL keys assigned to
the remote user. The TSL keys assigned are based on the local definitions
of the link keys for the connection in addition to the keys that are locally
defined for the user ID that the user is logged on as.

If the remote user is signed on locally (for example, if the user uses CRTE
to route to the remote system, then uses CESN to sign on to a local user
ID), the returned mask represents the keys that are defined for the user in
the definition entry and are also defined for the link.

In some conditions, the user might be given public access only.

See [“Link security and user security compared” on page 134 for
information about how security keys are assigned. See also [“Using CRTE|
land CESN to sign on from a remote system” on page 142

Chapter 12. Transaction routing 265

Automatic transaction initiation (ATI)

Automatic Transaction Initiation (ATI) is a process in which a transaction can
request that another transaction be started automatically on a named terminal,
when the named terminal becomes available.

Transaction routing allows ATI requests to be made that name terminals that are
attached to a remote region. When the ATI transaction is ready to be run, it is
shipped from the application-owning region to the terminal-owning region,
naming the transaction that is to be started and the terminal on which it is to be
started.

Terminal definitions for ATI

A definition of the remote terminal that names the remote terminal-owning region
must be available so that the application-owning region can ship the ATI request. If
the ATI started transaction becomes ready to run after the terminal definition has
been deleted, CICS cannot find the terminal-owning region, and therefore cannot
ship the ATI request to it. To solve this problem, either create a local Terminal
Definitions (WD) entry of the remote terminal, or ensure that the ATI started
transaction becomes ready to run before any autoinstalled WD is deleted. Refer to
[“Shipping terminal definitions” on page 117.|

TXSeries for Multiplatforms does not support terminal not found user exit programs.

Note: Shipped terminal definitions exist from the time that the definition is
received until a request is sent from the terminal-owning region to delete it.
See |“Shipping terminal definitions” on page 117| for more information.

Transaction definitions for ATI

In the terminal-owning region, a definition for the remote transaction must exist
and, with the exception of dynamically routed transactions, the transaction
definition must name the region on which the ATI request is to be initiated. (In
TXSeries for Multiplatforms, this region is named with the Transaction Definitions
(TD) RemoteSysld attribute.) In particular, the same ATI transaction name cannot
be specified to run on two or more different systems. If this is required, you can do
one of the following;:

1. Create a TD entry for each ATI transaction, giving each a different name. If you
create separate TD entries for each ATI transaction, the RemoteName and
RemoteSysld attributes should then be used to distinguish between the two
transactions.

2. Use the dynamic transaction routing User Exit. For information about using
dynamic transaction routing, see |”Dynamic transaction routing” on page 267.|

Indirect links for transaction routing

Because CICS does not support indirect links for transaction routing, each region in
a chain of three or more regions must contain a WD entry and TD entry for the
ATI started transaction and the terminal against which it is to be started. These
definitions must name the neighboring system, such that the terminal and
transaction can be found. For example, consider the following three regions:
REGIONA, REGIONB, and REGIONC. REGIONA is the terminal-owning region
and REGIONC is the application-owning region. A terminal that is attached to
REGIONA is starting a transaction called XXXA, which results in REGIONC trying
to start a transaction on REGIONC called XXXC, as shown in [Table 45 on page|

266 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 45. Indirect links for transaction routing

REGIONA REGIONB REGIONC
RD: LocalSysIld="REGA" RD: LocalSysld="REGB" RD: LocalSysIld="REGC"
CD: REGB CD: REGA CD: REGB
WD: RemoteSysld="" CD: REGC WD: RemoteSysIld="REGB"
NetName="TERM0001" WD: RemoteSysld= \ NetName="TERM0001"
"REGIONA"
TD: Entry for transaction\ |NetName="TERMO0001" TD: Entry for transaction\
"XXXA" "XXXC"
RemoteName="XXXB" TD: Entry for transaction\ |RemoteName=""
RemoteSysld="REGB" "XXXB" RemoteSysld=""
RemoteName="XXXC"
RemoteSysld="REGC"

In this table:

e REGA, REGB, and REGC are the entries for REGIONA, REGIONB, and REGIONC
respectively.

* The RemoteName defaults to transaction entry name if not specified.

Dynamic transaction routing

Transaction routing can be either static or dynamic:

 With static transaction routing, the transaction is routed to the system that is
named with the RemoteSysld attribute in the Transaction Definitions (ID) for
that transaction. In this case, the value of the TD Dynamic attribute is no in the
local definition for that transaction.

* With Dynamic transaction routing, the transaction can be dynamically routed to
any available system, either remote or local, when the transaction is started. In
this case, the value of the TD Dynamic attribute is yes in the local definition for
that transaction.

Dynamic transaction routing enables you to define how a transaction is to be
routed depending on such factors as:

* Input to the transaction

* Available CICS systems

* Relative loading of the available systems

Also, a routing program can perform other functions besides redirecting
transaction requests, such as:

* Balancing of workload. For example, in a multiple-CICS environment, your
program could make intelligent choices between equivalent transactions on
parallel systems.

* Handling transactions that cannot be routed, such as when no remote CICS
regions are available.

* Handling abends in the routed-to transaction.
* Monitoring the number of requests that are routed to particular systems.

Dynamic transaction routing cannot be used to reroute remote ATI requests.

CICS manages dynamic transaction routing through the use of the CICS-supplied
dynamic transaction routing user exit. This user exit is invoked:

* Before routing a transaction that is defined as Dynamic=yes
* If an error occurs in route selection

Chapter 12. Transaction routing 267

* At the end of a routed transaction if the initial invocation requests reinvocation
at termination

* If a routed transaction abends and the initial invocation requests reinvocation at
termination

Parameters are passed in a structure between CICS and the dynamic routing
program. The program might change some of these parameters to influence
subsequent CICS action. The parameters include:

e The reason for the current invocation.
e Error information.

e The name of the target system. Initially, this is the system that is specified with
the TD RemoteSysld attribute. If is system is not specified, the name that is
passed is that of the local system.

e The name of the target transaction. Initially, this is the name that is specified
with the RemoteName attribute. If a target transaction is not specified, the name
that is passed is the name of the local transaction.

* A pointer to the CWA.
* A pointer to the TCTUA.
e A user area.

A dynamic transaction routing program must follow standard user exit rules.

CICS supplies a sample program that can be invoked by the user exit, but you can
replace this with one of your own. To do this, define your program in the PD of
the region and set the UserExitNumber attribute to 25.

Although the RemoteSysld and Remotename attributes are used by the dynamic
transaction routing user exit for routing the transactions, they are ignored when
the transactions are run locally. If you set up the dynamic transaction routing user
exit to allow a transaction to run locally, you need to define the local program.

This user exit is not invoked:

* When the transaction that is defined as dynamic is started in an intermediate
application-owning region. CICS attempts to abend such transactions but cannot
detect all attempts to “daisy chain” dynamic transactions. You must ensure that
your dynamic transaction routing program does not “daisy chain” dynamic
transactions.

* When a problem occurs because of lack of storage while the parameter list or
standard header for the user exit is being built. This causes the transaction to
abend.

* When the dynamic transaction is started in a Terminal-Owning Region by a
command of the following type that is issued in an Application-Owning Region:
EXEC CICS START TERM(yyyy) TRAN(xxxx)

In this case, the user exit is not invoked and the transaction is routed back to the
system where the request was issued.

Writing a dynamic transaction routing user exit

Because of the intercommunication aspects of dynamic transaction routing and the
building of a parameter list for the user exit, a performance overhead is involved
when a dynamic transaction routing user exit is used. However, the benefits of a
well-written dynamic transaction routing user exit to the overall performance of
several connected regions can far outweigh the negative effect.

268 TXSeries for Multiplatforms: CICS Intercommunication Guide

The information below outlines some of the tasks that you might want your
dynamic transaction routing user exit to perform, and describes how to implement
them in your program in the most efficient way.

Note: Programs that are to be used for a CICS user exit are subject to some rules
and conditions. These are described in the [CICS Administration Guide]

How information is passed between CICS and the user exit

CICS passes information to the dynamic transaction routing exit by means of a
parameter list. The parameter list contains both a standard header structure
(cics_UE_Header_t), which is passed to all user exits, and a structure that is
specific to dynamic transaction routing called (cics_UE014025_t). Both these
structures are included in the header file (cicsue.h). Some of the data that is passed
to the dynamic transaction routing program in the parameter list is:

e The system ID of the remote CICS region that is specified in the Transaction
Definitions (TD)

¢ The name of the remote transaction

* A task-local user data area

You can write a dynamic transaction routing program that accepts these values, or
changes them, or instructs CICS not to continue routing the transaction. The values
that are used depend on the function that is to be performed; that is, some values
might be ignored.

Throughout this section, references are made to the results of setting a parameter
to a null string. A null string is a string that begins with a null character "\0". For
example, a null string can be placed into the system ID parameter of the parameter
list of user exit UE014025 as follows:

strcpy (UE_specificptr->UE_Dyrsysid, "");

All other strings that are returned by the user exit must also be terminated with a
null character.

For a complete description of the parameters that are passed between CICS and
the dynamic transaction routing program, see the [TXSeries for Multiplatforms|
[Administration Referencel

Changing the target CICS system

The parameter list that is passed to the dynamic transaction routing user exit
initially contains the system ID of the default CICS region to which the transaction
is to be routed. This is derived from the value of the Remote system ID attribute
of the installed transaction definition. If the transaction definition does not specify
a Remote system ID value, the system ID that is passed is that of the local CICS
region.

The information that is passed to the dynamic transaction routing program in the
user exit specific structure can be changed to have the transaction rerouted.

Changing the program name

When the dynamic transaction routing user exit is invoked, the UE_Dyrprog
parameter contains the program name that is taken from the Progname attribute of
the transactions TD. If no program name is defined in this attribute, a null string is
passed to the user exit in the program name parameter. If you decide to route the
transaction locally, you can use this field to specify an alternative program to be

Chapter 12. Transaction routing 269

run. For example, if all remote CICS systems are unavailable and the transaction
cannot be routed, you might want to run a program in the local CICS system to
send an appropriate message to the user.

Note: If the dynamic transaction routing user exit returns a null string in the
UE_Dyrprog parameter, CICS issues an abend and message, even if it the
dynamic transaction routing user exit has chosen to route to a remote
system.

Telling CICS whether to route or terminate a transaction

If you want a transaction to be routed, whether you have changed any values or
not, you return UE_Normal to CICS with the return code. If you want to terminate
the transaction with a message and an abend, you supply a return code of
UE_Term_Abend. A further option (return code UE_Terminate) tells CICS to
terminate the transaction with a message, but not an abend.

When you return control to CICS with return code UE_Normal, CICS first
compares the returned system ID with the local system ID:

* If the system IDs are the same (or the returned system ID is a null string), CICS
uses the program name that is specified in the parameter UE_Dyrprog, and
executes the transaction locally.

* If the two system IDs are not the same, CICS uses the remote transaction name
and remote system name that are specified by the user exit, and routes the
transaction to the remote CICS system.

The dynamic transaction routing program is invoked again if:
* The routed transaction abends.
* The remote system is unavailable or not known.

* The routed transaction terminates successfully.

If the system is unavailable or not known

The dynamic transaction routing program is invoked again if the remote system
name that you specify on the route selection call is not known or is unavailable,
and you have specified that you want to retry the route request, by setting
UE_Dyrretry to UE_Yes. When this happens, you have a choice of actions:

* You can instruct CICS not to continue trying to route the transaction, by issuing
a return code of UE_Term_Abend. If the reason for the error is that the system
is unavailable, CICS issues message 'ERZ1433E’ and abend "A149".

* You can tell CICS to terminate the transaction with only a message by returning
a return code of UE_Terminate.

* You can change the system ID, and issue a return code of UE_Normal to try to
route the transaction again. If you change the system ID, you might also need to
supply a different remote transaction ID. You need to do this if, for example, the
transaction has a different remote transaction name on each system.

* You can choose to run the transaction locally, by supplying the local system ID
(or setting the system ID to a null string) and by supplying a program name.
Note that the program name can be allowed to default to the program name that
has been specified in the Transaction Definitions (TD) for the transaction.

* You can attempt to route to the same system again.

A count of the times that the routing program has been invoked for routing
purposes for this transaction is passed in field UE_Dyrcount. In your program,
you can set a limit on the value of this parameter to enable it to decide when to
stop trying to route a particular transaction instance.

270 TXSeries for Multiplatforms: CICS Intercommunication Guide

Invoking the user exit at the end of routed transactions

If you want your dynamic transaction routing program to be invoked again when
the routed transaction has completed, you must set the UE_Dyropter field in the
parameter list to UE_Yes before returning control to CICS, on the initial invocation
of the user exit. You might want to do this, for example, if you are keeping a count
of the number of transactions that are executing on a particular CICS system.
However, during this reinvocation, the dynamic transaction routing program
should update only its own resources.

Invoking the user exit on abend

If the routed transaction abends, the CICS system that started the transaction
reinvoked the dynamic transaction routing program (if it had been requested by
setting UE_Dyropter to UE_Yes). If a dynamic transaction abends, this exit point is
called, whether it has been routed to a remote region or to a local region.

This exit point cannot retry the route request and should only update its own
resources. This exit point can be used to keep information about the transaction
that abended, which the program can use to influence where future transactions
are routed.

Chapter 12. Transaction routing 271

272 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 13. Asynchronous processing

Asynchronous processing is a special case of function shipping in which the
shipped command starts a remote transaction. Unlike distributed transaction
processing (DTP), the initiating and initiated transactions do not engage in
synchronous communication. Instead, they are executed and terminated
independently.

The interval control commands that can be used for asynchronous processing are:
* EXEC CICS START

+ EXEC CICS CANCEL

» EXEC CICS RETRIEVE

For information about how to define remote transactions, see [“Defining remotel
ftransactions for asynchronous processing” on page 120

Security considerations

If you specify the RSLCheck attribute as internal or external in the Transaction
Definitions (TD) entry for a transaction, CICS raises the NOTAUTH condition if
the transaction attempts to issue an EXEC CICS command with the SYSID option
specified. This prevents transactions from bypassing the local security check. Refer
to [“Security and function shipping” on page 141| for more information.

How to use asynchronous processing

This section describes how to initiate asynchronous processing and how to start
and cancel remote transactions.

Two ways to initiate asynchronous processing

Asynchronous processing is initiated by the issuing of an EXEC CICS START
command. Like other function shipping commands, the application program can
ignore the location of the started transaction or can explicitly specify the system
name.

* Implicitly specifying the location of the transaction

A program can issue an EXEC CICS START command for a remote transaction
as if the transaction is local; it does not need to specify the location of the
requested resources. CICS resource definitions allow the system programmer to
specify that the transaction is owned by a remote system. The request is routed
to the system that is named by the Transaction Definitions (TD) RemoteSysId
attribute. Refer to the following example:

EXEC CICS START TRANID(TRN1)

The TD entry for TRN1 would have a RemoteSysld defined if the transaction is
to be run on the remote system. Otherwise, it is run on the local system.

* Explicitly specifying the location of the transaction

In a resource-accessing command, an application program can use the SYSID
parameter to specify the connection to the remote system that owns the
transaction. The advantage is that any system, including the local system, can be
named in the SYSID attribute. The decision whether to access a local or remote
transaction can be taken at execution time, based on initialization parameters
that are passed to the application program. Refer to the following example:

© Copyright IBM Corp. 1999, 2005 273

EXEC CICS START TRANID(TRNI)
SYSID(SYS1)
CICS routes the start request to the region that is defined by the
Communications Definitions (CD) SYS1. Any local TD for TRN1 is bypassed. It
is assumed that a TD for TRN1 exists on SYS1.

Note: Asynchronous processing can also be initiated by using distributed
transaction processing (DTP), as described in |Chapter 14, ”Distributed|
[transaction processing (DTP),” on page 279

Starting and canceling remote transactions

The EXEC CICS START command is used to queue a transaction initiation request
in a remote CICS system, to which the command is function shipped. In the
remote system, the mirror transaction is invoked to issue the EXEC CICS START
command.

You can include time control information on the shipped EXEC CICS START
command, by using the INTERVAL or TIME parameter. Before a command is
shipped, CICS converts a TIME specification to a time interval that is relative to
the local clock. The interval is the delay from receipt of the command on the
remote system, not from the time of submitting the request.

The time interval, which is specified in the INTERVAL or TIME parameter of an
EXEC CICS START command, is the time at which the remote transaction is to be
initiated, not the time at which the request is to be shipped to the remote system.

An EXEC CICS START command that is shipped to a remote CICS system can be
canceled, before the expiry of the time interval, by shipping an EXEC CICS
CANCEL command to the same system. The EXEC CICS START command that is
to be canceled is uniquely identified by the REQID value that is specified on the
EXEC CICS START command and on the associated EXEC CICS CANCEL
command. Any task can issue the EXEC CICS CANCEL command. It is not
possible to cancel locally queued requests on CICS.

Passing information with the START command

The EXEC CICS START command has several parameters that enable information
to be made available to the remote transaction when it is started. If the remote
transaction is in a CICS system, the information is obtained by using the EXEC
CICS RETRIEVE command. The information that can be specified is summarized
in the following list:

* User data that is specified in the FROM parameter. This is the principal way in
which data can be passed to the remote transaction.

* Temporary storage queue-named in the QUEUE parameter. This is an additional
way of passing data. The queue can be in any CICS system that is accessible to
the system on which the remote transaction is executed.

* A terminal name-specified in the TERMID parameter. This is the name of a
terminal that is to be associated with the remote transaction when it is initiated.
If a terminal is defined in the system that owns the remote transaction but is not
owned by that system, an automatic transaction initiation (ATI) request is sent to
the terminal-owning region (TOR), when the transaction is ready to run.

* A transaction name and an associated terminal name-specified in the RTRANSID
and RTERMID parameters. These parameters enable the local transaction to
specify transaction and terminal names for the remote transaction to use in an
EXEC CICS START command to initiate a transaction in the local system.

274 TXSeries for Multiplatforms: CICS Intercommunication Guide

Passing an APPLID with the EXEC CICS START command

If you have a transaction that can be started from several different systems, it is
worthwhile to know where the transaction was initiated.

You can arrange for each invoking transaction to send its local APPLID as part of
the user data in the EXEC CICS START command. The APPLID is accessed for the
local system by using the EXEC CICS ASSIGN APPLID command. This APPLID is
equivalent to the SNA LU name for the region and should be unique within the
network. This is then known as the RemoteLUName in the remote region.

The SYSID is the local name for a connection. Using the RemoteLUName, the
SYSID can be derived from EXEC CICS INQUIRE CONNECTION. To obtain a
SYSID from a RemoteLUName:
EXEC CICS INQUIRE CONNECTION START;
while not end
EXEC CICS INQUIRE CONNECTION(SYSID) NETNAME (RemotelLUName) NEXT;
If NETNAME is the RemoteLUName we are looking for
Then the CONNECTION value is the applicable SYSID;
break;
EXEC CICS INQUIRE CONNECTION END;

Improving performance of intersystem START requests

In some inquiry-only applications, sophisticated error checking and recovery
procedures might not be justified. When transactions make inquiries only, the
terminal operator can retry an operation if no reply is received within a specific
time. In such a condition, the number of data flows to and from the remote system
can be substantially reduced by using the NOCHECK option on the EXEC CICS
START command.

Deferred sending of START requests with the NOCHECK
parameter

For EXEC CICS START commands with the NOCHECK parameter, CICS defers
transmission of the request until one of the following events occurs:

* The transaction issues another function shipping request for the same system, or
executes a sync point

* The transaction terminates with an implicit sync point

¢ An EXEC CICS START NOCHECK with PROTECT was specified for the same
system

* When enough EXEC CICS START NOCHECK requests have accumulated on the
local system to make sending them efficient

The first, or only, start request that is transmitted from a transaction to a remote
system carries the begin-bracket indicator; the last, or only, request carries the
end-bracket indicator. Also, if any of the start requests that are issued by the
transaction specifies PROTECT, sync point coordination occurs after the last
request. The sequence of requests is transmitted within a single SNA bracket and
all the requests are handled by the same mirror task.

The NOCHECK parameter is always required when shipping of the EXEC CICS
START command is queued pending the establishment of links with the remote
system.

Local queuing of EXEC CICS START commands for remote
transactions

When a local transaction is ready to ship an EXEC CICS START command, the
intersystem facilities might be unavailable, either because the remote system is not

Chapter 13. Asynchronous processing 275

active or because a connection cannot be established. The normal CICS action in
these conditions is to raise the SYSIDERR condition.

This can be avoided by using the NOCHECK parameter, and arranging for CICS to
queue the request locally and forward it when the required link is in service. Local
queuing can be attempted for an EXEC CICS START NOCHECK command if the
system name is valid but the system is not available. A system is defined as not
available if the system is out of service when the request is initiated, or an attempt
to initiate a session to the remote system fails. If either of the above conditions
occurs, CICS queues an EXEC CICS START command for a remote transaction only
if the following two conditions are met:

1. The SYSID parameter is not coded in the EXEC CICS START command, and

2. The local TD entry of the transaction specifies LocalQ=yes.

Local queuing should be used only for EXEC CICS START NOCHECK commands
that represent time-independent requests. The delay that is implied by local
queuing affects the time at which the request is actually started.

Including EXEC CICS START request delivery in a logical unit of
work

The delivery of a start request to a remote system can be made part of a logical
unit of work by specifying the PROTECT parameter on the EXEC CICS START
command. The PROTECT parameter indicates that the remote transaction must not
be scheduled until the initiating transaction has successfully sync pointed.

A successful sync point of the transaction guarantees that the start request has
been delivered to the remote system or successfully locally queued. It does not
guarantee that the remote transaction has completed, or even that it has been, or
will be, initiated.

The started transaction

A CICS transaction that is initiated by an EXEC CICS START command can get the
user data and other information that is associated with the request by using the
EXEC CICS RETRIEVE command.

Started transaction satisfying multiple EXEC CICS START
requests

In accordance with the normal rules for interval control, CICS queues a start
request for a transaction that carries both user data and a terminal identifier if the
transaction is already active and associated with the same terminal. During the
waiting period, the active transaction can issue a further EXEC CICS RETRIEVE
command to access the data that is associated with the queued request. Such an
access automatically cancels the queued start request.

Thus, it is possible to design a transaction that can handle the data that is
associated with multiple start requests. A long-running transaction can accept
multiple inquiries from a terminal and ship start requests to a remote system. In
the remote system, the first request causes a transaction to start. From time to time,
the started transaction can issue EXEC CICS RETRIEVE commands to receive the
data that is associated with further requests, the absence of further requests being
indicated by the ENDDATA condition.

Overall application design should ensure that a transaction cannot get into a

permanent wait state because of the absence of further start requests; for example,
the transaction can be defined with a time-out interval.

276 TXSeries for Multiplatforms: CICS Intercommunication Guide

Terminal acquisition by a remotely initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility. It makes no difference whether the start request was issued by a user
transaction in the local CICS system or was received from a remote system and
issued by the mirror transaction.

Application programming for asynchronous processing

This section describes application programming for asynchronous processing
between CICS systems. The general information that is given for CICS transactions
that use the EXEC CICS START or EXEC CICS RETRIEVE commands is applicable
to communications between CICS and non-CICS LU 6.2 systems that support
mapped conversations.

Starting a transaction on a remote region

You can start a transaction on a remote region by issuing an EXEC CICS START
command just as though the transaction were a local one.

Generally, the transaction is defined as being remote. You can, however, name a
remote region explicitly in the SYSID option. This use of the EXEC CICS START
command is therefore essentially a special case of CICS function shipping.

Exceptional conditions for the EXEC CICS START command

The exceptional conditions that can occur as a result of issuing an EXEC CICS
START request for a remote transaction, depend on whether or not you specify the
NOCHECK option on the EXEC CICS START command.

If you specify NOCHECK, no conditions are raised as a result of the remote
running of the EXEC CICS START command. SYSIDERR, however, still occurs if
no link to the remote region is available, unless you have arranged for local
queuing of start requests. Also, CICS abnormally terminates the local transaction if
the remote mirror transaction that is associated with the EXEC CICS START
command abnormally terminates.

If you do not specify NOCHECK, the raising of conditions follows the normal
rules for EXEC CICS START.

Retrieving data associated with a remotely issued start
request

You use the EXEC CICS RETRIEVE command to retrieve data that has been stored
for a task as a result of a remotely-issued EXEC CICS START request. This is the
only available method for accessing such data.

For your transaction, no distinction exists between data that is stored by a remote
EXEC CICS START request and data that is stored by a local EXEC CICS START
request, and the normal considerations for use of the EXEC CICS RETRIEVE
command apply.

The CICS Family: Interproduct Communication provides much information about
programming for asynchronous processing

Chapter 13. Asynchronous processing 277

278 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 14. Distributed transaction processing (DTP)

DTP is one of the five ways that CICS allows processing to be split between
intercommunicating systems. Only DTP allows two or more communicating
application programs to run simultaneously in different systems and to pass data
backward and forward between themselves; that is, to perform a synchronous
conversation.

Of the five intercommunication facilities that CICS offers, DTP is the most flexible
and powerful, but also the most complex.

The CICS family TCP/IP network protocol does not support DTP.

Concepts of distributed transaction processing (DTP)

DTP allows two or more partner programs that are in different systems to interact
with each other. DTP enables a CICS transaction to communicate with one or more
transactions that are running in different systems. A group of such connected
transactions is called a distributed process.

The process can best be shown by discussing the operation of DTP between two
CICS systems, CICSA and CICSB, where:

1. A transaction (TRAA) is initiated on CICSA; for example, by a terminal
operator who is keying in a transaction ID and initial data.

2. To fulfill the request, the processing program X begins to execute on CICSA,
probably reading initial data from files, perhaps updating other files and
writing to print queues.

3. Without ending, program X asks CICSA to establish a conversation with
another CICS system, CICSB. CICSA responds to the request.

4. Also without ending, program X sends a message across the conversation and
asks CICSB to start a new transaction, TRBB. CICSB initiates transaction TRBB
by invoking program Y.

5. Program X now sends and receives messages, including data, to and from
program Y. Between sending and receiving messages, both program X and
program Y continue normal processing completely independently. When the
two programs communicate, their messages can consist of:

a. Agreements about how to proceed with conversation or how to end it. For
example, program X can tell program Y when it can transmit messages
across the session. At any time, both programs must know the state of their
conversation, and therfore, what actions are allowed. At any time, either
system might have actual control of the conversation.

b. Agreements to make permanent all changes that have made up to that
point. This allows the two programs to synchronize changes. For example, a
dispatch billing program on CICSA might want to commit delivery and
charging for a stock item, but only when a warehouse program in CICSB
confirms that it has successfully allocated the stock item and adjusted the
inventory file accordingly.

c. Agreements between CICSA and CICSB to cancel, rather than to make
permanent, changes to data that have been made since a given point. Such a
cancelation (or rollback) might occur when customers change their minds,

© Copyright IBM Corp. 1999, 2005 279

for example. Alternatively, it might occur because of uncertainty that has
been caused by failure of the application, the system, the communication
path, or the data source.

Although the two programs X and Y exist as independent units, it is clear that they
are designed to work as one. Of course, DTP is not limited to pairs of programs.
You can chain many programs together to distribute processing more widely. This
is discussed later in the book.

In the overview of the process that is given above, the location of program Y has
not been specified. Program X is a CICS program, but program Y need not be,
because CICS can establish conversations with non-CICS partners. This is
discussed in [“Designing distributed processes” on page 283

Conversations

Although several programs can be involved in a single distributed process,
information transfer within the process is always between self-contained
communication pairs. The exchange of information between a pair of programs is
called a conversation. During a conversation, both programs are active; they send
data to, and receive data from, each other. The conversation is two-sided but at
any moment, each partner in the conversation has more or less control than the
other. According to its level of control (known as its conversation state), a program
has more or less choice in the commands that it can issue.

CICS supports conversations over SNA and CICS PPC TCP/IP. Slight differences
exist between the two protocols. However, DTP programs can be written in such a
way that they can work with both protocols. This is described in
[“Migrating DTP applications,” on page 343

Conversation states

Thirteen conversation states have been defined for CICS DTP. The set of states that
is possible for a particular conversation depends on the synchronization level that
is used. (The concepts of synchronization level are explained in ['Maintaining data|
lintegrity” on page 282.| The following table shows which conversation states are
defined for each synchronization level. The conversation states YES and NO
indicate whether the state is defined.

Table 46. Conversation states available for each synchronization level

State number | State name Sync level 0 |Sync level 1 |Sync level 2
1 Allocated Yes Yes Yes
2 Send Yes Yes Yes
3 Pendreceive Yes Yes Yes
4 Pendfree Yes Yes Yes
5 Receive Yes Yes Yes
6 Confreceive No Yes Yes
7 Confsend No Yes Yes
8 Conffree No Yes Yes
9 Syncreceive No No Yes
10 Syncsend No No Yes
11 Syncfree No No Yes
12 Free Yes Yes Yes

280 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 46. Conversation states available for each synchronization level (continued)

State number | State name Sync level 0 |Sync level 1 |Sync level 2
13 Rollback No No Yes

By using a special CICS command (EXTRACT ATTRIBUTES), or the STATE option
on a DTP command, a program can obtain a value that indicates its own
conversation state. CICS places such a value in a variable that is named by the
program; the variable is sometimes referred to as a state variable. Knowing the
current conversation state, the program then knows which commands are allowed.
If, for example, a conversation is in send, the transaction can send data to the
partner. (The transaction can take other actions instead, as indicated in the relevant
state table.)

When a transaction issues a DTP command, that action can cause the conversation
state to change. For example, a transaction can deliberately switch the conversation
from send to receive by issuing a command that invites the partner to send data.
When a conversation changes from one state to another, it is said to undergo a
state transition. The state tables that are given in later chapters show how these
transitions take place.

Not only does the conversation state determine which commands are allowed, but
the state on one side of the conversation reflects the state that is on the other side.
For example, if one side is in send, the other side is in either receive, confreceive,
Or syncreceive.

Distributed processes

A transaction can initiate other transactions, and therefore, conversations. In a
complex process, a distinct hierarchy emerges, usually with the terminal-initiated
transaction at the top. Consider the following scenario:

1. Transaction TRAA, in system CICSA, is initiated from a terminal.

2. Transaction TRAA requests a conversation with transaction TRBB to run in
system CICSB.

3. Transaction TRBB in turn requests a conversation with transaction TRCC in
system CICSC and transaction TRDD in system CICSD. Both transactions TRCC
and TRDD request a conversation with the same transaction SUBR in system
CICSE, therefore giving rise to two copies of SUBR.

Notice that each transaction can be invoked only by one partner transaction.
However any transaction can invoke several remote transactions. The conversation
that activates a transaction is called its principal facility. A conversation that is
allocated by a transaction to activate another transaction is called its alternate
facility. Therefore, a transaction can have only one principal facility, but several
alternative facilities.

When a transaction initiates a conversation, it is the front-end transaction on that
conversation. Its conversation partner is the back-end transaction on the same
conversation. It is normally the front-end transaction that dominates, and
determines the way the conversation goes. This style of processing is sometimes
referred to as the client/server model (sometimes referred to as master/slave).

Alternatively, the front-end transaction and back-end transaction might switch
control between themselves. This style of processing is called peer-to-peer. As the

Chapter 14. Distributed transaction processing (DTP) 281

name implies, this model describes communication between equals. You are free to

select whichever model you need when designing your application; CICS supports
both.

Maintaining data integrity
DTP applications must be designed to manage the many error conditions that can
arise when applications run in different systems. For example, one system might
encounter a problem, or the communication link between the system might fail.
CICS provides DTP commands and responses that help you recover from errors,
and ensures that the two systems remain in step with each other. This use of the
conversation is called synchronization.

Synchronization allows you to protect recoverable resources such as transient data
queues and files, whether they are local or remote. Whatever goes wrong during
the running of a transaction should not leave the associated resources in an
inconsistent state.

An application program can cancel all changes that have made to recoverable
resources since the last known consistent state. This process is called rollback. The
physical process of recovering resources is called backout. The condition that exists
when no loss of consistency occurs between distributed resources is called data
integrity.

Sometimes you might need to backout changes to resources, although no error
conditions have arisen. Consider an order entry system. While entering an order
for a customer, an operator is told by the system that the customer’s credit limit
would be exceeded if the order went through. Because it is of no use to continue
until the customer is consulted, the operator presses a PF key to abandon the
order. The transaction is programmed to respond by returning the data resources
to the state that they were in at the start of the order transaction.

The point in a process where resources are declared to be in a known consistent
state is called a synchronization point, often shortened to sync point. Sync points are
implied at the beginning and end of a transaction. A transaction can define other
sync points by program command. All processing between two sync points belongs
to a logical unit of work (LUW). In a distributed process, this is also known as a
distributed unit of work.

When a transaction issues a sync point command, CICS attempts to commit all
changes to recoverable resources that are associated with that transaction. If this is
successful, the transaction can no longer back out changes that have been made
since the previous sync point. They have become irreversible. However, if the
syncpoint command fails, the changes are backed out.

Although CICS can commit and backout changes to local and remote resources for
you, this service must be paid for in performance. If the recovery of resources
throughout a distributed process is not a problem (for example, in an inquiry-only
application), you can use simpler methods of synchronization.

CICS defines three levels of synchronization for DTP conversations:
* Level 0: None

* Level 1: Confirm

* Level 2: Sync point

282 TXSeries for Multiplatforms: CICS Intercommunication Guide

At synchronization level 0, no CICS support exists for synchronization of remote
resources on connected systems. But it is still possible, under the control of the
application to achieve some degree of synchronization by interchanging data, by
using the SEND and RECEIVE commands.

At synchronization level 1, you can use special commands for communication
between the two conversation partners. One transaction can confirm the continued
presence and readiness of the other. Both transactions are responsible for
preserving the data integrity of recoverable resources by issuing sync point
requests at the appropriate times.

At synchronization level 2, all sync point requests are automatically propagated
across multiple systems. CICS implies a sync point when it starts a transaction;
that is, it initiates logging of changes to recoverable resources, but no control flows
take place. CICS takes a sync point when one of the transactions terminates
normally. One abending transaction causes all to rollback. The transactions
themselves can initiate sync point or rollback requests. However, a sync point or
rollback request is propagated to another transaction only when the originating
transaction is in conversation with the other transaction, and synchronization level
2 has been selected.

Remember that sync point and rollback are not limited to any one conversation
within a transaction. They are propagated on every conversation that is currently
active at synchronization level 2.

For more information, see [“Safeguarding data integrity” on page 296

Designing distributed processes

This section discusses the issues that you must consider when designing
distributed processes to run under APPC. These issues include structuring
distributed processes and designing conversations.

It is assumed that you are already familiar with the issues that are involved in
designing applications in single CICS systems. For guidance information, see the
[TXSeries for Multiplatforms Application Programming Guide|

Structuring distributed transactions

As with many design problems, designing a DTP application involves that
handling of several conflicting objectives that must be carefully balanced against
each other. These include performance, ease of maintenance, reliability, security,
connectivity to existing functions, and recovery.

Avoiding performance problems

If performance is the highest priority, design your application so that data is
processed as close to its source as possible. This avoids unnecessary transmission
of data across the network. Alternatively, if processing can be deferred, you might
want to consider batching data locally before transmitting.

To maintain performance across the intersystem connection, the conversation
should be freed as soon as possible so that the session can be used by other
transactions. In particular, avoid holding a conversation across a terminal wait.

Facilitating maintenance
To correct errors or to adapt to the evolving needs of an organization, distributed
processes always need to be modified. Whether these changes are made by the

Chapter 14. Distributed transaction processing (DTP) 283

original developers or by others, this task is likely to be easier if the distributed
processes are relatively simple. So consider minimizing the number of transactions
that are involved in a distributed process.

Going for reliability
If you are particularly concerned with reliability, consider minimizing the number
of transactions in the distributed process.

Protecting sensitive data

If the distributed process is to handle security-sensitive data, you could place this
data onto a single system. This means that only one of the transactions needs
knowledge of how or where the sensitive data is stored.

Data conversion

For communication with non-TXSeries for Multiplatforms systems, data conversion
might be required. When using DTP, it is the responsibility of the application to
perform these data conversions.

Safeguarding data integrity

If it is important for you to be able to recover your data when things go wrong,
design conversations for synchronization level 2, and keep the LUWs as small as
possible. However, this is not always possible, because the size of an LUW is
determined largely by the function that is being performed. Remember that CICS
sync point processing has no information about the structure and purpose of your
application. As an application designer, you must ensure that sync points are taken
at the correct time and place, and to good purpose. If you do, error conditions are
unlikely to lead to inconsistencies in recoverable data resources.

shows a temporary storage queue being transferred from system A to
system B through a conversation at synchronization level 2. The numbers mark
points at which you might consider taking a sync point.

CICSSYSTEMA CICSSYSTEMB

Transaction TRAA Transaction TRBB
M
Loop until TS queue empty:
-Readarecord (M
-Sendtherecord » Loop untillastrecord
indicatorisreceived:
-Receivetherecord
-Processthe record

-Receivetheresponse <+—— —— -Sendaresponse
(2) (2)
Endloop.
-Deletetherecord
3)
Endloop.

Send lastrecordindicator E—
Receivetheresponse D
4)

Figure 90. Transferring a temporary storage queue

Here are the relative advantages of taking a sync point at each of these points:

284 TXSeries for Multiplatforms: CICS Intercommunication Guide

1. Because an LUW starts at point (1), a sync point has no effect. If TRBB tries to
take a sync point without having first issued a command to receive data, it will
be abended because it is not valid to perform sync point with a synchronization
level 2 conversation in receive state.

2. A sync point at point (2) causes CICS to commit a record in system B before it
has been deleted from system A. If either system (or the connection between
them) fails before the distributed process is completed, data might be
duplicated.

3. Because minimum processing is needed before resources are committed, point
(3) might be a safe place to take a sync point if the queue is long or the records
are large. However, performance might be poor because many sync points are
likely to be taken.

4. If you take a sync point only at point (4), a failure before this point means that
all data that is sent will have to be retransmitted. A distributed process that
sync points only at this stage completes more quickly than one that sync points
at point (3), provided that no failure occurs. However, it takes longer to
recover. If more than two systems are involved in the process, this problem is
made worse.

Remember that having too many conversations within one distributed transaction
complicates error recovery. A complex structure might sometimes be unavoidable,
but usually it means that the design could be improved by simplifying the
structure of the distributed transaction.

An LUW must be recoverable for the whole process of which it forms a part. All
changes that are made by both partners in every conversation must be backed out
if the LUW does not complete successfully. Sync points are not arbitrary divisions,
but must reflect the functions of the application. LUWs must be designed to
preserve consistent resources so that when a transaction fails, all resources are
restored to their correct state.

Designing conversations

When the overall structure of the distributed process has been decided, you can
then start to design individual conversations. Designing a conversation involves
deciding which functions to put into the front-end transaction and into the
back-end transaction, and deciding what should be in a distributed unit of work.
So you have to make decisions about how to subdivide the work that is to be done
for your application.

Because a conversation involves transferring data between two transactions, to
function correctly, each transaction must know what the other intends. For
example, little advantage is gained by the front-end transaction’s sending data if all
the back-end transaction is designed to do is print the weekly sales report. You
must therefore consider each front-end and back-end transaction pair as one
software unit.

The sequences of commands that you can issue on a conversation are governed by
a protocol that is designed to ensure that commands are not issued in
inappropriate conditions. The protocol is based on the concept of several
conversation states. A conversation state applies only to one side of a single
conversation and not to a transaction as a whole. In each state, are several
commands that might reasonably be issued. The command itself, together with its
outcome, might cause the conversation to change from one state to another.

Chapter 14. Distributed transaction processing (DTP) 285

To determine the conversation state, you can use either the STATE option on a
command, or the EXTRACT ATTRIBUTES command. For the state values that are
returned by different commands, see the [TXSeries for Multiplatforms Application|
(Programming Guide

Note: You can also determine the state of a conversation by examining the EIB
values after each DTP command. However, it is more efficient to use explicit
STATE values.

When a conversation changes state, it is said to have undergone a state transition,
which generally makes a different set of commands available. The available
commands and state transitions are shown in a series of state tables. Which state
table you use depends on the synchronization level chosen.

For more information, see ["How to use the state tables” on page 331

Writing programs for CICS DTP

CICS enables DTP by using the LU 6.2 APPC mapped conversations commands.
The following sections describe how to code a simple DTP program:

+ |[“Conversation initiation and the front-end transaction”|

+ |“Back-end transaction initiation” on page 289

+ |“Transferring data on the conversation” on page 291/

+ [“Communicating errors across a conversation” on page 295|

* |“Safeguarding data integrity” on page 296|

* |“Ending the conversation” on page 29

+ |“Checking the outcome of a DTP command” on page 300|

You need to manage the changing conversation states of your program. A
description of how you test the state, and a complete list of all the conversation
states, is given in:

+ |“Testing the conversation state” on page 303

* |Appendix B, “The conversation state tables,” on page 331|

The APPC commands are summarized in:

* |["Summary of CICS commands for APPC mapped conversations” on page 304

Conversation initiation and the front-end transaction

The front-end transaction is responsible for acquiring a conversation, specifying the
conversation characteristics, and requesting the startup of the back-end transaction
in the remote system.

This section describes the following topics:

* Allocating a conversation

* Using ATI to allocate a conversation identifier (CONVID)
* Connecting the partner transaction

* Initial data for the back-end transaction

Allocating a conversation

Initially, no conversation occurs, and therefore no conversation state. By issuing an
EXEC CICS ALLOCATE command, the front-end transaction acquires a conversation
identifier (CONVID) for a new conversation.

The RESP value that is returned from ALLOCATE should be checked to ensure
that a CONVID has been allocated. If the CONVID is successfully allocated,

286 TXSeries for Multiplatforms: CICS Intercommunication Guide

(DFHRESP(NORMAL)), the conversation is in allocated state (state 1) and the
CONVID in EIBRSRCE must be saved immediately. The SYSID option contains the
name of the Communications Definitions (CD) entry for the remote system.

The CONVID must be used in subsequent commands for this conversation.
A full description of the EXEC CICS ALLOCATE command can be found in the

[TXSeries for Multiplatforms Application Programming Referencd [Figure 91| shows an
example of an EXEC CICS ALLOCATE command:

*

DATA DIVISION.
WORKING-STORAGE SECTION.

*

01 FILLER.

02 WS-CONV PIC X(4).

02 WS-RESP PIC S9(8) COMP.

02 WS-STATE PIC S9(8) COMP.

02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(32) VALUE 'DTP2'

02 WS-LEN-PROCN PIC S9(5) COMP VALUE +4.
02 WS-SYNC-LVL PIC S9(5) COMP VALUE +2.

*

PROCEDURE DIVISION.

* DY
EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP) END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN MOVE EIBRSRCE TO WS-CONVID
ELSE

* ... No session allocated. Examine RESP code.
END-IF.

EXEC CICS CONNECT PROCESS CONVID(WS-CONV) STATE(WS-STATE)
RESP (WS-RESP) PROCNAME (WS-PROC)
PROCLENGTH (WS-LEN-PROCN)
SYNCLEVEL (WS-SYNC-LVL)

END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN
* ... No errors. Check EIB flags.
ELSE
* ... Conversation not started. Examine RESP code.
END-IF.

Figure 91. Starting a conversation at synchronization level 2

Using ATI to allocate a conversation identifier (CONVID)

Front-end transactions are often initiated from terminals, but they can be started by
automatic transaction initiation (ATI). ATI can start a transaction with a
conversation as its principal facility.

A transaction can be started automatically either by an EXEC CICS START
command, or by a transient-data trigger. For an EXEC CICS START request, the
TERMID option is used. If a SYSID is specified in the TERMID option, the
transaction is started with a conversation as its principal facility.

For a transient-data trigger, the following Transient Data Definition (TDD)
attributes are used:

* A FacilityType of system is specified

* The Facilityld specifies the SYSID of the remote system

Chapter 14. Distributed transaction processing (DTP) 287

A transaction that is started in either of these two ways already has an
conversation allocated. Although this conversation is the principal facility of the
started transaction, it is handled in the same way as a terminal-attached
transaction handles a secondary facility. The started transaction completes the
initiation of a conversation by issuing the EXEC CICS CONNECT PROCESS
command, as described below.

Connecting the partner transaction

When the front-end transaction has acquired a CONVID, the next step is to initiate
the partner transaction. The state tables show that, in the allocated state (state 1),
one of the commands that is available is EXEC CICS CONNECT PROCESS. This
command allows the conversation characteristics to be specified and attaches the
required back-end transaction. It should be noted that the results of the EXEC
CICS CONNECT PROCESS are placed into the send buffer and are not sent
immediately to the partner system. Transmission occurs later, when the
conversation is used. If the remote system failed to start, the TERMERR condition
is returned on a later verb.

A successful EXEC CICS CONNECT PROCESS causes the conversation to switch
to send state (state 2). The following program fragment shows an example of an
EXEC CICS CONNECT PROCESS command. The PROCNAME option contains
what is referred to in SNA terminology as the transaction program name (TPN). If
the remote system is CICS, PROCNAME should be the four-character transaction
identifier that is configured in the remote system for the back-end program.

*

EXEC CICS CONNECT PROCESS CONVID(WS-CONV) STATE(WS-STATE)
RESP(WS-RESP) PROCNAME (WS-PROC)
PROCLENGTH (WS-LEN-PROCN)
SYNCLEVEL (WS-SYNC-LVL)
END-EXEC.

For a full description of the EXEC CICS CONNECT PROCESS command, refer to
the [T XSeries for Multiplatforms Application Programming Reference]

Initial data for the back-end transaction

While connecting the back-end transaction, the front-end transaction can send
initial data to it. This type of data, called program initialization parameters (PIPs), is
placed into specially formatted structures and is specified on the EXEC CICS
CONNECT PROCESS command. The PIPLIST (along with PIPLENGTH) option of
the EXEC CICS CONNECT PROCESS command is used to send PIPs to the
back-end transaction.

— When using Communications Server for AIX

Note: Current AIX SNA limitations specify that only 16 fields of 64 characters
each of PIP data can be transmitted. That data must not contain space
characters. If the data that is transmitted does not conform to this, the
CONNECT PROCESS command apparently succeeds, but the next DTP
command returns TERMERR.

To examine any PIPs that are received, the back-end transaction uses the EXEC
CICS EXTRACT PROCESS command.

288 TXSeries for Multiplatforms: CICS Intercommunication Guide

PIP data is used only by the two connected transactions and not by the CICS
systems. The support of PIP data is optional for APPC systems. If PIP data is not
supported by the partner system, the TERMERR is returned on a later verb with
EIBERRCD set to 10086032.

The PIP data must be formatted into one or more subfields in accordance with the
CICS-architected rules. The content of each subfield is defined by the application
developer. You should format PIP data as follows:

L1 rr PIP1 L2 rr PIP2 Ln rr PIPn

where Ln is a halfword binary integer that specifies the length of the subfield, and
rr represents a reserved halfword. The length includes the length field itself and
the length of the reserved field; that is, Ln = (length of PIPn + 4).

The PIPLENGTH option must specify the total length of the PIP list and must be
in the range 4 through 32763.

Back-end transaction initiation

The back-end transaction is initiated as a result of the front end transaction’s EXEC
CICS CONNECT PROCESS command. Initially, the back-end transaction should
determine the CONVID. This is not strictly necessary because the conversation is
the back-end transaction’s principal facility. Therefore, the CONVID parameter is
optional for DTP commands on this conversation. However, the CONVID is useful
for audit trails. Also, if the back-end transaction is involved in more than one
conversation, by always specifying the CONVID option, you improve program
readability and problem determination.

[Figure 92 on page 290khows a fragment of a back-end transaction that does obtain
the conversation identifier. Although the example uses the EXEC CICS ASSIGN
command for this purpose, a simpler way would be to access the information in
EIBTRMID.

Chapter 14. Distributed transaction processing (DTP) 289

* LRI
DATA DIVISION.
WORKING-STORAGE SECTION.

*

01 FILLER.

02 WS-CONVID PIC X(4).

02 WS-STATE PIC S9(7) COMP.

02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(32) VALUE 'BBBB'.

02 WS-LEN-PROCN PIC S9(5) COMP VALUE +4.
02 WS-SYNC-LVL PIC S9(5) COMP VALUE +2.

01 FILLER.

02 WS-RECORD PIC X(100).
02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.

02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

*

PROCEbORE DIVISION.

*

EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.
Extract the conversation characteristics.

EXEC CICS EXTRACT PROCESS PROCNAME (WS-PROC)
PROCLENGTH (WS-LEN-PROCN)
SYNCLEVEL (WS-SYNC-LVL)
END-EXEC.

Receive data from the front-end transaction.

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RECORD) MAXLENGTH (WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.

. Check outcome of EXEC CICS RECEIVE.

* %k X

Figure 92. Startup of a back-end APPC mapped transaction at synchronization level 2

The back-end transaction can also retrieve its transaction name by issuing the
EXEC CICS EXTRACT PROCESS command. In the example that is shown in
CICS places the transaction name in WS-PROC and the length of the
name in WS-LEN-PROCN.

Note: The APPC architecture, which is described in Transaction Programmer’s
Reference for LUTYPE6.2, GC30-3084, states that the maximum length for the
PROCNAME field is 64 bytes and that implementation might limit this field
to less than 64 bytes. TXSeries for Multiplatforms supports up to 32 bytes of
data for PROCNAMEs. The PROCNAME field is space padded to 32 bytes.

With the EXEC CICS EXTRACT PROCESS, the back-end transaction can also
retrieve the synchronization level at which the conversation was started. In the
example, CICS places the synchronization level in WS-SYNC-LVL.

The EXEC CICS ASSIGN and the EXEC CICS EXTRACT PROCESS commands are
discussed here to give you some idea of what you can do in the back-end
transaction. They are not essential.

The back-end transaction starts in receive state (state 5), and must issue an EXEC
CICS RECEIVE command. By doing this, the back-end transaction receives

290 TXSeries for Multiplatforms: CICS Intercommunication Guide

whatever data the front-end transaction has sent and allows CICS to raise EIB flags
and change the conversation state to reflect any request that the front-end
transaction has issued.

The back-end transaction fails to start

It is possible that the back-end transaction fails to start. However, APPC contains a
transmission delay mechanism that informs the front-end transaction of the failure
when the conversation has been active long enough for responses from the
back-end system to have been received. The front-end transaction is informed of
this by way of a TERMERR condition in response to a DTP command. EIBERR,
EIBFREE, and EIBERRCD are set (see [‘Checking the outcome of a DTP command”]

for the possible values of EIBERRCD).

Before sending data, the front-end transaction should determine whether the
back-end transaction has started successfully. One way of doing this is to issue an
EXEC CICS SEND CONFIRM command directly after the EXEC CICS CONNECT
PROCESS command. This causes the front-end transaction to suspend until the
back-end transaction has responded or the back-end transaction has sent the failure
notification that is described above. EXEC CICS SEND CONFIRM is discussed in
[“Safeguarding data integrity” on page 296

Transferring data on the conversation

This section discusses how to pass data between the front- and back-end
transactions. In this section:

+ |“Sending data to the partner transaction”] explains how to send data

+ |“Switching from sending to receiving data” on page 292|describes how to switch
from sending to receiving data

* [“Receiving data from the partner transaction” on page 293| explains how to
receive data

Also contained in this section is a program fragment that shows the commands
that are described and the suggested response code checking.

Sending data to the partner transaction

The EXEC CICS SEND command is valid only in send state (state 2). Because a
successful simple EXEC CICS SEND leaves the conversation in send state (state 2),
it is possible to issue several successive sends. The data from the simple EXEC
CICS SEND command is initially stored in a local CICS buffer, which is “flushed”
either when this buffer is full or when the transaction requests transmission. The
transaction can request transmission either by using an EXEC CICS WAIT
CONVID command, or by using the WAIT option on the EXEC CICS SEND
command. The reason why data transmission is deferred is to reduce the number
of calls to the network. Data can be buffered by the network layers between CICS.
Therefore, use of the WAIT command does not guarantee that the partner
transaction immediately receives the data.

An example of a simple EXEC CICS SEND command is shown in
age 292\ For a full description of this command, see the [T XSeries for Multiplatform
Application Programming Referenc

Chapter 14. Distributed transaction processing (DTP) 291

*

DATA DIVISION.
WORKING-STORAGE SECTION.

*

01 FILLER.

02 WS-CONVID PIC X(4).

02 WS-STATE PIC S9(7) COMP.
* LY
01 FILLER.

02 WS-SEND-AREA PIC X(70).
02 WS-SEND-LEN PIC S9(5) COMP VALUE +70.

01 FILLER.

02 WS-RCVD-AREA PIC X(100).
02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.

02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

*

PROCEDURE DIVISION.

* D)

EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
FROM(WS-SEND-AREA) LENGTH (WS-SEND-LEN)

END-EXEC.

... Check outcome of SEND.

EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
INVITE WAIT
END-EXEC.

* Receive data from the partner transaction.
EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RCVD-AREA) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)
END-EXEC.

... Check outcome of EXEC CICS RECEIVE.

*

Figure 93. Transferring data on a conversation at synchronization level 2

Switching from sending to receiving data

The column for send state (state 2) in the state tables (see|Appendix B, “The|
fconversation state tables,” on page 331) shows that several ways of switching from
send state (state 2) to receive state (state 5) are possible.

One possibility is to use an EXEC CICS RECEIVE command. The state tables show
that CICS supplies the INVITE and WAIT when an EXEC CICS SEND is followed
immediately by an EXEC CICS RECEIVE.

Another possibility is to use an EXEC CICS SEND INVITE command. The state
tables show that after EXEC CICS SEND INVITE, the conversation switches to
pendreceive (state 3). The column for state 3 shows that an EXEC CICS WAIT
CONVID command switches the conversation to receive state (state 5).

Still another possibility is to specify the INVITE and WAIT options on the EXEC

CICS SEND command. The state tables show that after EXEC CICS SEND INVITE
WALIT, the conversation switches to receive state (state 5).

292 TXSeries for Multiplatforms: CICS Intercommunication Guide

shows the response-testing sequence after an EXEC CICS SEND INVITE
WAIT with the STATE option.

*

DATA bIVISION.
WORKING-STORAGE SECTION.

*

01 FILLER.

02 WS-RESP PIC S9(7) COMP.
02 WS-STATE PIC S9(7) COMP.

*

PROCEDURE DIVISION.

* DY
* Check return code from SEND INVITE WAIT
IF WS-RESP = DFHRESP(NORMAL)

THEN
* ... Request successful
IF EIBERR = LOW-VALUES
THEN
* ... No errors, check state
IF WS-STATE = DFHVALUE(RECEIVE)
THEN
* ... SEND OK, continue processing
ELSE
* ... Logic error, should never happen
END-IF
ELSE
* ... Error indicated

EVALUATE WS-STATE
WHEN DFHVALUE (ROLLBACK)

* ... ROLLBACK received
WHEN DFHVALUE (RECEIVE)
* ... ISSUE ERROR received, reason in EIBERRCD
WHEN OTHER
* ... Logic error, should never happen
END-EVALUATE
END-IF
ELSE
* ... Examine RESP code for source of error.
END-IF.

Figure 94. Checking the outcome of an EXEC CICS SEND INVITE WAIT command

For more information about response testing, see [‘Checking the outcome of a DTP|
lcommand” on page 300

Receiving data from the partner transaction

The EXEC CICS RECEIVE command is used to receive data from the connected
partner. The rows in the state tables for the EXEC CICS RECEIVE command show
the EIB fields that should be tested after an EXEC CICS RECEIVE command is
issued. In addition to showing which field should be tested, the state tables also
show the sequence in which the tests should be made.

As an alternative to testing the EIB fields, it is possible to test the resulting
conversation state; this is shown in the following figure. The conversation state can
be meaningfully tested only after you have issued a command with the STATE
option, or when you use the EXTRACT ATTRIBUTES command. For more
information about response testing, see [“Checking the outcome of a DTP|
ffommand” on page 300

For information about testing the conversation state, see [“Testing the conversation|
lstate” on page 303

Chapter 14. Distributed transaction processing (DTP) 293

shows the response-testing and state-testing sequence.

Note: In the same way as it is possible to send the INVITE, LAST, and CONFIRM
commands with data, it is also possible to receive them with data. It is also
possible to receive a sync point request with data. However, EXEC CICS
ISSUE ERROR, EXEC CICS ISSUE ABEND, and conversation failure are
never received with data.

WORKING-STORAGE SECTION.

*

01 FILLER.

02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

*

PROCEDURE DIVISION.

*

* Check return code from RECEIVE

IF WS-RESP = DFHRESP(EOQC)
OR WS-RESP = DFHRESP (NORMAL)
THEN
* ... Request successful
IF EIBERR = LOW-VALUES
THEN
* ... No errors, check state

EVALUATE WS-STATE
WHEN DFHVALUE (SYNCFREE)

* ... Partner issued SYNCPOINT and LAST
WHEN DFHVALUE (SYNCRECEIVE)

* ... Partner issued SYNCPOINT
WHEN DFHVALUE (SYNCSEND)

* ... Partner issued SYNCPOINT and INVITE
WHEN DFHVALUE (CONFFREE)

* ... Partner issued CONFIRM and LAST
WHEN DFHVALUE (CONFRECEIVE)

* ... Partner issued CONFIRM
WHEN DFHVALUE (CONFSEND)

* ... Partner issued CONFIRM and INVITE
WHEN DFHVALUE (FREE)

* ... Partner issued LAST or FREE
WHEN DFHVALUE (SEND)

* ... Partner issued INVITE
WHEN DFHVALUE (RECEIVE)

* ... No state change. Check EIBCOMPL.
WHEN OTHER

* ... Logic error, should never happen

END-EVALUATE.
ELSE
* ... Error indicated

EVALUATE WS-STATE
WHEN DFHVALUE (ROLLBACK)

* ... ROLLBACK received
WHEN DFHVALUE (RECEIVE)
* ... ISSUE ERROR received, reason in EIBERRCD
WHEN OTHER
* ... Logic error, should never happen
END-EVALUATE
END-IF
ELSE
* ... Examine RESP code for source of error
END-IF.

Figure 95. Checking the outcome of an EXEC CICS RECEIVE command

For a full description of the EXEC CICS RECEIVE command, refer to the
ffor Multiplatforms Application Programming Reference}

294 TXSeries for Multiplatforms: CICS Intercommunication Guide

The EXEC CICS CONVERSE command

The EXEC CICS CONVERSE command combines the functions EXEC CICS SEND
INVITE WAIT and EXEC CICS RECEIVE. This command is useful when one
transaction needs a response from the partner transaction in order to continue
processing. The use of EXEC CICS CONVERSE instead of EXEC CICS SEND
INVITE WAIT allows CICS to improve network performance.

Refer to the [TXSeries for Multiplatforms Application Programming Reference for a full
description of the EXEC CICS CONVERSE command.

Communicating errors across a conversation

The APPC mapped API provides commands to enable transactions to pass error
notification across a conversation. Three coomands are possible, depending on the
severity of the error. The most severe, EXEC CICS ISSUE ABEND, causes the
conversation to terminate abnormally, and is described in [‘Emergency termination|
of a conversation” on page 299.| The other two commands are described below.

Requesting invite from the partner transaction

If a transaction is receiving data on a conversation and wants to send, it can use
the EXEC CICS ISSUE SIGNAL command to request that the partner transaction
does an EXEC CICS SEND INVITE. When the EXEC CICS ISSUE SIGNAL request
is received, EIBSIG=X'FF’ and the SIGNAL condition are raised. It should be noted
that on receipt of SIGNAL, a transaction is not obliged to issue EXEC CICS SEND
INVITE. For a full description of the EXEC CICS SEND INVITE command, see the
[TXSeries for Multiplatforms Application Programming Referencd

Demanding invite from the partner transaction

If a transaction needs to send an immediate error notification to its partner
program but the conversation is in receive (state 5), it can use the ISSUE ERROR
command to try to switch the conversation state to send (state 2). When the
partner application receives ISSUE ERROR, the EIBERR flag is X'FF’, the
EIBERRCD field begins X’0889’, and the conversation state is set to receive (state
5). This error condition cannot be processed by HANDLE CONDITION (or RESP).

ISSUE ERROR can be called in send (state 2) and can also be used to give an error
response to a SEND CONFIRM request that the partner program has made.
However it should not be used in response to an ISSUE PREPARE, SYNCPOINT or
SYNCPOINT ROLLBACK.

If an ISSUE ERROR command is sent when the conversation is in receive (state 5),
all incoming data from the partner program is purged until either the remote
system acknowledges receipt of the ISSUE ERROR and reports it to the partner
application by setting EIBERR=X'FF” and EIBERRCD=X"0889’, or the partner
application stops sending data and issues a command such as SYNCPOINT,
SYNCPOINT ROLLBACK, SEND LAST WAIT, FREE, ISSUE ERROR, or ISSUE
ABEND.

Always ensure that the EIB values are checked after ISSUE ERROR is called,
because it is possible to receive a response from the partner program that prevents
the conversation from switching to send (state 2). The response from ISSUE
ERROR can be checked as follows:

*

DATA DIVISION.
WORKING-STORAGE SECTION.

*

01 FILLER.

Chapter 14. Distributed transaction processing (DTP) 295

02 WS-RESP PIC S9(7) COMP.
02 WS-STATE PIC S9(7) COMP.

Check the response from ISSUE ERROR.
IF WS-RESP = DFHRESP(NORMAL)
THEN
. Request successful
IF EIBERR = LOW-VALUES
THEN
* ... No errors, check state
EVALUATE WS-STATE
WHEN DFHVALUE (SEND)
. ISSUE ERROR worked. Use CONVERSE to
. send an appropriate error message and
. receive a reply.
WHEN DFHVALUE (FREE)
. Partner sent SEND LAST (or ISSUE ABEND
. while in send (state 2) and this has been
. partially purged by the local program calling
. ISSUE ERROR in receive (state 5)).
WHEN OTHER
* ... Logic error, should never happen.
END-EVALUATE
ELSE
* ... Errors received
EVALUATE WS-STATE
WHEN DFHVALUE (RECEIVE)
* ... ISSUE ERROR received from partner.
WHEN DFHVALUE (ROLLBACK)
* ... Partner sent SYNCPOINT ROLLBACK.
WHEN OTHER
* ... Logic error, should never happen.
END-EVALUATE

*

*

* ok %

EBEE I I

ELSE
. RESP indicates a failure. This could be a TERMERR
* ... caused by the partner abending or calling ISSUE ABEND.

*

For a full description of the EXEC CICS ISSUE ERROR command, see the
ffor Multiplatforms Application Programming Reference}

Safeguarding data integrity

Use the following CICS synchronization commands to safeguard data integrity
across connected transactions:

Table 47. CICS synchronization commands for use across transactions

Synchronization level | Commands

0 - none None
1 - confirm EXEC CICS SEND CONFIRM

EXEC CICS ISSUE CONFIRMATION
2 - sync point EXEC CICS SEND CONFIRM

EXEC CICS ISSUE CONFIRMATION
EXEC CICS SYNCPOINT

EXEC CICS ISSUE PREPARE

EXEC CICS SYNCPOINT ROLLBACK

How to synchronize a conversation using CONFIRM commands
A confirmation exchange affects a single specified conversation and invokes only
two commands:

296 TXSeries for Multiplatforms: CICS Intercommunication Guide

1. EXEC CICS SEND CONFIRM: The conversation that is in send (state 2) issues
an EXEC CICS SEND CONFIRM command, causing a request for confirmation
to be sent to the partner transaction. The transaction suspends awaiting a
response.

2. EXEC CICS ISSUE CONFIRMATION: The partner transaction receives a request
for confirmation. It can then respond positively by issuing an EXEC CICS
ISSUE CONFIRMATION command. Alternatively, it can respond negatively by
using the EXEC CICS ISSUE ERROR or EXEC CICS ISSUE ABEND commands.

Requesting confirmation

The CONFIRM option of the EXEC CICS SEND command flushes the conversation
send buffer. This causes a transmission to occur. When the conversation is in send

(state 2), you can send data with the EXEC CICS SEND CONFIRM command. You
can also specify either the INVITE or the LAST option.

The send (state 2) column of the synchronization level 1 state table (see
[“Synchronization level 1 conversation state table” on page 335) shows what
happens for the possible combinations of the CONFIRM, INVITE, and LAST
options. After an EXEC CICS SEND CONFIRM command, without the INVITE or
LAST options, the conversation remains in a send state. If the INVITE option is
used, the conversation switches to receive (state 5). If the LAST option is used, the
conversation switches to free (state 12).

A similar effect to EXEC CICS SEND LAST CONFIRM can be achieved by using
the following command sequence:

EXEC CICS SEND LAST EXEC CICS SEND CONFIRM

Note from the state tables that the EXEC CICS SEND LAST command puts the
conversation in pendfree (state 4), so data cannot be sent when an EXEC CICS
SEND CONFIRM command is used as shown in the above example.

The form of command that is used depends on how the conversation is to continue
if the required confirmation is received. However, the response from EXEC CICS
SEND CONFIRM must always be checked.

Receiving and replying to a confirmation request

On receipt of a confirmation request, the EIB and conversation state is set
depending on the request that the partner transaction issues. These, together with
the contents of the EIBCONF, EIBRECV, and EIBFREE fields, are shown in the
following table:

Table 48. EIB and conversation state request responses

Command issued in reply by |On receipt of On receipt | On receipt | On receipt
partner transaction response - of response | of response | of response
Conversation - EIBCONF |- EIBRECV |- EIBFREE
State
EXEC CICS SEND CONFIRM | confreceive (state | X'FF’ X’FF’ X"00
6)
EXEC CICS SEND INVITE confsend (state 7) | X'FF’ X’'00 X'00
CONFIRM
EXEC CICS SEND LAST conffree (state 8) | X'FF’ X'00’ X'FF’
CONFIRM
You can reply in three ways:
Chapter 14. Distributed transaction processing (DTP) 297

1. Reply positively with an EXEC CICS ISSUE CONFIRMATION command.

2. Reply negatively with an EXEC CICS ISSUE ERROR command. This reply puts
the conversation into send state, regardless of the partner transaction request.

3. Abnormally end the conversation with an EXEC CICS ISSUE ABEND
command. This makes the conversation unusable and an EXEC CICS FREE
command must be issued immediately.

Checking the response to EXEC CICS SEND CONFIRM

After issuing EXEC CICS SEND INVITE CONFIRM or EXEC CICS SEND LAST
CONFIRMY, it is important to test EIBERR to determine the partner’s response. The
following table shows how the partner’s response is indicated by EIB flags and the

conversation states:

Table 49. Indications of partner response

Command issued in reply by On receipt of On receipt of | On receipt of
partner transaction response - response - response -

Conversation State | EIBERR EIBFREE
EXEC CICS ISSUE Dependent on the X’00 X’00
CONFIRMATION original EXEC CICS

SEND INVITE

CONFIRM or EXEC

CICS SEND LAST

CONFIRM request
EXEC CICS ISSUE ERROR Receive (state 5) X'FF X’00
EXEC CICS ISSUE ABEND Free (state 12) X'FF’ X'FF’

If EIBERR=00, the partner has replied EXEC CICS ISSUE CONFIRMATION.

If EIBERR=X'FF" and the first two bytes of EIBERRCD=X'0889’", the partner replied
EXEC CICS ISSUE ERROR. When the partner replies EXEC CICS ISSUE ERROR in
response to EXEC CICS SEND LAST CONFIRM, the LAST option is ignored and
the conversation is not terminated. The conversation state is switched to receive.

If the partner replies EXEC CICS ISSUE ABEND, the TERMERR condition is raised.
In addition, EIBERR and EIBFREE are set and the first two bytes of
EIBERRDC=0864. The conversation is switched to free state.

How to synchronize conversations using EXEC CICS
SYNCPOINT commands

Data synchronization (the EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT
ROLLBACK commands) affects all connected conversations at synchronization
level 2. The use of these commands is described in [Chapter 15, “Sync pointing a
(distributed process,” on page 307

Ending the conversation

The following information describes the different ways a conversation can end,
either unexpectedly or under transaction control. To end a transaction, one
transaction issues a request for termination and the other receives this request.
When this has happened, the conversation is unusable and both transactions must
issue an EXEC CICS FREE command to release the session. Conversations are
implicitly freed when a transaction ends.

298 TXSeries for Multiplatforms: CICS Intercommunication Guide

Normal termination of a conversation

The EXEC CICS SEND LAST command is used to terminate a conversation. It
should be used in conjunction with either the WAIT or CONFIRM options, the
EXEC CICS SYNCPOINT command, or the EXEC CICS WAIT CONVID command
(depending on the conversation synchronization level). This is described in the
following table:

Table 50. Command sequence for synchronization levels

Synchronization level | Command sequence

0 EXEC CICS SEND LAST WAIT
EXEC CICS FREE

1 EXEC CICS SEND LAST CONFIRM
EXEC CICS FREE

2 EXEC CICS SEND LAST (see note)

EXEC CICS SYNCPOINT
EXEC CICS FREE

Note: It is important that the EXEC CICS SEND LAST command for
synchronization level 2 is not accompanied by WAIT. This sequence of
commands (with or without the implicit EXEC CICS FREE) is the only way
in which CICS synchronization level 2 conversations can normally be
terminated.

From the state tables it can be seen that it is possible to end a synchronization level
0 or 1 conversation by issuing the EXEC CICS FREE command, provided the
conversation is in send (state 2). This generates an implicit EXEC CICS SEND
LAST WAIT command before the EXEC CICS FREE is executed.

Emergency termination of a conversation
The EXEC CICS ISSUE ABEND command provides a way to abnormally end the
conversation. It is valid for all levels of synchronization.

EXEC CICS ISSUE ABEND can be issued by either transaction, irrespective of
whether it is in send or receive state, at any time after the conversation has
started. For a conversation in send state (state 2), any deferred data that is waiting
for transmission is flushed before the EXEC CICS ISSUE ABEND command is
transmitted.

The transaction that issues the EXEC CICS ISSUE ABEND command is not itself
abended. It must, however, issue an EXEC CICS FREE command for the
conversation unless it is designed to terminate immediately.

If an EXEC CICS ISSUE ABEND command is issued in receive (state 5), CICS
purges all incoming data until an INVITE, sync point request, or LAST indicator is
received. If LAST is received, no abend indication is sent to the partner transaction.

If an EXEC CICS ISSUE ABEND is received, CICS raises the TERMERR condition,
sets on EIBERR (=X"FF’), EIBFREE (=X'FF’), and places X'0864" in the first two
bytes of EIBERRCD. The only command that can be subsequently issued for the
conversation is EXEC CICS FREE.

When a synchronization level 2 conversation receives EXEC CICS ISSUE ABEND

or when you call EXEC CICS ISSUE ABEND of a synchronization level 2
conversation, all other conversations go into backout-required state.

Chapter 14. Distributed transaction processing (DTP) 299

For a complete description of the EXEC CICS ISSUE ABEND command, see the
[TXSeries for Multiplatforms Application Programming Reference

Unexpected termination of a conversation

If a partner system fails, or a session goes out of service in the middle of a DTP
conversation, the conversation is terminated abnormally, and the TERMERR
condition is raised on the next command that accesses the conversation. In
addition EIBERR and EIBFREE are set on (X'FF’), and EIBERRCD contains a value
that represents the reason for the error. Refer to the table in
loutcome of a DTP command.”]

More information can be found in the following tables:

* |“Synchronization level 0 conversation state table” on page 333

* |“Synchronization level 1 conversation state table” on page 335

* |“Synchronization level 2 conversation state table” on page 338

Checking the outcome of a DTP command

Checking the response from a DTP command can be separated into three stages:
1. Testing for a request failure

2. Testing for indicators that are received on the conversation

3. Testing the conversation state

Testing for request failure is the same as for other EXEC CICS commands in that
conditions are raised and can be handled by use of EXEC CICS HANDLE
CONDITION or RESP. EIBRCODE will also contain an error code.

If the request has not failed, it is then possible to test for indicators that are
received on the conversation. These are returned to the application in the EIB. The
following EIB fields are relevant to all DTP commands:

EIBERR
When set to X'FF', indicates that an error has occurred on the conversation.
The reason is in EIBERRCD. This could be as a result of an EXEC CICS
ISSUE ERROR, EXEC CICS ISSUE ABEND, or EXEC CICS SYNCPOINT
ROLLBACK command that the partner transaction issued. EIBERR can be
set as a result of any command that can be issued while the conversation is
in receive (state 5), or following any command that causes a transmission
to the partner system. It is safest to test EIBERR in conjunction with
EIBFREE and EIBSYNRB after every DTP command.

EIBERRCD
Contains the error code that is associated with EIBERR. If EIBERR is not
set, this field is not used.

EIBFREE
When set to X'FF', indicates that the partner transaction had ended the
conversation. It should be tested along with EIBERR and EIBSYNC to find
out exactly how to end the conversation.

EIBSYNRB
When set to X'FF', indicates that the partner transaction or system has
issued an EXEC CICS SYNCPOINT ROLLBACK command. (This is
relevant only for conversations at synchronization level 2.)

EIBSIG
When set to X'FF', indicates that the partner transaction or system has
issued an EXEC CICS ISSUE SIGNAL command.

300 TXSeries for Multiplatforms: CICS Intercommunication Guide

The following table shows how these EIB fields interact.

Table 51. Interaction between some EIB fields

EIBERR EIBFREE EIBSYNRB EIBERRCD Description

X'FF' X'FF' X'00' 08640000 The remote application or system has sent
ISSUE ABEND.

X'FF' X'FF' X'00' 08640001 The remote system has sent ISSUE ABEND.

X'FF' X'FF' X'00' 08640002 A remote resource has timed out.

X'FF' X'00' X'00' 08890000 The partner transaction has sent EXEC CICS
ISSUE ERROR

X'FF' X'FF' X'00' 10086032 The PIP data that was sent with the EXEC
CICS CONNECT PROCESS was incorrectly
specified.

X'FF' X'FF' X'00' 10086034 The partner system does not support mapped
conversations.

X'FF' X'FF' X'00' 080f6051 The partner transaction failed security check.

X'FF' X'FF' X'00' 10086041 The partner transaction does not support the
synchronization level that is requested on the
EXEC CICS CONNECT PROCESS.

X'FF' X'FF' X'00' 10086021 The partner transactions name is not
recognized by the partner system.

X'FF' X'FF' X'00' 0840000 The partner system cannot start the partner
transaction.

X'FF' X'FF' X'00' 084b6031 The partner system temporarily cannot start
the partner transaction.

X'FF' X'00' X'FF' 08240000 The partner transaction or system has issued
EXEC CICS SYNCPOINT ROLLBACK.

X'FF' X'FF' X'00' a0000100 The session to the remote system has failed.

X'00' X'00' - - The command completed successfully.

Refer to the EIB flags that are described below.

In addition, the following EIB fields are relevant only to the EXEC CICS RECEIVE
and EXEC CICS CONVERSE commands:

EIBCOMPL

When set to X'FF', indicates that all the data that was sent at one time has
been received. This field is used in conjunction with the EXEC CICS
RECEIVE NOTRUNCATE command.

EIBEOC

When set to X'FF', indicates that an end-of-chain indicator has been
received. This field is normally associated with a successful EXEC CICS
RECEIVE command. Because, CICS supports only mapped conversations,
this field is provided only for compatibility with old CICS programs.

EIBNODAT

When set to X'FF', indicates that no application data has been received.

EIBRECV

Is used only when EIBERR is not set. When EIBRECV is on (X'FF'), another
EXEC CICS RECEIVE is required.

Chapter 14. Distributed transaction processing (DTP) 301

EIBSYNC

When set to X'FF', indicates that the partner transaction or system has
requested a sync point. (This is relevant only for conversations at

synchronization level 2.)

EIBCONF

When set to X'FF', indicates that the partner transaction has issued an
EXEC CICS SEND CONFIRM command and requires a response.

Table 52. RECEIVE and CONFIRM flags

EIBERR EIBFREE EIBRECV

EIBSYNC

EIBCONF

Description

X'00' X'00' X'00'

X'00'

X'00'

The partner transaction or system issued
EXEC CICS SEND INVITE WAIT. The
local program is now in send state.

X'00' X'00' X'00'

X'FF'

X'00'

The partner transaction or system issued
EXEC CICS SEND INVITE followed by
an EXEC CICS SYNCPOINT. The local
program is now in syncsend state.

X'00' X'00' X'00'

X'00'

X'FF'

The partner transaction or system issued
EXEC CICS SEND INVITE CONFIRM.
The local program is now in confsend
state.

X'00' X'00' X'FF'

X'00'

X'00'

The partner transaction or system issued
EXEC CICS SEND or EXEC CICS SEND
WAIT. The local program is in receive
state.

X'00' X'00' X'FF'

X'FF'

X'00'

The partner transaction or system issued
an EXEC CICS SYNCPOINT. The local
program is now in syncreceive state.

X'00' X'00' X'FF'

X'00'

X'FF'

The partner transaction or system issued
EXEC CICS SEND CONFIRM. The local
program is now in confreceive state.

X'00' X'FF' X'00'

X'00'

X'00'

The partner transaction or system issued
EXEC CICS SEND LAST WAIT. The
local program is now in free state.

X'00' X'FF' X'00'

X'FF'

X'00'

The partner transaction or system issued
EXEC CICS SEND LAST followed by an
EXEC CICS SYNCPOINT. The local
program is now in syncfree state.

X'00' X'FF' X'00'

X'00'

X'FF'

The partner transaction or system issued
EXEC CICS SEND LAST CONFIRM.
The local program is now in conffree
state.

After analyzing the EIB fields, you can test the conversation state to determine
which DTP commands you can issue next. See [“Testing the conversation state” on|

Checking EIB fields and the conversation state

Most of the information that is supplied by EIB indicator fields can also be
obtained from the conversation state. However, although the conversation state is
easier to test, you cannot ignore EIBERR (and EIBERRCD).

For example, if after an EXEC CICS SEND INVITE WAIT or an EXEC CICS
RECEIVE command has been issued, the conversation is in receive (state 5), only

302 TXSeries for Multiplatforms: CICS Intercommunication Guide

EIBERR indicates that the partner transaction has sent an ISSUE ERROR. This is

shown in [‘Switching from sending to receiving data” on page 292| and [“Receiving]

[data from the partner transaction” on page 293]

It should be noted that the state tables provided contain not only states and
commands that are issued, but also relevant EIB field settings. The sequence in
which these EIB fields are shown provides a sensible sequence of checks for an

application.

Testing the conversation state

A transaction can inquire about the current state of one of its conversations in two

ways:

* The first is to use the EXEC CICS EXTRACT ATTRIBUTES command.

* The second is to use the STATE parameter on the DTP commands.

In both cases, the current state is returned to the application in a CICS value data

area (cvda). The following table shows how the cvda codes relate to the

conversation state. The table also shows the symbolic names that are defined for

these cvda values.

Table 53. Relationship of cvda codes to conversation states

State name of conversation State Symbolic name of states that cvda code
states number are used in DTP programs
Allocated 1 DFHVALUE (ALLOCATED) 81
Send 2 DFHVALUE (SEND) 90
Pendreceive 3 DFHVALUE (PENDRECEIVE) |87
Pendfree 4 DFHVALUE (PENDFREE) 86
Receive 5 DFHVALUE (RECEIVE) 88
Confreceive 6 DFHVALUE (CONFRECEIVE) 83
Confsend 7 DFHVALUE (CONFSEND) 84
Conlffree 8 DFHVALUE (CONFFREE) 82
Syncreceive 9 DFHVALUE (SYNCRECEIVE) 92
Syncsend 10 DFHVALUE (SYNCSEND) 93
Syncfree 11 DFHVALUE (SYNCFREE) 91
Free 12 DFHVALUE (FREE) 85
Rollback 13 DFHVALUE (ROLLBACK) 89

Initial states

A front-end transaction in a conversation must issue an ALLOCATE command to
acquire a conversation. If the conversation is successfully allocated, the front-end
transaction’s side of the conversation goes into allocated (state 1).

A back-end transaction is initially in receive (state 5).

[Appendix B, “The conversation state tables,” on page 331| tabulates the

conversation states, and shows which commands you can issue from any state, and
what the effect of those commands will be.

Chapter 14. Distributed transaction processing (DTP) 303

Summary of CICS commands for APPC mapped conversations

This table shows the CICS commands that are used in APPC mapped
conversations:

Table 54. CICS commands used in APPC mapped conversations

CICS API command Use to ... Sync-
levels

EXEC CICS ALLOCATE Acquire a session. 0,1,2

EXEC CICS CONNECT Initiate a conversation. 0,1,2

PROCESS

EXEC CICS EXTRACT Access session-related information. 0,1,2

PROCESS

EXEC CICS SEND Send data and control information to the 0,1,2
conversation partner.

EXEC CICS RECEIVE Receive data from the conversation partner. 0,1,2

EXEC CICS CONVERSE Send and receive data on the conversation. 0,1,2

EXEC CICS WAIT CONVID | Transmit any deferred data or control indicators. |0, 1, 2

EXEC CICS ISSUE Reply positively to EXEC CICS SEND 1,2

CONFIRMATION CONFIRM.

EXEC CICS ISSUE PREPARE | Prepare a conversation partner for sync pointing. |2

EXEC CICS ISSUE ERROR Inform the conversation partner of a 0,1,2
program-detected error.

EXEC CICS ISSUE SIGNAL | Signal an unusual condition to the conversation |0, 1, 2
partner, usually against the flow of data.

EXEC CICS ISSUE ABEND Inform the conversation partner that the 0,1,2
conversation should be abandoned.

EXEC CICS FREE Free the session. 0,1,2

EXEC CICS SYNCPOINT Inform all conversation partners of readiness to |2
commit changes to recoverable resources.

EXEC CICS SYNCPOINT Inform conversation partners of the need to back |2

ROLLBACK out changes to recoverable resources.

Using DTP to check the availability of the remote system

TXSeries for Multiplatforms does not establish long term sessions with the systems
with which it is communicating, in the same way that IBM mainframe-based CICS
does. This makes it difficult to determine from TXSeries for Multiplatforms
whether a remote system is available. Similarly, it is not possible to determine from
a IBM mainframe-based CICS system whether a TXSeries for Multiplatforms region
is available. CEMT INQUIRE CONNECTION shows whether any sessions are
bound between the local IBM mainframe-based CICS system and SNA. However,
this does not mean that the PPC Gateway server, or the TXSeries for
Multiplatforms region that is behind i, is available.

You can use a pair of distributed transaction processing (DTP) programs to check
whether a remote system is available. All that these programs do is establish
whether it is possible to schedule a transaction on the remote system. This is the
conversation in which the two programs take part:

Front-end program Back-end Program
running on local system running on remote system

304 TXSeries for Multiplatforms: CICS Intercommunication Guide

ALLOCATE SYSID(conn-name)
CONNECT PROCESS SYNCLEVEL(1)

SEND LAST CONFIRM ~ ==mmmmm-- > RECEIVE
RESP=NORMAL Smmmmmeee- ISSUE CONFIRMATION
FREE FREE

The front-end program requests that the back-end program is started on the remote
system, then waits for a reply from the back-end program by using the EXEC CICS
SEND LAST CONFIRM command. This command will return a NORMAL
response only if the back-end program successfully starts and replies.

The front-end program can be enhanced to check the availability of all its remote
systems by using the EXEC CICS INQUIRE CONNECTION (Browse) capability.
Therefore, the front-end program can extract the name of each connection and
attempt the DTP conversation with the corresponding remote system. Here is an
outline of the possible front-end program logic:

EXEC CICS INQUIRE CONNECTION START

while RET-CODE = DFHRESP(NORMAL)
EXEC CICS INQUIRE CONNECTION(CONN-NAME)
NETNAME (NET-NAME)
RESP (RET-CODE)
if RET-CODE = DFHRESP(NORMAL)
EXEC CICS ALLOCATE SYSID(CONN-NAME)
RESP (DTP-RET-CODE)
if DTP-RET-CODE = DFHRESP(NORMAL)
CONV-ID = EIBRSRCE
EXEC CICS CONNECT PROCESS CONVID(CONV-ID)
PROCNAME (tranid)
PROCLENGTH(4)
SYNCLEVEL(1)
RESP(DTP-RET-CODE)
if DTP-RET-CODE = DFHRESP(NORMAL)
EXEC CICS SEND CONVID(CONV-ID)
LAST
WAIT
RESP(DTP-RET-CODE)
if DTP-RET-CODE = DFHRESP(NORMAL)
EXEC CICS FREE CONVID(CONV-ID)
WAIT
: : : RESP(DTP-RET-CODE)
Write out results

EXEC CICS INQUIRE CONNECTION END

EXEC CICS RETURN

Note: These programs should work on any type of CICS system.

Chapter 14. Distributed transaction processing (DTP) 305

306 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 15. Sync pointing a distributed process

This chapter discusses how to include sync pointing in a distributed process. The
information concentrates on the programming aspects of using the EXEC CICS
SYNCPOINT [ROLLBACK] command across conversations.

The following are described:

e |“The EXEC CICS SYNCPOINT command”

* [“The EXEC CICS ISSUE PREPARE command” on page 30

e |“The EXEC CICS SYNCPOINT ROLLBACK command” on page 308
* |“When a backout is required” on page 309|

« [“Synchronizing two CICS systems” on page 309|

» [“Synchronizing three or more CICS systems” on page 314|

The EXEC CICS SYNCPOINT command

The EXEC CICS SYNCPOINT command is used to commit recoverable resources.
In a DTP environment, the effect of the EXEC CICS SYNCPOINT command is
propagated across all conversations that are using synchronization level 2. So, no
matter how many DTP transactions are connected by conversations at
synchronization level 2, the distributed process should be designed such that only
one of the transactions initiates sync point activity for the distributed unit of work.
When issuing the SYNCPOINT command, this transaction, known as the sync point
initiator must be in send state (state 2), pendreceive state (state 3), or pendfree state
(state 4) on all its conversations at synchronization level 2. Any transaction that
receives the sync point request becomes a sync point agent.

A sync point agent is in receive state on its conversation with the sync point
initiator and becomes aware of the sync point request by testing EIBSYNC after
issuing an EXEC CICS RECEIVE command. If it decides to respond positively by
issuing EXEC CICS SYNCPOINT, it must be in an appropriate state on all the
conversations with its own agents, for which it has become sync point initiator. If
an agent transaction responds negatively to a sync point request by issuing EXEC
CICS SYNCPOINT ROLLBACK, the initiator sees EIBRLDBK set (FF), which must
be tested on return from the EXEC CICS SYNCPOINT command.

Your transaction design should ensure that all transactions are in the correct
conversation state before an EXEC CICS SYNCPOINT command is issued.

When a sync point agent receives the sync point request, it is given the
opportunity to respond positively (to commit recoverable resources) with an EXEC
CICS SYNCPOINT command or negatively (to back out recoverable resources)
with an EXEC CICS SYNCPOINT ROLLBACK command.

For information about backing out recoverable resources, see [“The EXEC CICS|
SYNCPOINT ROLLBACK command” on page 308

Examples of these commands are given in [“Synchronizing two CICS systems” on|
ipage 309 and [‘Synchronizing three or more CICS systems” on page 314]

© Copyright IBM Corp. 1999, 2005 307

The EXEC CICS ISSUE PREPARE command

The EXEC CICS ISSUE PREPARE command is used to send the initial sync point
flow to a selected partner on an APPC conversation at synchronization level 2.
Depending on the partner’s response, this command can then be followed by an
EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK command.

The reasons for using EXEC CICS ISSUE PREPARE are as follows:

1. In complex DTP that involves several conversing transactions, an ISSUE
ERROR command from one of the transactions might not reach the sync point
initiator in time to prevent it from issuing an EXEC CICS SYNCPOINT
command. This can lead to complex backout procedures for the distributed unit
of work.

Use EXEC CICS ISSUE PREPARE as a way of flushing any error responses
from the network.

2. If one or more sync point agents are not completely "reliable”, use EXEC CICS
ISSUE PREPARE to check the status of these agents before proceeding with a
general distributed sync point.

Receiving EXEC CICS ISSUE PREPARE is exactly the same as receiving EXEC
CICS SYNCPOINT. The sync point agent program cannot detect any difference.

The EXEC CICS SYNCPOINT ROLLBACK command

The EXEC CICS SYNCPOINT ROLLBACK command is used to back out changes
to recoverable resources. In a DTP environment, the effect of the EXEC CICS
SYNCPOINT ROLLBACK command is propagated across all conversations that are
using synchronization level 2. An EXEC CICS SYNCPOINT ROLLBACK command
can be issued in any conversation state. If the command is issued when a
conversation is in receive (state 5), incoming data on that conversation is purged
as described for the EXEC CICS ISSUE ERROR and EXEC CICS ISSUE ABEND
commands.

When a transaction receives an EXEC CICS SYNCPOINT ROLLBACK in response
to a sync point request, the EIBRLDBK indicator is set. If EXEC CICS SYNCPOINT
ROLLBACK is received in response to any other request, the EIBERR and
EIBSYNRB indicators are set.

The rules for determining the state after EXEC CICS SYNCPOINT ROLLBACK
depend on the CICS release of the remote partner system. CICS follows APPC
architecture. Therefore, following an EXEC CICS SYNCPOINT ROLLBACK
command, conversations revert to the state that they were in at the start of the
LUW.

If a session failure or notification of a deallocate abend occurs during EXEC CICS
SYNCPOINT ROLLBACK processing, the command still completes successfully. If
the same thing happens during EXEC CICS SYNCPOINT processing, the command
can complete successfully with EIBRLDBK set. In such conditions, the conversation
on which the failure or abend occurred is in free state (state 12).

To avoid potential state checks, it is therefore advisable to check the conversation

state, by using the EXEC CICS EXTRACT ATTRIBUTES command before issuing
further DTP commands.

308 TXSeries for Multiplatforms: CICS Intercommunication Guide

When a backout is required

A backout is required in the following conditions:

* When EXEC CICS SYNCPOINT ROLLBACK is received
» After EXEC CICS ISSUE ABEND is sent

 After EIBERR and EIBFREE are returned together

The conversation state does not always reflect the requirement to back out.
However, CICS is aware of this requirement and converts the next EXEC CICS
SYNCPOINT request to an EXEC CICS SYNCPOINT ROLLBACK request. If no
EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK request is
issued before the end of the task, the task is abended, and all recoverable resources
are backed out.

Synchronizing two CICS systems

This information gives examples of how to commit and back out changes to
recoverable resources that are made by two DTP transactions connected on a
conversation that is using synchronization level 2.

The examples show the following scenarios:

* |“SYNCPOINT in response to SYNCPOINT”|

+ [“SYNCPOINT in response to ISSUE PREPARE” on page 310|

. ”SYlNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK” on pagé
311

+ [“SYNCPOINT ROLLBACK in response to SYNCPOINT” on page 311

* [“SYNCPOINT ROLLBACK in response to ISSUE PREPARE” on page 312|
* [“ISSUE ERROR in response to SYNCPOINT” on page 312|

+ |“ISSUE ERROR in response to ISSUE PREPARE” on page 313

+ |“ISSUE ABEND in response to SYNCPOINT” on page 313

+ |“ISSUE ABEND in response to ISSUE PREPARE” on page 314

SYNCPOINT in response to SYNCPOINT

[Figure 96} [Figure 97 on page 310} and [Figure 98 on page 310|show the effect of
EXEC CICS SEND, EXEC CICS SEND INVITE, or EXEC CICS SEND LAST
preceding EXEC CICS SYNCPOINT on an APPC mapped conversation. These
figures also show the conversation state before each command and the state and
EIB fields that are set after each command.

TRANSACTIONA TRANSACTIONB
state:send
SEND CONVID (AB)
state:send state:receive
SYNCPOINT » RECEIVE CONVID (AB)
state:send = | state: syncreceive, EIBSYNC, EIBRECV
p SYNCPOINT
’ state: receive

Figure 96. EXEC CICS SYNCPOINT in response to EXEC CICS SEND followed by EXEC
CICS SYNCPOINT on a conversation

Chapter 15. Sync pointing a distributed process 309

TRANSACTIONA TRANSACTIONB
state:send

SEND INVITE CONVID (AB)

state: pendreceive state:receive
SYNCPOINT » RECEIVE CONVID (AB)
state:receive = | ‘ state: syncsend, EIBSYNC

p SYNCPOINT
’ state:send

Figure 97. EXEC CICS SYNCPOINT in response to EXEC CICS SEND INVITE followed by
EXEC CICS SYNCPOINT on a conversation

TRANSACTIONA TRANSACTIONB
state: send
SENDLASTCONVID (AB)
state: pendfree state: receive
SYNCPOINT » RECEIVE CONVID (AB)
state:free = | ‘ state: syncfree, EIBSYNC, EIBFREE
p SYNCPOINT
’ state: free

Figure 98. EXEC CICS SYNCPOINT in response to EXEC CICS SEND LAST followed by
EXEC CICS SYNCPOINT on a conversation

SYNCPOINT in response to ISSUE PREPARE

[Figure 99 on page 311|shows an EXEC CICS SYNCPOINT command being used in
response to EXEC CICS ISSUE PREPARE on a conversation. This figure also shows
the conversation state before each command and the state and EIB fields that are
set after each command.

Note that you can use also an EXEC CICS ISSUE PREPARE command in
pendreceive state (state 3) and pendfree state (state 4).

Note also that, although the EXEC CICS ISSUE PREPARE command in the figure
returns with the conversation in syncsend state (state 10), the only commands that
are available for use on that conversation are EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK. All other commands abend ATCV.

310 TXSeries for Multiplatforms: CICS Intercommunication Guide

TRANSACTIONA TRANSACTIONB

state:send .
ISSUE PREPARE CONVID (AB) » state:receive

state:syncsend = RECEIVE CONVID (AB)

state: syncreceive, EIBSYNC, EIBRECV
7 SYNCPOINT

SYNCPOINT > state:receive

state:send

Figure 99. EXEC CICS SYNCPOINT in response to EXEC CICS ISSUE PREPARE on a
conversation

SYNCPOINT ROLLBACK in response to SYNCPOINT
ROLLBACK

shows an EXEC CICS SYNCPOINT ROLLBACK command being used
in response to EXEC CICS SYNCPOINT ROLLBACK on a conversation. This figure
also shows the conversation state before each command and the state and EIB
fields that are set after each command.

TRANSACTIONA TRANSACTIONB
state:send e
SYNCPOINT ROLLBACK » state:receive

RECEIVE CONVID (AB)

state:rollback, EIBERR, EIBSYNRB
state:same as when unit of work began <+— SYNCPOINTROLLBACK

state:same as when unit of work began

Figure 100. EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT
ROLLBACK on a conversation

SYNCPOINT ROLLBACK in response to SYNCPOINT

[Figure 101 on page 312/ shows an EXEC CICS SYNCPOINT ROLLBACK command
being used in response to EXEC CICS SYNCPOINT on a conversation. This figure
also shows the conversation state before each command and the state and EIB
fields that are set after each command.

Chapter 15. Sync pointing a distributed process 311

TRANSACTIONA TRANSACTIONB

state:send e
SYNCPOINT > state:receive
RECEIVE CONVID (AB)
state:syncreceive, EIBSYNC, EIBRECV
state:same as when unitof workbegan, EIBRLDBK <+—SYNCPOINT ROLLBACK
state: same as when unit of work began

Figure 101. EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT
on a conversation

SYNCPOINT ROLLBACK in response to ISSUE PREPARE

shows an EXEC CICS SYNCPOINT ROLLBACK command being used
in response to EXEC CICS ISSUE PREPARE on a conversation. This figure also
shows the conversation state before each command and the state and EIB fields
that are set after each command.

TRANSACTIONA TRANSACTIONB
state:send .
ISSUE PREPARE CONVID (AB) » state:receive
RECEIVE CONVID (AB)
state:syncreceive, EIBSYNC, EIBRECV

state:rollback, EIBERR, EIBSYNRB % SYNCPOINT ROLLBACK
SYNCPOINT ROLLBACK > state:same as when unitof workbegan

state: same as when unit of work began ’

Figure 102. EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS ISSUE
PREPARE on a conversation

ISSUE ERROR in response to SYNCPOINT

[Figure 103 on page 313|shows an EXEC CICS ISSUE ERROR command being used
in response to EXEC CICS SYNCPOINT on a conversation. The figure also shows
the conversation state before each command and the state and EIB fields that are
set after each command. You can also send EXEC CICS ISSUE ERROR before
receiving EXEC CICS SYNCPOINT, but this is not shown because the results are
the same.

It is pointless to use EXEC CICS ISSUE ERROR as a response to EXEC CICS
SYNCPOINT, because this causes the sync point initiator to discard all data that
was transmitted with the EXEC CICS ISSUE ERROR by the sync point agent. To
safeguard integrity, the sync point agent has to issue a EXEC CICS SYNCPOINT
ROLLBACK command.

312 TXSeries for Multiplatforms: CICS Intercommunication Guide

TRANSACTIONA TRANSACTIONB

state:send e
SYNCPOINT » state:receive
RECEIVE CONVID (AB)
state: syncreceive, EIBSYNC, EIBRECV
ISSUE ERROR CONVID (AB)
state:send
SEND INVITEWAIT CONVID (AB)
RECEIVE CONVID (AB)

state:rollback EIBERR, EIBSYNRB
state: same as when unit of work began, EIBRLDBK <«—— SYNCPOINT ROLLBACK
state: same as when unit of work began

Figure 103. EXEC CICS ISSUE ERROR in response to EXEC CICS SYNCPOINT on a
conversation

ISSUE ERROR in response to ISSUE PREPARE

shows an EXEC CICS ISSUE ERROR command being used in response
to EXEC CICS ISSUE PREPARE on an APPC mapped conversation. This figure also
shows the conversation state before each command and the state and EIB fields
that are set after each command. You can also send EXEC CICS ISSUE ERROR
before receiving EXEC CICS ISSUE PREPARE, but this is not shown, because the
results are the same.

TRANSACTIONA TRANSACTIONB
state:send e
ISSUE PREPARE CONVID (AB) » state:receive

RECEIVE CONVID (AB)
state:syncreceive, EIBSYNC, EIBRECV
state: receive, EIBERR < ISSUE ERROR CONVID (AB)

Figure 104. EXEC CICS ISSUE ERROR in response to EXEC CICS ISSUE PREPARE on a
conversation

ISSUE ABEND in response to SYNCPOINT

[Figure 105 on page 314 shows an EXEC CICS ISSUE ABEND command being used
in response to EXEC CICS SYNCPOINT on a conversation. The figure also shows
the conversation state before each command and the state and EIB fields that are
set after each command. You can also send EXEC CICS ISSUE ABEND before
receiving EXEC CICS SYNCPOINT, but this is not shown because the results are
the same.

Chapter 15. Sync pointing a distributed process 313

TRANSACTIONA TRANSACTIONB

state:send state:receive

SYNCPOINT » RECEIVE CONVID (AB)
‘ ‘ state: syncreceive, EIBSYNC, EIBRECV
state:same as when unit of work began, EIBRLDBK <+<— |SSUE ABEND CONVID (AB)
state:free

FREE CONVID (AB)

SYNCPOINT ROLLBACK

Figure 105. EXEC CICS ISSUE ABEND in response to EXEC CICS SYNCPOINT on a
conversation

ISSUE ABEND in response to ISSUE PREPARE

The following figure shows an EXEC CICS ISSUE ABEND command being used in
response to EXEC CICS ISSUE PREPARE on a conversation. The figure also shows
the conversation state before each command and the state and EIB fields that are
set after each command. You can also send EXEC CICS ISSUE ABEND before
receiving EXEC CICS ISSUE PREPARE, but this is not shown because the results
are the same.

TRANSACTIONA TRANSACTIONB
state: send _state: receive
ISSUE PREPARE CONVID (AB) RECEIVE CON_/ID(AB)
state: free, EIBERR, EIB FREE state: syncreceive, EIBSYNC, EIBRECV
FREE CONVID (AB) ISSUE ABEND CONVID (AB)
_state: free
SYNCPOINTROLLBACK FREE CONVID (AB)

SYNCPOINTROLLBACK

Figure 106. EXEC CICS ISSUE ABEND in response to EXEC CICS ISSUE PREPARE on a
conversation

Synchronizing three or more CICS systems

This section gives examples of how to commit and back out recoverable resources
that are affected by three or more DTP transactions that are connected on
conversations at synchronization level 2.

Sync point in response to EXEC CICS SYNCPOINT

[Figure 107 on page 315 shows the sequence of events for a successful sync point
involving six conversing transactions. It illustrates the states and actions that occur
when transactions issue EXEC CICS SYNCPOINT requests. To write successful
distributed applications, you do not need to understand all the data flows that
occur during a distributed sync point. In this example, the programmer is
concerned only with issuing EXEC CICS SYNCPOINT in response to finding a
conversation in syncreceive (state 9).

314 TXSeries for Multiplatforms: CICS Intercommunication Guide

TRANSACTIONA TRANSACTIONB TRANSACTIONC
INITIATOR AGENTof A AGENT of B
forBand D INITIATOR

forCandE
(state:receive)
(states: RECEIVE
onABsend (states: F (state:syncreceive)
on AD send) onABreceive ——| SYNCPOINT
SYNCPOINT onBCsend (state:receive)
onBE send)
(states: RECEIVE
onABsend (states:
onAD send) on AB syncreceive
onBCsend TRANSACTIONE
onBE send) AGENT of B
SYNCPOINT —
(states:
onABreceive (state:receive)
onBCsend - — RECEIVE
onBE send (state:syncreceive)
<—\—> SYNCPOINT
(state:receive)
TRANSACTIOND
LASTAGENT of A TRANSACTIONF
INITIATOR for F ONLY AGENT of D
(states: (state:receive)
onADreceive RECEIVE
on DF send) (state:syncreceive)
RECEIVE SYNCPOINT
on AD syncreceive (state:receive)
on DF send)
SYNCPOINT
(states:
onADreceive
on DF send)

Figure 107. A distributed sync point with all partners running on CICS

1.

Transaction A, which is in send state (state 2) on its conversations with

transactions B and D, decides to end the distributed unit of work, and therefore
issues an EXEC CICS SYNCPOINT command.

Transaction B sees that its half of its conversation with transaction A is in
syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.
Transaction B is responding to a request from transaction A, but it also becomes
the sync point initiator for transactions C and E, and must ensure that its
conversations with these transactions are in a valid state for issuing an EXEC
CICS SYNCPOINT command. In this example, they are both in send state (state
2).

Transaction C sees that its half of its conversation with transaction B is in
syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

Transaction E sees that its half of its conversation with transaction B is in
syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

Transaction D sees that its half of its conversation with transaction A is in
syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.
Transaction D is responding to a request from transaction A, but it also
becomes the sync point initiator for transaction F, and must ensure that its
conversation with this transaction is in a valid state for issuing an EXEC CICS
SYNCPOINT command. In this example, it is in send state (state 2).

Chapter 15. Sync pointing a distributed process 315

6. Transaction F sees that its half of its conversation with transaction D is in
syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

7. All the transactions have now indicated, by issuing EXEC CICS SYNCPOINT
commands, that they are ready to commit their changes. This process begins
with transaction F, which has no agents and has responded to request commit
by issuing an EXEC CICS SYNCPOINT command.

8. The distributed sync point is complete and control returns to transaction A
following the EXEC CICS SYNCPOINT command.

The previous discussion of the EXEC CICS SYNCPOINT command assumed that
all the agent transactions were ready to take a sync point by issuing EXEC CICS
SYNCPOINT when their conversation entered syncreceive state (state 9).

If, however, an agent has detected an error, it can reject the sync point request with
one of the following commands:

» EXEC CICS SYNCPOINT ROLLBACK (preferred response)

¢ EXEC CICS ISSUE ERROR

* EXEC CICS ISSUE ABEND

The EXEC CICS SYNCPOINT ROLLBACK command enables a transaction to
initiate a backout operation across the whole distributed unit of work. When it is
issued in response to a sync point request, it has the following effects:

1. Any changes that are made to recoverable resources by the transaction that
issues the rollback request are backed out.

2. The sync point initiator is also backed out (EIBRLDBK set).

This causes the sync point initiator to initiate a backout operation across the
distributed unit of work.

Sync point rollback in response to EXEC CICS SYNCPOINT

[Figure 108 on page 317 shows the same distributed processes as the those that are
shown in [Figure 107 on page 315} Six transactions are engaged in related
conversations. Transaction A (the first initiator) has two conversations: one with
transaction B, and the other with transaction D. Transaction B has three
conversations: one on its principal facility (with transaction A), another with
transaction C, and another with transaction E. Transactions C and E each have one
conversation: on their principal facility (with transaction B). Transaction D has two
conversations: one on its principal facility (with transaction A), and the other with
transaction F. Transaction F has one conversation: on its principal facility (with
transaction D).

316 TXSeries for Multiplatforms: CICS Intercommunication Guide

EIBRLDBK set)

H

TRANSACTIONA TRANSACTIONB TRANSACTIONC
INITIATOR AGENT of A AGENT of B
forBandD INITIATOR

forCandE
(state:receive)

(states: RECEIVE

onABsend (states: F (state:syncreceive)

on AD send) onABreceive ——| SYNCPOINT
SYNCPOINT onBCsend (state:receive

onBE send) EIBRLDBK set)

(states: RECEIVE

onABsend (states:

onAD send) on AB syncreceive

EIBRLDBK) onBCsend TRANSACTIONE

onBE send) AGENT of B
SYNCPOINT —
(states:
onABreceive (state:receive)
onBCsend - — RECEIVE
onBEsend (state:syncreceive)

SYNCPOINT ROLLBACK
(state:receive)

TRANSACTIOND
LASTAGENT of A TRANSACTIONF
INITIATOR for F ONLY AGENT of D

(states: (state:receive)
onADreceive RECEIVE
on DF send) (state:syncreceive)
RECEIVE SYNCPOINT ROLLBACK
on AD rollback (state:receive)
on DF send)
SYNCPOINT ROLLBACK
(states:
onAD receive
on DF send)

Figure 108. Rollback during distributed sync pointing

As is shown in|Figure 107 on page 315} transaction A, while in send state (state 2),
issues the EXEC CICS SYNCPOINT command, and CICS initiates a chain of
events. Here, however, transaction E has detected an error that makes it unable to
commit, and it issues EXEC CICS SYNCPOINT ROLLBACK when it detects that
the conversation on its principal facility is in syncreceive state (state 9, EIBSYNC is
also set). This causes any changes that transaction E has made to be backed out,
and initiates a distributed rollback.

Transaction D senses that the conversation on its principal facility is in rollback
state (state 13), and that transactions B, C and A are rolled back (EIBRLDBK is also
set). Transaction D therefore issues an EXEC CICS SYNCPOINT ROLLBACK
command. Transaction F too senses that the conversation on its principal facility is
in rollback state, and issues an EXEC CICS SYNCPOINT ROLLBACK command.
The distributed rollback is now complete.

Conversation failure and the indoubt period

During the period between the sending of the sync point request to the partner
system and the receipt of the reply, the local system does not know whether the
partner system has committed the change. This is known as the indoubt period. 1f
the intersystem session fails during this period, the local CICS system cannot tell
whether the partner system has committed or backed out its resource changes.

Chapter 15. Sync pointing a distributed process 317

318 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 5. Appendixes

© Copyright IBM Corp. 1999, 2005 319

320 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix A. DFHCNV - The data conversion macros

This reference section describes the macros that are used for data conversion.

Using the DFHCNV macros

Note: DFHCNYV macros are generally portable between CICS systems. Some minor
changes might be required. See |”When TXSeries for Multiplatforms does notI
[convert the data” on page 157 for information about the differences between
CICS systems.

The following descriptions provide overview information for using the macros:

DFHCNYV TYPE=INITIAL
Establishes the beginning of the macro source conversion table. INITIAL is
used to set up the control section for the table. It is also used to specify the
default code page that represents how data is stored for all resources on
your system. (This can be overridden at the resource level.) A shortcode
can be used.

Refer to [Table 32 on page 153|for a list of the shortcode and code pages
that are supported by the TXSeries for Multiplatforms systems.

This macro can also be used to specify a code page for the incoming
request. The TYPE=ENTRY macro overrides this.

Note: TXSeries for Multiplatforms flows a code page in the PIP data.
When a code page is flowed to TXSeries for Multiplatforms, the
flowed code page is used instead of the code page that is specified
with the TYPE=INITIAL macro. See ['When TXSeries for]|
[Multiplatforms does not convert the data” on page 157 for
information about which CICS systems flow code pages.

DFHCNV TYPE=ENTRY
Specifies how data conversion is to occur for a specific resource. Code page
information that is specified with the TYPE=ENTRY macro overrides code
page information that is specified with the TYPE=INITIAL macro.

The TYPE=ENTRY macro is also used to indicate whether or not a
standard or nonstandard conversion is required. If a standard conversion
can be used, the TYPE=SELECT and TYPE=FIELD macros are used to
specify the field lengths and the type of data that is contained in the fields,
such as character, binary, MBCS (graphic), or packed decimal. If a
nonstandard conversion is required, the TYPE=ENTRY macro is used to
specify that a user exit is required (described in [‘Non-standard datal
conversion (DFHUCNV) for function shipping, DPL and asynchronous|
rocessing” on page 160). Standard conversions can be used when:

1. The field contains data that can be converted with a type that is
specified with DFHCNV TYPE=FIELD DATATYP.

2. The fields are fixed length.

DFHCNV TYPE=KEY
Indicates the start of conversions to be applied to a key. This is applicable
only when the resource is a file with key (KSDS file).

© Copyright IBM Corp. 1999, 2005 321

DFHCNYV TYPE=SELECT
Declares the selection criteria for a particular conversion. SELECT cannot
be used if a nonstandard conversion is specified.

DFHCNYV TYPE=FIELD
Specifies field offsets and the type of conversions that are required. FIELD
cannot be used if a nonstandard conversion is specified.

DFHCNV TYPE=FINAL
Concludes the macro source conversion table definition. This must occur
only once, as the last definition.

Examples of DFHCNV macros
An example macro source conversion table is shown in

DFHCNV TYPE=INITIAL,CLINTCP=037,SRVERCP=850

B R o R S R S S R R S R R R R R R Rt R St Rt R R R e

* CONVERSION MACROS FOR TEMPORARY DATA QUEUE "TDQl" - *
e e ook ko ko oo Rk ek ok ke ko ek ke ke ko
DFHCNV TYPE=ENTRY,RTYPE=TD,RNAME=TDQ1
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER, X
DATALEN=98,LAST=YES

B R o R R R R R R S R R S R R R R S Rt Rt R E Rt

* CONVERSION MACROS FOR TEMPORARY STORAGE QUEUE "TSQl" - *
e e e ok ko ek oo R ok ek o Rk ek ek ke ke Rk
DFHCNV TYPE=ENTRY,RTYPE=TS,RNAME=TSQ1
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER, X
DATALEN=98, LAST=YES

B R o R R R R R R R S R R R R S R T Rttt Rt T

+ CONVERSION MACROS FOR DPL COMMAREA - VSAMSFS APPLICATION *

B e R R R R R R R R R T S R R R R R R R L R R R R T 2 2

DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=VSAMSFS
DFHCNV TYPE=SELECT,OPTION=DEFAULT

DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER, X
DATALEN=2

DFHCNV TYPE=FIELD,OFFSET=2,DATATYP=BINARY, X
DATALEN=2

DFHCNV TYPE=FIELD,OFFSET=4,DATATYP=CHARACTER, X

DATALEN=129,LAST=YES

B e R R R T R R R R R R T T S R R R R S L R L e S L L L

DFHCNV TYPE=FINAL

Figure 109. Sample macro source for data conversion

Rules for character placement in the source are:

* The statement area extends between positions 2 through 71.

¢ DFHCNYV must begin in column 10.

e TYPE= must begin in column 20.

* The continuation character field occupies position 72 and can be any nonblank
character.

* The continued source statement must begin on the next line in position 16.

* Positions 73 and beyond are ignored and can be used for identification sequence
numbers.

In this example, the TYPE=INITIAL macro specifies that code page IBM-037 be
assumed as the default code page when a function shipping request either does
not specify a code page, or the code page specified is invalid. This macro also
states that resources that are defined in this table are encoded with IBM-850.

322 TXSeries for Multiplatforms: CICS Intercommunication Guide

TDQ1, in this example, contains one field. That field contains 98 bytes of character
data.

TSQ1 also contains one field of character data.

VSAMSES defines three fields. The first field is two bytes long and consists of

character data. The second field is two bytes long and consists of binary data. The
last field is 129 bytes long and consists of character data. Only the character data is
converted.

When your conversion table is coded, you can use cicscvt to build the conversion
templates

shows a record layout for a file named VSAM99. |l_31gure 111| shows a set

of conversion macros for the record layout in |Eigure 11{]1

02 FILEREC.

03 STAT PIC X.

03 NUMB PIC X(6).
03 NAME PIC X(20).
03 ADDRX PIC X(20).
03 PHONE PIC X(8).
03 DATEX PIC X(8).
03 AMOUNT PIC X(8).
03 COMMENT PIC X(9).
03 VARINFL.

03 COUNTERL PIC 9999 USAGE COMP-4.
03 COUNTER?2 PIC 9999 USAGE COMP-4.
03 ADDLCMT PIC X(30).

03 VARINF2 REDEFINES VARINFI.

03 COUNTERL PIC 9999 USAGE COMP-4.
03 COUNTER2 PIC 9999 USAGE COMP-4.
03 COUNTER3 PIC 9999 USAGE COMP-4.
03 COUNTER4 PIC 9999 USAGE COMP-4.
03 ADDLCMT?2 PIC X(26).

Figure 110. Record layout for VSAM99

* %k Sk %

* ok ok k

DFHCNV TYPE=INITIAL

DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99

DFHCNV TYPE=KEY

DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES

If offset 0 is a character 'X' use the following
conversion definitions:

DFHCNV TYPE=SELECT,OPTION=COMPARE,OFFSET=00,DATA="X"

DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80

DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=4

DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES

Otherwise use the following (default)
conversion definitions

DFHCNV TYPE=SELECT,OPTION=DEFAULT

DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80

DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=8

DFHCNV TYPE=FIELD,OFFSET=88,DATATYP=CHARACTER,DATALEN=26,LAST=YES
DFHCNV TYPE=FINAL

Figure 111. Description for record layout for VSAM99

Appendix A. DFHCNYV - The data conversion macros

323

Flow of DFHCNV macro sequence

Refer to|Figure 112 that shows an example of the DFHCNV macro sequence.

DFHCNV TYPE=INITIAL
DFHCNV TYPE=ENTRY,RTYPE=FC
DFHCNV TYPE=KEY
DFHCNV TYPE=FIELD Key
conversion
DFHCNV TYPE=SELECT,OPTION=COMPARE
DFHCNV TYPE=FIELD | conversion
DFHCNV TYPE=FIELD template Entry
- for
DFHCNV TYPE=SELECT,0OPTION=COMPARE FC
—_ resource
DFHCNV TYPE=FIELD
DFHCNV TYPE=FIELD Conversion
DFHCNV TYPE=FIELD template
DFHCNV TYPE=FIELD
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD Conversion
template
DFHCNV TYPE=ENTRY,RTYPE=TS
DFHCNV TYPE=SELECT,OPTION=COMPARE
DFHCNV TYPE=FIELD Conversion | Entry
DFHCNV TYPE=FIELD template for
TS
DFHCNV TYPE=SELECT,OPTION=DEFAULT resource
Conversion
DFHCNV TYPE=FIELD template
DFHCNV TYPE=ENTRY,RTYPE=TD
DFHCNV TYPE=SELECT,OPTION=DEFAULT Entry
for
DFHCNV TYPE=FIELD Conversion | TD
DFHCNV TYPE=FIELD template resource
DFHCNV TYPE=FINAL

Figure 112. Example of DFHCNV macro sequence

DFHCNV
conversion
table

The DFHCNV TYPE=INITIAL macro

The DFHCNV TYPE=INITIAL macro establishes the beginning of the conversion
table. It sets up the control section for the table. The macro must occur only once

as the first definition.

Syntax
DFHCNYV TYPE=INITIAL
,CLINTCP={037 | codepage},SRVERCP={850 | codepage} [, XA={YES|INO}]
[,CDEPAGE=({codepage}]

The options are defined as follows:

324 TXSeries for Multiplatforms: CICS Intercommunication Guide

CLINTCP

Use CLINTCP to specify the code page of the remote system that is
sending the incoming function shipping request. (This code page can be
overridden if the requesting region sends a code page with the request that
is supported by the local operating system). The TYPE=ENTRY CLINTCP
operand overrides the TYPE=INITIAL CLINTCP operand.

The code page can be expressed as a shortcode.

In addition to these shortcodes, you can specify any code page that iconv
supports, provided that you have on your operating system the translation
tables with which to do it. Refer to[“Introduction to data conversion” on|
for more information.

SRVERCP

Defines the code page that indicates how the resource is encoded. The
TYPE=ENTRY SRVERCP operand overrides the TYPE=INITIAL SRVERCP
operand.

The code page can be expressed as a shortcode.

In addition to these shortcodes, you can specify any code page that iconv
supports, provided that you have on your operating system the translation
tables with which to do it. Refer to|“Introduction to data conversion” onl|

page 147| for more information.

CDEPAGE

Is retained for compatibility with other CICS family members, but is
ignored by CICS on Open Systems and CICS for Windows. On other CICS
family members, it establishes a client/server code page pair by means of a
single number. For example, 437 means CLINTCP=437, SRVERCP=037 and
932 means CLINTCP=932, SRVERCP=930.

XA={YES INO}

Specifies whether CICS should use extended addressing. CICS on Open
Systems and CICS for Windows supports this option for compatibility with
other CICS products.

The DFHCNV TYPE=

ENTRY macro

The TYPE=ENTRY macro is used for specifying how data conversion is to take
place for a specific resource. One TYPE=ENTRY macro must exist for each resource
name and type for which conversion is required. If a resource type and name is
not present, CICS does not convert the data. The entry for one resource name and
type is concluded by the next TYPE=ENTRY statement, or by the end of the table.

Syntax
DFHCNYV TYPE=ENTRY ,RTYPE={FC ITDITSIIC | PC}
ARNAME=resourcename | XRNAME=xxxxxxxxxxxxxxxx} [,USREXIT={YES |
NOJ}] [,CLINTCP=codepage] [, SRVERCP=codepage] [[CDEPAGE=codepage]

The options are defined as follows:

RTYPE

States the type of resource. RTYPE must be one of the following;:
FC A file.

TD A transient data queue.

TS A temporary storage queue.

Appendix A. DFHCNYV - The data conversion macros 325

IC An interval control start with a from area.
PC A distributed link with COMMAREA.

RNAME
The eight-character resource name. CICS pads shorter names with blanks,
and truncates longer names. The resource is one of the following:
* A file name (up to eight characters)
* A transient data queue name (up to eight characters)
¢ A temporary storage queue name (up to eight characters)
* An interval control start transaction identifier (up to four characters)
¢ A program name (up to eight characters)

XRNAME
TS and IC only. A 16-digit hexadecimal resource name. CICS pads shorter
names with blanks, and truncates longer names.

USREXIT
Allows you to decide whether CICS is to call the user conversion exit. If
you need the user conversion exit to convert some data for this resource,
select YES, otherwise, select NO. Selecting NO eliminates the overheads
that are related to calling the exit unnecessarily. See|[“Non-standard datal
conversion (DFHUCNV) for function shipping, DPL and asynchronous|
processing” on page 160| for more information.

CLINTCP
Use CLINTCP to specify the code page that you want used if the incoming
function shipping request either does not specify a code page, or a code
page is specified but is not valid for this operating system. The
TYPE=ENTRY CLINTCP operand overrides the TYPE=INITIAL CLINTCP
operand.

The code page can be expressed as a shortcode. See [‘Using the DEFHCNV]|
Imacros” on page 321|for a list of shortcodes and their equivalent code

pages.
In addition to these shortcodes, you can specify any code page that iconv

supports, provided that you have on your operating system the translation
tables with which to do it. Refer to|“Introduction to data conversion” on|

for more information.

SRVERCP
Specifies the code page that indicates how the resource is encoded. The
TYPE=ENTRY SRVERCP operand overrides the TYPE=INITIAL SRVERCP
operand.

The code page can be expressed as a shortcode. See [‘Using the DFHCNV]
Imacros” on page 321|for a list of shortcodes and their equivalent code

pages.
In addition to these shortcodes, you can specify any code page that iconv
supports, provided that you have on your operating system the translation

tables with which to do it. See [“Introduction to data conversion” on page|
for more information.

CDEPAGE
Is retained for compatibility with other CICS family members, but is
ignored by CICS on Open Systems and CICS for Windows. On other CICS
family members, it establishes a client/server code page pair by means of a
single number.

326 TXSeries for Multiplatforms: CICS Intercommunication Guide

The DFHCNV TYPE=KEY macro

The DFHCNV TYPE=KEY macro indicates the start of conversions that are to be
applied to a key. It is applicable only to an FC entry. You do not require this macro
if access is only by RRN or RBA. If access is by key but no TYPE=KEY statement is
present, CICS does not convert the key. You must also provide matching
conversion details for the key as part of each SELECT that applies to this file.
Otherwise, CICS might return an INVREQ condition on the file control EXEC
request. When used, this should be the first statement in an ENTRY, and must be
followed by one or more TYPE=FIELD statements.

Syntax
FDFHCNV TYPE=KEY

The DFHCNV TYPE=SELECT macro

This macro is used to declare the selection criteria for a particular conversation.

Following each TYPE=SELECT instruction, is a set of TYPE=FIELD instructions
that define the fields that are to be converted. Every TYPE=SELECT macro must be
followed by at least one TYPE=FIELD macro.

Each SELECT statement compares the data with a given value to see whether it
should be subject to a subsequent field conversion. You can have as many such
comparisons as are necessary for each resource type and name.

If the data specification does not match the data that is in the record, the program
skips to the next TYPE=SELECT, either until it finds one that does match and no
further user data is converted; or until it gets to the OPTION=DEFAULT.

A default conversion must be available to be applied when no other is; this must
be the last definition for each ENTRY.

Syntax
DFHCNYV TYPE=SELECT ,OPTION={DEFAULT | COMPARE }
[[OFFSET=nnn] [, DATA="dd...dd’] [XDATA="xx...xx’]

The options are defined as follows:

OPTION
States the basic selection options. CICS expects one of the following:

COMPARE
Indicates that the data should be converted by using the following
field definitions only if it satisfies the defined comparison.

DEFAULT
Indicates that the data should all be converted by using the
following fields if the previous SELECT COMPARE has not been
chosen. Every resource must have an OPTION=DEFAULT entry as
the last TYPE=SELECT option for that resource type and name; so
you should have one TYPE=SELECT, OPTION=DEFAULT for each
TYPE=ENTRY instruction.

Appendix A. DFHCNYV - The data conversion macros 327

OFFSET
You specify this option with COMPARE only, to define the byte offset in
the record at which CICS should make the comparison. The maximum
value is 65535. You should specify this for all fields.

DATA You specify this option with COMPARE only, to define the data against
which a comparison is to be made. This can be up to 254 contiguous SBCS
character fields; not binary fields. The data that you specify for comparison
here must belong to the code page that you specify in this entry’s
SRVERCP. If not, CICS makes unpredictable conversions. CICS converts
this data from the SRVERCP code page to the CLINTCP code page before
comparison (because the incoming data is in the code page of CLINTCP).

XDATA
You specify this option with COMPARE only, to define the hexadecimal
data against which a comparison is to be made. This can be up to 254
hexadecimal digits (127 bytes). The length must be a whole number of
bytes. CICS compares the incoming request against this hexadecimal field
without conversion.

The DFHCNV TYPE=FIELD macro

The TYPE=FIELD macro specifies the position of a field, and the type and length
of the data that it contains. One such macro must exist for each field that is in a
resource record.

Syntax
DFHCNV TYPE=FIELD ,OFFSET=nnnn ,DATATYP={CHARACTER | PD |
BINARY | USERDATA | GRAPHIC | NUMERIC} [[USRTYPE=xx]
,DATALEN=nnnn [,SOSI=YES | NOJ [,LAST=YES]

The options are defined as follows:

OFFSET=nnnn
You specify the byte offset in the record at which the conversion should
start, up to a maximum value of 65535.

Note: For TYPE=KEY conversions, this is the byte offset from the start of
the key, not from the start of the record.

DATATYP
The type of conversion that is to be done. CICS expects one of the
following:

CHARACTER
Character fields are converted from SRVRCP to CLINTCP or from
CLINTCP to SRVRCP, as required.

PD CICS does not convert packed decimal fields.

BINARY
No conversion occurs for binary fields.

USERDATA
The data conversion is done by user replaceable conversion
program DFHUCNV. The USRTYPE option that is shown below
allows you to pass a number to DFHUCNYV that indicates how the
data is to be converted.

328 TXSeries for Multiplatforms: CICS Intercommunication Guide

GRAPHIC
Graphic fields contain Multi-Byte Character Set (MBCS) characters
only. CICS adds a shift-out (SO) character (X'0E’) to the start of the
data, and a shift-in (SI) character ("OF’) to the end of the data
before passing it to iconv to be converted.

NUMERIC
CICS converts these fields between the local byte ordering and the
byte order of the requesting system. Byte order information of the
requesting system flows with the function shipping request if the
requesting system is CICS on Open Systems or CICS for Windows.
Otherwise the local region assumes the remote system is little
endian and swaps the bytes as required. For more information
about byte ordering, refer to|“Numeric data Conversion|
[considerations” on page 149.

USRTYPE
The value given here is made available to the user-replaceable conversion
program DFHUCNV. The values that you provide can be in the range 80
through 128 (X’50” through X’80"). The default value is 80 (X’50). If more
than one type of user-defined conversation is possible, you can use this
value to specify to DFHUCNYV what conversion is needed for each field.

The option is ignored if DATATYP=USERDATA is not specified.

DATALEN
The length of the data field that is to be converted, in bytes, up to a
maximum value of 65535. For variable length fields, specify the maximum
possible length. For NUMERIC fields, only lengths 2 and 4 are valid.

SOSI This option is supported only for compatibility with other CICS products.

LAST=YES
Indicates that this definition is the last field for this TYPE=SELECT or
TYPE=KEY statement.

The TYPE=ENTRY CLINTCP operand overrides the TYPE=INITIAL CLINTCP
operand.

The DFHCNV TYPE=FINAL macro

The purpose of this macro is to conclude the conversion table definition. It must
occur only once, as the last definition.

Appendix A. DFHCNYV - The data conversion macros 329

330 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix B. The conversation state tables

The state tables provide information for writing a DTP program. They show which
commands can be issued from each conversation state and the state transitions that
can occur and the EIB fields that can be set as a result of issuing a command.

How to use the state tables

The commands that you can issue, coupled with the EIB flags that can be set after
execution, are shown in column 1 of each table. The possible conversation states
are shown across the top of the table. The states correspond to the columns of the
table. The intersection of row (command and EIB flag) and column (state)
represents the state transition, if any, that occurs when that command returning a
particular EIB flag is issued in that state.

A number at an intersection indicates the state number of the next state. Other
symbols represent other conditions, as follows:

/
EIB*

ab

E

This state change cannot occur.

The EIB flag is any one that has not been covered in earlier rows, or it is
irrelevant (but see the note on EIBSIG if you want to use ISSUE SIGNAL).

The command is not valid in this state. Issuing a command in a state in
which it is not valid usually causes an ATCV abend.

Remains in current state.

End of conversation.

The state numbers

The state numbers are defined as follows:
State 1: Allocated
State 2: Send
State 3: Pendreceive
State 4: Pendfree
State 5: Receive
State 6: Confreceive
State 7: Confsend
State 8: Conffree
State 9: Syncreceive
State 10: Syncsend
State 11: Syncfree
State 12: Free
State 13: Rollback

The state conversation table notes
The following notes apply to all three state tables:

1

© Copyright IBM Corp. 1999, 2005

EIBSIG has been omitted. This is because its use is optional and is entirely
a matter of agreement between the two conversation partners. In the worst
case, it can occur at any time after every command that affects the EIB
flags. However, when used for the purpose for which it was intended, it
usually occurs after a SEND command. Its priority in the sequence of
testing depends on the role that you give it in the application.

331

10

11

12

13

14

15

16

17

RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate
that the user buffer was too small to contain all the data that was received
from the partner transaction. Normally, you would continue to issue
RECEIVE NOTRUNCATE commands until the last information of data is
passed to you, which is indicated by EIBCOMPL EIB* FE. If
NOTRUNCATE is not specified, and the data area that is specified by the
RECEIVE command is too small to contain all the data received, CICS
truncates the data and sets the LENGERR condition.

Equivalent to SEND INVITE WAIT followed by RECEIVE.
Equivalent to SEND INVITE WAIT [FROM] followed by RECEIVE.
Equivalent to SEND LAST WAIT followed by FREE.

Equivalent to WAIT followed by RECEIVE.

Before a CONVID is allocated, no conversation occurs, therefore no
conversation state exists. The EXEC CICS ALLOCATE command is not
shown in the tables. After ALLOCATE is successful, the front-end
transaction starts the new conversation in allocated.

ISSUE SIGNAL sets the partner’s EIBSIG flag unless it is entering the free
state. ISSUE SIGNAL when sent in other states can also set the partner’s
EIBSIG flag, the behavior being determined by the underlying SNA
implementation.

The back-end transaction starts in receive after the front-end transaction
has issued CONNECT PROCESS.

No data can be included with SEND CONFIRM.

These commands cause CICS to return the INVREQ condition. This is to
conform to the APPC architecture.

The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate
to any particular conversation. They are propagated on all the
synchronization level 2 conversations that are currently active for the task.

The state of each conversation after rollback depends on several factors:

* The system with which you are communicating. Some earlier versions of
CICS handle rollback differently from how CICS handles it now.

¢ The conversation state at the beginning of the current distributed unit of
work. This state is the one that is adopted in accordance with the APPC
architecture. CICS follows the architecture.

A conversation might be in free after rollback if it has been terminated
abnormally because of conversation failure or deallocate abend being
received.

After a sync point or rollback, it is advisable to determine the conversation
state before issuing any further commands against the conversation.

This results, not in an ATCV abend, but in an INVREQ return code.
This causes an A30A abend, not an ATCV.

Although ISSUE PREPARE can return with the conversation in either
syncsend, syncreceive, or syncfree, the only commands that are allowed
on that conversation following an ISSUE PREPARE are SYNCPOINT and
SYNCPOINT ROLLBACK. All other commands abend ATCV.

Following an ISSUE ABEND of a synchronization level 2 conversation, all
other synchronization level 2 conversations become state 13.

332 TXSeries for Multiplatforms: CICS Intercommunication Guide

For more information, see:

* [“Writing programs for CICS DTP” on page 286]

* |"Synchronization level 0 conversation state table”|

* [“Synchronization level 1 conversation state table” on page 335

* |“Synchronization level 2 conversation state table” on page 33§

The [T XSeries for Multiplatforms Application Programming Reference

Synchronization level 0 conversation state table

Table 55. Synchronization level 0 conversation state table (states 1 to 8)

Command issued, EIB State | State | State | State | State | State | Satet | State
flag returned’ 1 2 3 4 5 6 7 8
CONNECT PROCESS,

EIBERR + EIBFREE 12 ab ab ab ab / / /
CONNECT PROCESS’, » ab ab ab ab / / /
EIB*

SEND (any valid form),

EIBERI({ +yEIBFREE) ab 12 ab ab ab / / /
2}1351‘\]15113{ Igany valid form), ab 5 ab ab ab / / /
SEND INVITE WAIT, EIB* | ab 5 ab ab ab / / /
SEND INVITE, EIB* ab 5 ab ab ab / / /
SEND LAST WAIT, EIB* ab 12 ab ab ab / / /
SEND LAST, EIB* ab 4 ab ab ab / / /
SEND WAIT, EIB* ab = ab ab ab / / /
SEND, EIB* ab = ab ab ab / / /
EE%EI:{I;EE EIBERR + ab | 12° | 12° | ab 12 / / /
RECEIVE, EIBERR ab 53 56 ab = / / /
RECEIVE, EIBFREE ab 123 12¢ ab 12 / / /
RECEIVE, EIBRECV ab 53 56 ab = / / /
RECEIVE, EIB* ab =3 26 ab 2 / / /
g%;g§§sﬂ EIBERR + ab | 12° | 12° | ab 12 / / /
CONVERSE, EIBERR ab 5% 56 ab = / / /
CONVERSE, EIBFREE ab 123 126 ab 12 / / /
CONVERSE, EIBRECV ab 53 56 ab = / / /
CONVERSE

NOTRUNCATE, ab 5% 56 ab = / / /
EIBCOMPL?

CONVERSE, EIB* ab =2 20 ab 2 / / /
ISSUE ERROR, EIBFREE ab 12 12 ab 12 / / /
ISSUE ERROR, EIBERR ab 5 5 ab 5 / / /
ISSUE ERROR, EIB* ab 2 2 ab 2 / / /
ISSUE ABEND, EIB* ab 12 12 12 12 / / /
ISSUE SIGNALS, EIB* ab = = ab = / / /
WAIT CONVID, EIB* ab = 5 12 ab / / /
FREE, EIB* E E° ab E ab / / /

Appendix B. The conversation state tables 333

Table 55. Synchronization level O conversation state table (states 1 to 8) (continued)

Command issued, EIB
flag returned’

State
1

State
2

State

3

State
4

State
5

State | Satet | State
6 7 8

Key to states:
State 1: Allocated
State 2: Send
State 3: Pendreceive
State 4: Pendfree
State 5: Receive
State 6: Confreceive
State 7: Confsend
State 8: Conffree

Footnotes are given in|“The state conversation table notes” on page 331)

Table 56. Synchronization level O conversation state table (states 9 to 13)

Command issued, EIB flag State | State | State | State

returned? State 9 10 1 12 13 Command returns

CONNECT PROCESS, .

EIBERR + EIBFREE / / / ab / |Immediately

9

CONNECT PROCESS” sl s sl = |/ | immediately

SEND (any valid form),

EIBERR + EIBFREE / / / ab / After error detected

SEND (any valid form),

EIBERR / / / ab / After error detected

SEND INVITE WAIT, EIB* / / / ab / After data flows

SEND INVITE, EIB* / / / ab / After data buffered

SEND LAST WAIT, EIB* / / / ab / After data flows

SEND LAST, EIB* / / / ab / After data buffered

SEND WAIT, EIB* / / / ab / After data flows

SEND, EIB* / / / ab / After data buffered

RECEIVE, EIBERR +

EIBFREE / / / ab / After error detected

RECEIVE, EIBERR / / / ab / After error detected

RECEIVE, EIBFREE / / / ab / After error detected

RECEIVE, EIBRECV / / / ab / When data available

RECEIVE, EIB* / / / ab / When data available

CONVERSE, EIBERR +

EIBEREE / / / ab / After error detected

CONVERSE, EIBERR / / / ab / After error detected

CONVERSE, EIBFREE / / / ab / After error detected

CONVERSE, EIBRECV / / / ab / When data available

CONVERSE

NOTRUNCATE, / / / ab / When data available

EIBCOMPL?

CONVERSE, EIB* / / / ab / When data available

ISSUE ERROR, EIBFREE / / / ab /| After response from
partner

ISSUE ERROR, EIBERR / / / ab j | After response from
partner

ISSUE ERROR, EIB* / / / ab / After response from
partner

ISSUE ABEND, EIB* / / / ab / Immediately

ISSUE SIGNAL?, EIB* / / / ab / Immediately

334 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 56. Synchronization level O conversation state table (states 9 to 13) (continued)

Command issued, EIB flag State | State | State | State

returned’ State 9 10 1 12 13 Command returns
WAIT CONVID, EIB* / / / ab / Immediately
FREE, EIB* / / / E / Immediately

Key to states:
State 9: Syncreceive
State 10: Syncsend
State 11: Syncfree
State 12: Free
State 13: Rollback

Footnotes are given in[“The state conversation table notes” on page 331

Synchronization level 1 conversation state table

Table 57. Synchronization level 1 conversation state table (states 1 to 8)

Command issued, EIB State | State | State | State | State | State | State | State
flag returned’ 1 2 3 4 5 6 7 8

CONNECT PROCESS,

EIBERR + EIBEREE 12 ab ab ab ab ab ab ab

9
EIC;\INECT PROCESS”, 2 ab ab ab ab ab ab ab
szNEgéai‘yEi’gggEfgrm)' ab 12 12 12 ab ab ab /
ISEIIEBI\]IEE){Igany valid form), ab 5 5 5 ab ab ab ab
SEND INVITE WAIT, EIB* ab 5 ab ab ab ab ab ab
;}Izé\lD INVITE CONFIRM, ab 5 ab ab ab ab ab ab
SEND INVITE, EIB* ab 3 ab ab ab ab ab ab

SEND LAST WAIT, EIB* ab 12 ab ab ab ab ab ab

SEND LAST CONFIRM, ab 12 ab ab ab ab ab ab

EIB*

SEND LAST, EIB* ab 4 ab ab ab ab ab ab
SEND WAIT, EIB* ab = ab ab ab ab ab ab
SEND CONFIRM, EIB* ab = 5 1210 ab ab ab ab
SEND, EIB* ab = ab ab ab ab ab ab
Eﬁggf EIBERR + ab | 12° | 12° | ab 12 ab ab ab
RECEIVE, EIBERR ab 53 56 ab = ab ab ab
EﬁBCF}IE{I];]]f » EIBCONF + ab 8% 8° ab 8 ab ab ab
RECEIVE BIBCONF+ | | o | o |y | 6 | b | ab |
RECEIVE, EIBCONF ab 73 7° ab 7 ab ab ab
RECEIVE, EIBFREE ab 128 12¢ ab 12 ab ab ab
RECEIVE, EIBRECV ab 5% 56 ab 5 ab ab ab
RECEIVE, EIB* ab =3 20 ab 2 ab ab ab

4

CONVERSE!, EIBERR + | o | 1 | 1 | | 12 | ab | ab | ab
CONVERSE?, EIBERR ab 58 56 ab = ab ab ab

Appendix B. The conversation state tables 335

Table 57. Synchronization level 1 conversation state table (states 1 to 8) (continued)

Command issued, EIB State | State | State | State | State | State | State | State
flag returned” 1 2 3 4 5 6 7 8
4
CONVERSE', FIRCONF + | o | o | g | wy | & | a | v | ab
4
EI?SII\{II\EZ g\I;SE » EIBCONF + ab 6° 6° ab 6 ab ab ab
CONVERSE?, EIBCONF ab 73 7° ab 7 ab ab ab
CONVERSE*, EIBFREE ab 123 126 ab 12 ab ab ab
CONVERSE*, EIBRECV ab 53 56 ab 5 ab ab ab
CONVERSE*
NOTRUNCATE, ab 5% 56 ab 5 ab ab ab
EIBCOMPL?
CONVERSE?, EIB* ab =3 20 ab 2 ab ab ab
;SHS;EE CONFIRMATION, ab ab ab ab ab 5 2 12
ISSUE ERROR, EIBFREE ab 12 12 ab 12 12 12 12
ISSUE ERROR, EIBERR ab 5 5 ab 5 5 5 5
ISSUE ERROR, EIB* ab 2 2 ab 2 2 2 2
ISSUE ABEND, EIB* ab 12 12 12 12 12 12 12
ISSUE SIGNALS, EIB* ab = = ab = = = =
WAIT CONVID, EIB* ab = 5 12 ab ab ab ab
FREE, EIB* E E® ab E ab ab ab ab

Key to states:
State 1: Allocated
State 2: Send
State 3: Pendreceive
State 4: Pendfree
State 5: Receive
State 6: Confreceive
State 7: Confsend
State 8: Conffree

Footnotes are given in|“The state conversation table notes” on page 331)

Table 58. Synchronization level 1 conversation state table (states 9 to 13)

Command issued, EIB flag State | State | Satte | State
returned’ State 9 10 1 12 13 Command returns
CONNECT PROCESS, .
EIBERR + EIBFREE / / / ab /| Immediately

9
g%IjNECT PROCESS”, / / / ab /| Immediately
SEND (any valid form), / / / b / After error flow
EIBERR + EIBFREE a detected
SEND (any valid form), After error flow
EIBERR / / / ab /| Qetected
SEND INVITE WAIT, EIB* / / / ab / After data flows
SEND INVITE CONFIRM, / / / ab / After response from
EIB* partner
SEND INVITE, EIB* / / / ab / After data buffered
SEND LAST WAIT, EIB* / / / ab / After data flows
SEND LAST CONFIRM, After response from
EIB* / / / ab / partner
SEND LAST, EIB* / / / ab / After data buffered

336 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 58. Synchronization level 1 conversation state table (states 9 to 13) (continued)

Command issued, EIB flag State | State | Satte | State

returned’ State 9 10 1 12 13 Command returns

SEND WAIT, EIB* / / / ab / After data flows

SEND CONFIRM, EIB* / / / ab / After response from
partner

SEND, EIB* / / / ab / After data buffered

RECEIVE, EIBERR +

EIBEREE / / / ab / After error detected

RECEIVE, EIBERR / / / ab / After error detected

RECEIVE, EIBCONF + / / / b / After confirm flow

EIBFREE a detected

RECEIVE, EIBCONF + / / / b / After confirm flow

EIBRECV a detected

RECEIVE, EIBCONF / / / ab j | After confirm flow
detected

RECEIVE, EIBFREE / / / ab / After error detected

RECEIVE, EIBRECV / / / ab / When data available

RECEIVE, EIB* / / / ab / When data available

CONVERSE?, EIBERR +

EIBEREE / / / ab / After error detected

CONVERSE?, EIBERR / / / ab / After error detected

CONVERSE?*, EIBCONF + / / / b / After confirm flow

EIBFREE a detected

CONVERSE?, EIBCONF + / / / ab / After confirm flow

EIBRECV detected

CONVERSE*, EIBCONF / / / ab) |After confirm flow
detected

CONVERSE?, EIBFREE / / / ab / After error detected

CONVERSE*, EIBRECV / / / ab / When data available

CONVERSE*

NOTRUNCATE, / / / ab / When data available

EIBCOMPL?

CONVERSE?, EIB* / / / ab / When data available

}ESI%EJE CONFIRMATION, / / / ab / Immediately

ISSUE ERROR, EIBFREE / / / ab /| After response from
partner

ISSUE ERROR, EIBERR / / / ab ;| After response from
partner

ISSUE ERROR, EIB* / / / ab / After response from
partner

ISSUE ABEND, EIB* / / / ab / Immediately

ISSUE SIGNALS, EIB* / / / ab / Immediately

WAIT CONVID, EIB* / / / ab / Immediately

FREE, EIB* / / / E / Immediately

Key to states:
State 9: Syncreceive
State 10: Syncsend
State 11: Syncfree
State 12: Free
State 13: Rollback

Footnotes are given in[“The state conversation table notes” on page 331

Appendix B. The conversation state tables

337

Synchronization level 2 conversation state table

Table 59. Part 1 of Synchronization level 2 conversation state table (states 1 to 8)

Command issued, EIB

flag returned’ 1 2 3 4 5 6 7 8

CONNECT PROCESS,

EIBERR + EIBEREE 12 ab ab ab ab ab ab ab

9

EI?;:INECT PROCESS”, 2 ab ab ab ab ab ab ab

SEND (any valid form),

EIBERR + EIBSYNRB ab 13 13 ab ab ab ab ab

SEND (any valid form),

EIBERR + EIBFREE ab 12 12 ab ab ab ab ab

SEND (any valid form),

FIBERR ab 5 5 ab ab ab ab ab

SEND INVITE WAIT, EIB* ab 5 ab ab ab ab ab ab

2113113\11) INVITE CONFIRM, ab 5 ab ab ab ab ab ab

SEND INVITE, EIB* ab 3 ab ab ab ab ab ab

SEND LAST WAIT", EIB* | ab ab'' | ab'! ab ab ab ab ab

11

g]fé\iD LAST CONFIRM™, ab ab ab ab ab ab ab ab

SEND LAST, EIB* ab ab ab ab ab ab ab

SEND WAIT, EIB* ab = ab ab ab ab ab ab

SEND CONFIRM, EIB* ab = 510 ab'! ab ab ab ab

SEND, EIB* ab = ab ab ab ab ab ab

g&g@gﬁbmwm " ab | 13% | 13° | ab 13 ab | ab | ab

pp Ty PIPERR ab | 122 | 122 | ab | 12 | ab | ab | ab

RECEIVE, EIBERR ab 53 56 ab = ab ab ab

g&%?g}f EIBSYNC + ab | 11° | 11° | ab 11 ab | ab | ab

EFBCR%g\}? EIBSYNC + ab 93 9° ab 9 ab ab ab

RECEIVE, EIBSYNC ab 10° 10° ab 10 ab ab ab

RECEIVE BIBCONF+ | o | o | g | | 5 | ab | ab | ab

EFBCR}?EIg\]iI EIBCONF + ab 6° 6° ab 6 ab ab ab

RECEIVE, EIBCONF ab 73 76 ab 7 ab ab ab

RECEIVE, EIBFREE ab 123 12¢ ab 12 ab ab ab

RECEIVE, EIBRECV ab 58 56 ab = ab ab ab

RECEIVE, EIB* ab =3 26 ab 2 ab ab ab
4

EI%;;’]EESE - EIBERR + ab | 13% | 13° | ab 13 ab | ab | ab
4

OO FIBERR gy g2 1 | ab | 12 | @b | ab | ab

CONVERSE?, EIBERR ab 58 56 ab = ab ab ab
4

g%;g}fg% JEIBSYNC+ | op e | e | ab 11 ab | ab | ab
4

gl?;gggss}s , EIBSYNC + ab 93 9° ab 9 ab ab ab

CONVERSE?*, EIBSYNC ab 10° 10° ab 10 ab ab ab
4

CONVERSE?*, EIBCONF + ab g3 g6 ab 8 ab ab ab

EIBFREE

338 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 59. Part 1 of Synchronization level 2 conversation state table (states 1 to

8) (continued)

Command issued, EIB

flag returned’ 1 2 3 4 > 6 7 8
CONVERSE*, EIBCONF + 5 B

EIBRECV ab 6 6 ab 6 ab ab ab
CONVERSE*, EIBCONF ab 73 7° ab 7 ab ab ab
CONVERSE?, EIBFREE ab 123 12¢ ab 12 ab ab ab
CONVERSE?, EIBRECV ab 5% 56 ab = ab ab ab

Key to states:
State 1: Allocated
State 2: Send
State 3: Pendreceive
State 4: Pendfree
State 5: Receive
State 6: Confreceive
State 7: Confsend
State 8: Conffree

Footnotes are given in[“The state conversation table notes” on page 331

Table 60. Part 1 of Synchronization level 2 conversation state table (states 9 to 13)

Command issued, EIB flag State | State | State | State

returned’ State 9 10 1 12 13 Command returns

EI(‘I)SI];IIIQ\IIS ST}"EF;:(EEESS, ab ab ab ab ab |Immediately

9

EIC])SI:INECT PROCESS”, ab ab ab ab ab |Immediately

SEND (any valid form), After error flow

EIBERR + EIBSYNRB ab ab ab ab b Jetected

SEND (any valid form), After error flow

EIBERR + EIBFREE ab ab ab ab b | etected

SEND (any valid form), After error flow

EIBERR ab ab ab ab b fetected

SEND INVITE WAIT, EIB* ab ab ab ab ab | After data flow

SEND INVITE CONFIRM, ab ab ab ab ab After response from

EIB* partner

SEND INVITE, EIB* ab ab ab ab ab | After data buffered

SEND LAST WAIT", EIB* ab ab ab ab ab | After data flows

11

SEND LAST CONFIRM™, ab ab ab ab ab After response from

EIB* partner

SEND LAST, EIB* ab ab ab ab ab | After data buffered

SEND WAIT, EIB* ab ab ab ab ab | After data flows

SEND CONFIRM, EIB* ab ab ab ab ab |After response from
partner

SEND, EIB* ab ab ab ab ab | After data buffered

E&%@IIXIEBEIBERR * ab ab ab ab ab | After data flows

EﬁBCF}IE{Ig]f » EIBERR + ab ab ab ab ab | After error detected

RECEIVE, EIBERR ab ab ab ab ab | After error detected

RECEIVE, EIBSYNC + After sync flow

ab ab ab ab ab

EIBFREE

detected

Appendix B. The conversation state tables

339

Table 60. Part 1 of Synchronization level 2 conversation state table (states 9 to
13) (continued)

Command issued, EIB flag State 9 State | State | State | State Command returns
returned’ 10 11 12 13

RECEIVE, EIBSYNC + After sync flow

ab ab ab ab ab

EIBRECV detected

RECEIVE, EIBSYNC ab | ab | ab | ab | ab |Aftersyncflow
detected

RECEIVE, EIBCONF + b b b b b After confirm flow

EIBFREE a a a a a1 detected

RECEIVE, EIBCONF + ab ab ab ab ab After confirm flow

EIBRECV detected

RECEIVE, EIBCONF ab | ab | ab | ab | ab |After confirm flow
detected

RECEIVE, EIBFREE ab ab ab ab ab | After error flow
detected

RECEIVE, EIBRECV ab ab ab ab ab When data available

RECEIVE, EIB* ab ab ab ab ab When data available

CONVERSE?, EIBERR +

EIBSYNRB ab ab ab ab ab | After data flows

CONVERSE? EIBERR +

FIBEREE ab ab ab ab ab | After error detected

CONVERSE?, EIBERR ab ab ab ab ab After error detected

CONVERSE?, EIBSYNC + After sync flow

EIBFREE ab ab ab ab b detected

CONVERSE?* EIBSYNC + After sync flow

EIBRECV ab ab ab ab b Jetected

CONVERSE?, EIBSYNC ab | ab | ab | ab | ap |Aftersyncilow
detected

CONVERSE* EIBCONF + b b b b b After confirm flow

EIBFREE a a a a | detected

CONVERSE?* EIBCONF + b b b b b After confirm flow

EIBRECV a a a a | detected

CONVERSE*, EIBCONF ab | ab | ab | ab | ab |After confirmflow
detected

CONVERSE*, EIBFREE ab ab ab ab ab | After error flow
detected

CONVERSE?, EIBRECV ab ab ab ab ab When data available

Key to states:
State 9: Syncreceive
State 10: Syncsend
State 11: Syncfree
State 12: Free
State 13: Rollback

Footnotes are given in|“The state conversation table notes” on page 331

340 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 61. Part 2 of Synchronization level 2 conversation state table (states 1 to 8)

Command issued, EIB State | State | State | State | State | State | State | State
flag returned’ 1 2 3 4 5 6 7 8
;SI%EJE CONFIRMATION, ab ab ab ab ab 5 2 12
ISSUE ERROR, EIBFREE ab 12 12 ab 12 12 12 12
ISSUE ERROR, EIBERR +
EIBSYNRB ab 13 13 ab 13 13 13 13
ISSUE ERROR, EIBERR ab 5 5 ab 5 5 5 5
ISSUE ERROR, EIB* ab 2 2 ab 2 2 2 2
ISSUE ABEND'?, EIB* ab 12 12 12 12 12 12 12
ISSUE SIGNALS, EIB* ab = = ab = = = =
ISSUE PREPARE, EIBERR 14 14 14 14 14
+ FIBSYNRB ab 13 13 13 ab ab ab ab
ISSUE PREPARE, EIBERR 14 14 14 14 14
+ EIBFREE ab 12 12 12 ab ab ab ab
ISSUE PREPARE, EIBERR | ab'* 5 5 5 ab'* ab'* ab'* ab'*
ISSUE PREPARE, EIB* ab'* 10¢ 91e 1116 ab' ab'# ab' ab'*
SYNCPOINT"?, B 20r | 2or | 2or 15 15 15 15
EIBRLDBK - 59 | 58 | s | @ ab ab ab
SYNCPOINT!?, EIB* = = 5 12 ab'® ab'® ab'® ab'®
SYNCPOINT _ 2or | 2or | 20r | 20r | 20r | 20r | 2o0r
ROLLBACK'?, EIB - 513 513 513 513 513 513 513
WAIT CONVID, EIB* ab = 5 = ab ab ab ab
FREE, EIB* E =1 =11 = ab ab ab ab
CONVERSE*
NOTRUNCATE, ab 52 56 ab = ab ab ab
EIBCOMPL (5)
CONVERSE?, EIB* ab =3 26 ab 2 ab ab ab
Key to states:

State 1: Allocated

State 2: Send

State 3: Pendreceive

State 4: Pendfree

State 5: Receive

State 6: Confreceive

State 7: Confsend

State 8: Conffree
Footnotes are given in|“The state conversation table notes” on page 331)

Appendix B. The conversation state tables 341

Table 62. Part 2 of Synchronization level 2 conversation state table (states 9 to 13)

Command issued, EIB flag State 9 State | State | State | State Command returns

returned’ 10 11 12 13

ISSUE CONFIRMATION, ab ab ab ab ab |Immediately

EIB*

ISSUE ERROR, EIBFREE 12 12 12 ab ab | After response from
partner

ISSUE ERROR, EIBERR + After response from

EIBSYNRB 13 13 13 ab b | artner

ISSUE ERROR, EIBERR 5 5 5 ab ap | After response from
partner

ISSUE ERROR, EIB* 2 2 2 ab ab | After response from
partner

ISSUE ABENDY, EIB* 12 12 12 ab ab | Immediately

ISSUE SIGNALS?, EIB* = = = ab ab |Immediately

ISSUE PREPARE, EIBERR » = “ “ 14 | After response from

+ EIBSYNRB ab ab ab ab ab partner

ISSUE PREPARE, EIBERR 14 14 14 14 14 | After response from

+ EIBFREE ab ab ab ab ab partner

ISSUE PREPARE, EIBERR ab' ab' ab'* ab' ab' | After error detected

ISSUE PREPARE, EIB* ab' | ab' | ab | ab' | apw |After response from
partner

12 2 or 2 or 2 or _ 15 | After response from

SYNCPOINT 4, EIBRLDBK 513 513 513 = ab partner

SYNCPOINT'2, EIB* 5 2 12 = abts | /After response from
partner

SYNCPOINT 20r | 2or 2 or B 2 or | After rollback across

ROLLBACK?'?, EIB 513 513 513 - 5% | LUW

WAIT CONVID, EIB* ab ab ab ab ab Immediately

FREE, EIB* ab ab ab E ab |Immediately

CONVERSE*

NOTRUNCATE, ab ab ab ab ab | When data available

EIBCOMPL (5)

CONVERSE?, EIB* ab ab ab ab ab When data available

Key to states:
State 9: Syncreceive
State 10: Syncsend
State 11: Syncfree
State 12: Free
State 13: Rollback

Footnotes are given in[“The state conversation table notes” on page 331

342 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix C. Migrating DTP applications

Two areas are discussed in this chapter:

1. The differences between TXSeries for Multiplatforms application programming
and CICS/MVS 2.1 application programming. These differences are discussed
to allow you to modify non-TXSeries for Multiplatforms applications so that
they can run in TXSeries for Multiplatforms. This is referred to as migration.

2. Writing applications in such a way as to allow them to run in TXSeries for
Multiplatforms and in other CICS products. This is referred to as portability.

Migration and portability of DTP applications can be easily achieved through
careful analysis of the differences between some of the CICS commands and
network protocol. Those differences are discussed in the following sections.

Migrating to LU 6.2 APPC mapped conversations

TXSeries for Multiplatforms uses functions to implement APPC (LU 6.2) mapped
conversations. If the application that you are converting was not written for LU 6.2
mapped conversations (for example, LU 6.1), you will need to convert it to LU 6.2
mapped conversations before migrating. Most of the CICS intercommunications
documentation tell you how to convert for LU 6.2 conversations.

If you are converting MVS LU 6.1 DTP applications to run in TXSeries for
Multiplatforms, you must first refer to the MVS books to convert to LU 6.2 before
you convert that application for TXSeries for Multiplatforms.

Differences between SNA and TCP/IP for DTP

Apart from configuration, few differences exist between TXSeries for
Multiplatforms and IBM mainframe-based CICS. Those differences are:

1. The EXEC CICS ALLOCATE command PROFILE(name) option.

PROFILE(name) specifies the name (maximum of eight characters) of a mode
that is defined to the SNA software on the local machine. This mode contains a
set of session-processing options that CICS uses during the running of mapped
commands for the remote region that is specified in the SYSID option. If the
mode contains the name of a group of APPC sessions from which the
conversation is to be allocated, a particular class of service can be selected.

The PROFILE option is ignored over TCP/IP connections and by some versions
of SNA.

2. The NOQUEUE and NOSUSPEND options have no effect on TCP/IP
conversations because TCP/IP is not session based. Therefore, you will never
get the SYSBUSY condition when using TCP/IP. When using TCP/ID, if a
remote system is not available, SYSIDERR is returned by the CONNECT
PROCESS command.

3. The network exchanges might be slightly different and you should not assume
that state changes will occur. Always test the state of a conversation (use the
STATE option, EXEC CICS EXTRACT ATTRIBUTES, or the EIB) before
performing the next command.

© Copyright IBM Corp. 1999, 2005 343

Allocating a conversation

Allocating conversations works in two different ways, depending on which CICS
platform you are using. In some CICS platforms, a session is allocated by the
EXEC CICS ALLOCATE command and the remote transaction is attached by an
EXEC CICS CONNECT PROCESS command. In other CICS platforms, including
TXSeries for Multiplatforms:

1. The EXEC CICS ALLOCATE command only provides a conversation identifier
(CONVID); it does not allocate a session.

2. The SNA MC_ALLOCATE verb is called from the EXEC CICS CONNECT
PROCESS command instead of the EXEC CICS ALLOCATE command.

3. The SYSBUSY condition is returned by the EXEC CICS CONNECT PROCESS
command rather than by the EXEC CICS ALLOCATE command.

This should be taken into consideration when the NOQUEUE or NOSUSPEND
options are used with the EXEC CICS ALLOCATE command because sessions are
not requested until the EXEC CICS CONNECT PROCESS command is used.

Use of conversation identifiers (CONVIDs)

In TXSeries for Multiplatforms, the CONVID that is returned by EXEC CICS
ALLOCATE (or the back-end principal facility) is used for DTP only. You must not
use the CONVID for any other purpose (such as naming Temporary Storage
queues). The CONVID is valid only for the life of a transaction and bears no
relationship to the SNA session that is in use.

State after backout

Following an EXEC CICS SYNCPOINT ROLLBACK, TXSeries for Multiplatforms
returns synchronization level 2 conversations to the state that they were in at the
start of the logical unit of work (LUW). Because of this, you cannot assume in
which state a conversation will be after EXEC CICS SYNCPOINT ROLLBACK is
used. In this case, use the EXEC CICS EXTRACT ATTRIBUTES command to
determine the state of the conversation before performing the next command.

Terminating a synchronization level 2 conversation

A synchronization level 2 DTP application that is running on TXSeries for
Multiplatforms, or the partner application of a TXSeries for Multiplatforms
application that might be running on a different platform, must not issue any of
the following commands:

* EXEC CICS FREE (from send or pendfree state)

» EXEC CICS SEND LAST WAIT

* EXEC CICS SEND CONFIRM (from pendfree state)

¢ EXEC CICS SEND LAST CONFIRM

* EXEC CICS WAIT (from pendfree state)

The correct way to terminate normally a synchronization level 2 conversation is to
use the following sequence of commands:

» EXEC CICS SEND LAST

* EXEC CICS SYNCPOINT

* EXEC CICS FREE

The correct way to terminate abnormally a synchronization level 2 conversation is
to use the following sequence of commands:

344 TXSeries for Multiplatforms: CICS Intercommunication Guide

* EXEC CICS ISSUE ABEND
* EXEC CICS SYNCPOINT ROLLBACK
* EXEC CICS FREE

If you are migrating a synchronization level 2 application from another CICS
platform, verify that it follows these rules.

Ensure also that the partner applications, which may not be TXSeries for
Multiplatforms applications, also follow these rules.

The EXEC CICS WAIT and EXEC CICS SEND WAIT commands

Data is buffered in APPC systems to improve network efficiency. Buffered data is
not received immediately by the partner transaction and the EXEC CICS WAIT and
EXEC CICS SEND WAIT commands are used to flush this data.

Although the use of the WAIT command might cause a state change, it does not
guarantee that the partner transaction is going to receive the data immediately. The
reason for this is that data might still be buffered by the underlying network
layers.

If a pair of transactions need to ensure timing considerations, you must use
another mechanism besides WAIT.

Transaction identifiers

For outbound requests, up to 32 bytes are allowed, although it is expected that
requests that are sent to another TXSeries for Multiplatforms region will be four
bytes or less. The APPC architecture allows up to 64 bytes, but leaves each product
free to set its own maximum. TXSeries for Multiplatforms complies by allowing 32
bytes, but this need concern you only if your TXSeries for Multiplatforms region is
connected to a partner system that demands longer transaction identifiers.

For inbound requests, however, the transaction identifiers must be four bytes or
less. TXSeries for Multiplatforms does not support inbound requests for transaction
identifiers that are longer than four characters.

The slight difference between IBM mainframe-based CICS and TXSeries for
Multiplatforms with the use of transaction identifiers, in that IBM mainframe-based
CICS truncates down to four bytes while TXSeries for Multiplatforms does not.

Refer to the description of the PROCNAME attribute in the
Multiplatforms Application Programming Reference|to see how this is used.

Migration considerations for function shipping

If you use a transaction to route from one region to another, then use function
shipping to route to another region (or back to the original region), the user ID
that is used to access the remote resources is the user ID from the first region that
initiated the function request. User IDs are considered only if the region that owns
the remote resources has a RemoteSysSecurity value of “trusted” instead of
“local”. For more information, see ['Security and function shipping” on page 141

Appendix C. Migrating DTP applications 345

346 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix D. Data conversion tables (CICS on Windows

Systems and CICS for Solaris only)

[Table 63 and [Table 64 on page 351| show the permissible combinations of code

pages that can be used to translate data from one encoding to another.

[Table 65 on page 354] shows the permissible combinations of SBCS and DBCS code

pages that can be used to produce further DBCS code pages.

Table 63. SBCS data conversion table

Code pages

Description

037 to 437

EBCDIC US English to PC-ASCII US

037 to 819

EBCDIC US English to ISO8859-1 Western European

037 to 850

EBCDIC US English to PC-ASCII Western European

037 to 860

EBCDIC US English to PC-ASCII Portuguese

037 to 863

EBCDIC US English to PC-ASCII Canadian French

273 to 437

EBCDIC German to PC-ASCII US

273 to 819

EBCDIC German to ISO8859-1 Western European

273 to 850

EBCDIC German to PC-ASCII Western European

277 to 437

EBCDIC Danish/Norwegian to PC-ASCII US

277 to 819

EBCDIC Danish/Norwegian to ISO8859-1 Western European

277 to 850

EBCDIC Danish/Norwegian to PC-ASCII Western European

277 to 865

EBCDIC Danish/Norwegian to PC-ASCII Scandinavian

278 to 437

EBCDIC Finnish/Swedish to PC-ASCII US

278 to 819

EBCDIC Finnish/Swedish to ISO8859-1 Western European

278 to 850

EBCDIC Finnish/Swedish to PC-ASCII Western European

278 to 865

EBCDIC Finnish/Swedish to PC-ASCII Scandinavian

280 to 437

EBCDIC Italian to PC-ASCII US

280 to 819

EBCDIC Italian to ISO8859-1 Western European

280 to 850

EBCDIC Italian to PC-ASCII Western European

284 to 437

EBCDIC Spanish to PC-ASCII US

284 to 819

EBCDIC Spanish to ISO8859-1 Western European

284 to 850

EBCDIC Spanish to PC-ASCII Western European

285 to 819

EBCDIC UK English to ISO8859-1 Western European

285 to 850

EBCDIC UK English to PC-ASCII Western European

285 to 437

EBCDIC UK English to PC-ASCII US

297 to 437

EBCDIC French to PC-ASCII US

297 to 819

EBCDIC French to ISO8859-1 Western European

297 to 850

EBCDIC French to PC-ASCII Western European

297 to 863

EBCDIC French to PC-ASCII Canadian French

420 to 864

EBCDIC Arabic to PC-ASCII Arabic

420 to 1046

EBCDIC Arabic to PC-ASCII Arabic

© Copyright IBM Corp. 1999, 2005

347

Table 63. SBCS data conversion table (continued)

Code pages

Description

420 to 1089

EBCDIC Arabic to ISO8859-6 Arabic

424 to 856

EBCDIC Hebrew to PC-ASCII Hebrew

424 to 862

EBCDIC Hebrew to PC-ASCII Hebrew

424 to 916

EBCDIC Hebrew to ISO8859-8 Hebrew

437 to 37

PC-ASCII US to EBCDIC US English

437 to 273

PC-ASCII US to EBCDIC German

437 to 277

PC-ASCII US to EBCDIC Danish/Norwegian

437 to 278

PC-ASCII US to EBCDIC Finnish/Swedish

437 to 280

PC-ASCII US to EBCDIC Italian

437 to 284

PC-ASCII US to EBCDIC Spanish

437 to 285

PC-ASCII US to EBCDIC UK English

437 to 297

PC-ASCII US to EBCDIC French

437 to 500

PC-ASCII US to EBCDIC International

437 to 819

PC-ASCII US to ISO8859-1 Western European

437 to 850

PC-ASCII US to PC-ASCII Western European

437 to 865

PC-ASCII US to PC-ASCII Scandinavian

437 to 1051

PC-ASCII US to ASCII roman8 for HP Western European

500 to 437

EBCDIC International to PC-ASCII US

500 to 819

EBCDIC International to ISO8859-1 Western European

500 to 850

EBCDIC International to PC-ASCII Western European

500 to 860

EBCDIC International to PC-ASCII Portuguese

500 to 861

EBCDIC International to PC-ASCII Icelandic

500 to 863

EBCDIC International to PC-ASCII Canadian French

500 to 865

EBCDIC International to PC-ASCII Scandinavian

813 to 869

1S0O8859-7 Greek to PC-ASCII Greek

813 to 875

1SO8859-7 Greek to EBCDIC Greek

819 to 37

ISO8859-1 Western European to EBCDIC US English

819 to 284

1SO8859-1 Western European to EBCDIC Spanish

819 to 285

ISO8859-1 Western European to EBCDIC UK English

819 to 273

ISO8859-1 Western European to EBCDIC German

819 to 277

1SO8859-1 Western European to EBCDIC Danish/Norwegian

819 to 278

ISO8859-1 Western European to EBCDIC Finnish/Swedish

819 to 280

ISO8859-1 Western European to EBCDIC Italian

819 to 297

ISO8859-1 Western European to EBCDIC French

819 to 437

ISO8859-1 Western European to PC-ASCII US

819 to 500

ISO8859-1 Western European to EBCDIC International

819 to 850

ISO8859-1 Western European to PC-ASCII Western European

819 to 860

ISO8859-1 Western European to PC-ASCII Portuguese

819 to 861

1SO8859-1 Western European to PC-ASCII Icelandic

819 to 863

ISO8859-1 Western European to PC-ASCII Canadian French

348 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 63. SBCS data conversion table (continued)

Code pages |Description

819 to 865 | ISO8859-1 Western European to PC-ASCII Scandinavian

819 to 871 | ISO8859-1 Western European to EBCDIC Icelandic

819 to 1051 |ISO8859-1 Western European to ASCII roman8 for HP Western European

838 to 874 | EBCDIC Thai SBCS to PC-ASCII Thai SBCS

850 to 37 PC-ASCII Western European to EBCDIC US English

850 to 284 PC-ASCII Western European to EBCDIC Spanish

850 to 285 | PC-ASCII Western European to EBCDIC UK English

850 to 273 PC-ASCII Western European to EBCDIC German

850 to 277 | PC-ASCII Western European to EBCDIC Danish/Norwegian

850 to 278 PC-ASCII Western European to EBCDIC Finnish/Swedish

850 to 280 | PC-ASCII Western European to EBCDIC Italian

850 to 297 PC-ASCII Western European to EBCDIC French

850 to 437 | PC-ASCII Western European to PC-ASCII US

850 to 500 PC-ASCII Western European to EBCDIC International

850 to 819 | PC-ASCII Western European to ISO8859-1 Western European

850 to 860 | PC-ASCII Western European to PC-ASCII Portuguese

850 to 861 | PC-ASCII Western European to PC-ASCII Icelandic

850 to 863 | PC-ASCII Western European to PC-ASCII Canadian French

850 to 865 | PC-ASCII Western European to PC-ASCII Scandinavian

850 to 871 | PC-ASCII Western European to EBCDIC Icelandic

850 to 1051 | PC-ASCII Western European to ASCII roman8 for HP Western European

852 to 870 | PC-ASCII Eastern European to EBCDIC Eastern Europe

852 to 912 PC-ASCII Eastern European to ISO8859-2 Eastern European

855 to 866 | PC-ASCII Cyrillic to PC-ASCII Cyrillic # 2

855 to 880 | PC-ASCII Cyrillic to EBCDIC Cyrillic

855 to 915 | PC-ASCII Cyrillic to ISO8859-5 Cyrillic

855 to 1025 | PC-ASCII Cyrillic to EBCDIC Cyrillic

856 to 424 PC-ASCII Hebrew to EBCDIC Hebrew

856 to 862 | PC-ASCII Hebrew to PC-ASCII Hebrew

856 to 916 PC-ASCII Hebrew to ISO8859-8 Hebrew

857 to 920 | PC-ASCII Turkish to ISO8859-9 Turkish

857 to 1026 | PC-ASCII Turkish to EBCDIC Turkish

860 to 037 PC-ASCII Portuguese to EBCDIC US English

860 to 500 | PC-ASCII Portuguese to EBCDIC International

860 to 819 PC-ASCII Portuguese to ISO8859-1 Western European

860 to 850 | PC-ASCII Portuguese to PC-ASCII Western European

861 to 500 PC-ASCII Icelandic to EBCDIC International

861 to 819 PC-ASCII Icelandic to ISO8859-1 Western European

861 to 850 PC-ASCII Icelandic to PC-ASCII Western European

861 to 871 PC-ASCII Icelandic to EBCDIC Icelandic

Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only) 349

Table 63. SBCS data conversion table (continued)

Code pages |Description

862 to 424 PC-ASCII Hebrew to EBCDIC Hebrew

862 to 856 | PC-ASCII Hebrew to PC-ASCII Hebrew

862 to 916 PC-ASCII Hebrew to ISO8859-8 Hebrew

863 to 037 | PC-ASCII Canadian French to EBCDIC US English

863 to 297 PC-ASCII Canadian French to EBCDIC French

863 to 500 PC-ASCII Canadian French to EBCDIC International

863 to 819 | PC-ASCII Canadian French to ISO8859-1 Western European

863 to 850 PC-ASCII Canadian French to PC-ASCII Western European

864 to 420 PC-ASCII Arabic to EBCDIC Arabic

864 to 1046 | PC-ASCII Arabic to PC-ASCII Arabic

864 to 1089 | PC-ASCII Arabic to ISO8859-6 Arabic

865 to 277 PC-ASCII Scandinavian to EBCDIC Danish/Norwegian

865 to 278 PC-ASCII Scandinavian to EBCDIC Finnish/Swedish

865 to 437 PC-ASCII Scandinavian to PC-ASCII US

865 to 500 PC-ASCII Scandinavian to EBCDIC International

865 to 819 PC-ASCII Scandinavian to ISO8859-1 Western European

865 to 850 PC-ASCII Scandinavian to PC-ASCII Western European

866 to 855 | PC-ASCII Cyrillic # 2 to PC-ASCII Cyrillic

866 to 880 | PC-ASCII Cyrillic # 2 to EBCDIC Cyrillic

866 to 915 | PC-ASCII Cyrillic # 2 to ISO8859-5 Cyrillic

866 to 1025 | PC-ASCII Cyrillic # 2 to EBCDIC Cyrillic

869 to 813 PC-ASCII Greek to ISO8859-7 Greek

869 to 875 | PC-ASCII Greek to EBCDIC Greek

870 to 852 | EBCDIC Eastern Europe to PC-ASCII Eastern European

870 to 912 | EBCDIC Eastern Europe to ISO8859-2 Eastern European

871 to 819 | EBCDIC Icelandic to ISO8859-1 Western European

871 to 850 | EBCDIC Icelandic to PC-ASCII Western European

871 to 861 EBCDIC Icelandic to PC-ASCII Icelandic

874 to 838 | PC-ASCII Thai SBCS to EBCDIC Thai SBCS

875 to 813 EBCDIC Greek to ISO8859-7 Greek

875 to 869 | EBCDIC Greek to PC-ASCII Greek

880 to 855 | EBCDIC Cyrillic to PC-ASCII Cyrillic

880 to 866 | EBCDIC Cyrillic to PC-ASCII Cyrillic # 2

880 to 915 | EBCDIC Cyrillic to ISO8859-5 Cyrillic

912 to 852 | ISO8859-2 Eastern European to PC-ASCII Eastern European

912 to 870 | ISO8859-2 Eastern European to EBCDIC Eastern Europe

915 to 855 | ISO8859-5 Cyrillic to PC-ASCII Cyrillic

915 to 866 | ISO8859-5 Cyrillic to PC-ASCII Cyrillic # 2

915 to 880 | ISO8859-5 Cyrillic to EBCDIC Cyrillic

915 to 1025 |ISO8859-5 Cyrillic to EBCDIC Cyrillic

350 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 63. SBCS data conversion table (continued)

Code pages |Description

916 to 424 | 1SO8859-8 Hebrew to EBCDIC Hebrew

916 to 856 | ISO8859-8 Hebrew to PC-ASCII Hebrew

916 to 862 | 1SO8859-8 Hebrew to PC-ASCII Hebrew

920 to 857 | ISO8859-9 Turkish to PC-ASCII Turkish

920 to 1026 |ISO8859-9 Turkish to EBCDIC Turkish

1025 to 855 | EBCDIC Ciyrillic to PC-ASCII Cyrillic

1025 to 866 | EBCDIC Cyrillic to PC-ASCII Cyrillic # 2

1025 to 915 | EBCDIC Cyrillic to ISO8859-5 Cyrillic

1026 to 857 | EBCDIC Turkish to PC-ASCII Turkish

1026 to 920 | EBCDIC Turkish to ISO8859-9 Turkish

1046 to 420 | PC-ASCII Arabic to EBCDIC Arabic

1046 to 864 | PC-ASCII Arabic to PC-ASCII Arabic

1046 to 108 | 9PC-ASCII Arabic to ISO8859-6 Arabic

1051 to 437 | ASCII roman8 for HP Western European to PC-ASCII US

1051 to 819 | ASCII roman8 for HP Western European to ISO8859-1 Western European
1051 to 850 | ASCII roman8 for HP Western European to PC-ASCII Western European
1089 to 420 |ISO8859-6 Arabic to EBCDIC Arabic

1089 to 864 |ISO8859-6 Arabic to PC-ASCII Arabic

1089 to 1046

1SO8859-6 Arabic to PC-ASCII Arabic

Table 64. DBSC and mixed data conversion table

Code pages |Description
37 to 897 SBCS EBCDIC US English to PC-ASCII Japan Data SBCS
37 to 904 SBCS EBCDIC US English to PC Traditional Chinese SBCS
37 to 1041 | SBCS EBCDIC US English to PC Japanese - extended SBCS
37 to 1043 | SBCS EBCDIC US English to PC Traditional Chinese - extended SBCS
37 to 1114 | SBCS EBCDIC US English to PC Traditional Chinese - big 5 SBCS
290 to 897 | SBCS EBCDIC Japanese Katakana SBCS to PC-ASCII Japan Data SBCS
290 to 1041 |SBCS EBCDIC Japanese Katakana SBCS to PC Japanese - extended SBCS
300 to 301 DBCS EBCDIC Japanese DBCS to PC Japanese DBCS
300 to 941 | DBCS EBCDIC Japanese DBCS to PC Japanese for open environment
DBCS
301 to 300 | DBCS PC Japanese DBCS to EBCDIC Japanese DBCS
301 to 941 | DBCS PC Japanese DBCS to PC Japanese for open environment DBCS
833 to 891 | SBCS EBCDIC Korean SBCS extended to PC-ASCII Korean SBCS
833 to 1040 | SBCS EBCDIC Korean SBCS extended to PC-ASCII Korean - extended
SBCS
833 to 1088 | SBCS EBCDIC Korean SBCS extended to PC Korean SBCS - KS code
834 to 926 | DBCS EBCDIC Korean DBCS to PC-ASCII Korean DBCS
834 to 951 | DBCS EBCDIC Korean DBCS to PC Korean DBCS - KS code
835 to 927 | DBCS EBCDIC Traditional Chinese DBCS to PC Traditional Chinese DBCS

Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only)

351

Table 64. DBSC and mixed data conversion table (continued)

Code pages

Description

835 to 947

DBCS EBCDIC Traditional Chinese DBCS to PC Traditional Chinese DBCS

836 to 903

SBCS EBCDIC Simplified Chinese SBCS to PC Simplified Chinese SBCS

836 to 1042

SBCS EBCDIC Simplified Chinese SBCS to PC Simplified Chinese -
extended SBCS

836 to 1115

SBCS EBCDIC Simplified Chinese SBCS to PC Simplified Chinese SBCS

837 to 928

DBCS EBCDIC Simplified Chinese DBCS to PC Simplified Chinese DBCS

837 to 1380

DBCS EBCDIC Simplified Chinese DBCS to PC Simplified Chinese DBCS

891 to 833

SBCS PC-ASCII Korean SBCS to EBCDIC Korean SBCS extended

891 to 1088

SBCS PC-ASCII Korean SBCS to PC Korean SBCS - KS code

897 to 37

SBCS PC-ASCII Japan Data SBCS to EBCDIC US English

897 to 290

SBCS PC-ASCII Japan Data SBCS to EBCDIC Japanese Katakana SBCS

897 to 1027

SBCS PC-ASCII Japan Data SBCS to EBCDIC Japanese Latin - extended
SBCS

897 to 1041

SBCS PC-ASCII Japan Data SBCS to PC Japanese - extended SBCS

903 to 836

SBCS PC Simplified Chinese SBCS to EBCDIC Simplified Chinese SBCS

903 to 1042

SBCS PC Simplified Chinese SBCS to PC Simplified Chinese - extended
SBCS

903 to 1115

SBCS PC Simplified Chinese SBCS to PC Simplified Chinese SBCS

904 to 37

SBCS PC Traditional Chinese SBCS to EBCDIC US English

904 to 1114

SBCS PC Traditional Chinese SBCS to PC Traditional Chinese - big 5 SBCS

926 to 834

DBCS PC-ASCII Korean DBCS to EBCDIC Korean DBCS

926 to 951

DBCS PC-ASCII Korean DBCS to PC Korean DBCS - KS code

927 to 835

DBCS PC Traditional Chinese DBCS to EBCDIC Traditional Chinese DBCS

927 to 947

DBCS PC Traditional Chinese DBCS to PC Traditional Chinese DBCS

928 to 837

DBCS PC Simplified Chinese DBCS to EBCDIC Simplified Chinese DBCS

928 to 1380

DBCS PC Simplified Chinese DBCS to PC Simplified Chinese DBCS

930 to 5050

EUC EBCDIC Japanese Katakana Kanji Mixed to euc Japanese Mixed 954

933 to 970

EUC EBCDIC Korean Mixed to euc Korean Mixed

935 to 1383

EUC EBCDIC Simplified Chinese Mixed to euc Simplified Chinese Mixed

937 to 964

EUC EBCDIC Traditional Chinese Mixed to euc Traditional Chinese Mixed

939 to 5050

EUC EBCDIC Japanese Latin Kanji Mixed to euc Japanese Mixed 954

941 to 300

DBCS PC Japanese for open environment DBCS to EBCDIC Japanese
DBCS

941 to 301

DBCS PC Japanese for open environment DBCS to PC Japanese DBCS

942 to 5050

EUC PC Japanese PC Data Mixed - extended SBCS to euc Japanese Mixed
954

943 to 5050

EUC PC Japanese for open environment mixed to euc Japanese Mixed 954

947 to 835

DBCS PC Traditional Chinese DBCS to EBCDIC Traditional Chinese DBCS

947 to 927

DBCS PC Traditional Chinese DBCS to PC Traditional Chinese DBCS

948 to 964

EUC PC Traditional Chinese Mixed - extended SBCS to euc Traditional
Chinese Mixed

949 to 970

EUC PC Korean Mixed - KS code to euc Korean Mixed

352 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 64. DBSC and mixed data conversion table (continued)

Code pages |Description
950 to 964 | EUC PC Traditional Chinese Mixed - big5 to euc Traditional Chinese
Mixed
951 to 834 DBCS PC Korean DBCS - KS code to EBCDIC Korean DBCS
951 to 926 DBCS PC Korean DBCS - KS code to PC-ASCII Korean DBCS
964 to 937 | EUC euc Traditional Chinese Mixed to EBCDIC Traditional Chinese Mixed
964 to 948 | EUC euc Traditional Chinese Mixed to PC Traditional Chinese Mixed -
extended SBCS
964 to 950 | EUC euc Traditional Chinese Mixed to PC Traditional Chinese Mixed -
bigh
970 to 933 EUC euc Korean Mixed to EBCDIC Korean Mixed
970 to 949 | EUC euc Korean Mixed to PC Korean Mixed - KS code
1027 to 897 | SBCS EBCDIC Japanese Latin - extended SBCS to PC-ASCII Japan Data

SBCS

1027 to 1041

SBCS EBCDIC Japanese Latin - extended SBCS to PC Japanese - extended
SBCS

1040 to 833

SBCS PC-ASCII Korean - extended SBCS to EBCDIC Korean SBCS
extended

1040 to 1088

SBCS PC-ASCII Korean - extended SBCS to PC Korean SBCS - KS code

1041 to 37 | SBCS PC Japanese - extended SBCS to EBCDIC US English
1041 to 290 | SBCS PC Japanese - extended SBCS to EBCDIC Japanese Katakana SBCS
1041 to 897 | SBCS PC Japanese - extended SBCS to PC-ASCII Japan Data SBCS

1041 to 1027

SBCS PC Japanese - extended SBCS to EBCDIC Japanese Latin - extended
SBCS

1042 to 836 | SBCS PC Simplified Chinese - extended SBCS to EBCDIC Simplified
Chinese SBCS

1042 to 903 | SBCS PC Simplified Chinese - extended SBCS to PC Simplified Chinese
SBCS

1043 to 37 | SBCS PC Traditional Chinese - extended SBCS to EBCDIC US English

1043 to 1114

SBCS PC Traditional Chinese - extended SBCS to PC Traditional Chinese -
big 5 SBCS

1088 to 833 | SBCS PC Korean SBCS - KS code to EBCDIC Korean SBCS extended

1088 to 891 |SBCS PC Korean SBCS - KS code to PC-ASCII Korean SBCS

1088 to 1040 |SBCS PC Korean SBCS - KS code to PC-ASCII Korean - extended SBCS
1114 to 37 | SBCS PC Traditional Chinese - big 5 SBCS to EBCDIC US English

1114 to 904 | SBCS PC Traditional Chinese - big 5 SBCS to PC Traditional Chinese SBCS

1114 to 1043

SBCS PC Traditional Chinese - big 5 SBCS to PC Traditional Chinese -
extended SBCS

1115 to 836 | SBCS PC Simplified Chinese SBCS to EBCDIC Simplified Chinese SBCS
1115 to 903 | SBCS PC Simplified Chinese SBCS to PC Simplified Chinese SBCS

1380 to 837 | DBCS PC Simplified Chinese DBCS to EBCDIC Simplified Chinese DBCS
1380 to 928 | DBCS PC Simplified Chinese DBCS to PC Simplified Chinese DBCS

1381 to 1383 | EUC PC Simplified Chinese Mixed to euc Simplified Chinese Mixed

1383 to 935 | EUC euc Simplified Chinese Mixed to EBCDIC Simplified Chinese Mixed

Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only)

353

Table 64. DBSC and mixed data conversion table (continued)

Code pages |Description
1383 to 1381 | EUC euc Simplified Chinese Mixed to PC Simplified Chinese Mixed
5050 to 930 | EUC euc Japanese Mixed 954 to EBCDIC Japanese Katakana Kanji Mixed
5050 to 939 | EUC euc Japanese Mixed 954 to EBCDIC Japanese Latin Kanji Mixed
5050 to 942 | EUC euc Japanese Mixed 954 to PC Japanese PC Data Mixed - extended
SBCS
5050 to 943 | EUC euc Japanese Mixed 954 to PC Japanese for open environment mixed
Table 65. SBCS and DBCS data conversion table
Mixed SBCS DBCS
930 290 300
931 37 300
932 897 301
933 833 834
934 891 926
935 836 837
936 903 928
937 37 835
938 904 927
9391 027 300
9421 041 301
9431 041 941
9441 040 926
9461 042 928
9481 043 927
9491 088 951
9501 114 947
13811 115 1380
964 euc
970 euc
1383 euc
5050 euc

354 TXSeries for Multiplatforms: CICS Intercommunication Guide

Bibliography

TXSeries for Multiplatforms Using IBM|
Communications Server for AIX with CICS)

SC34-6642|

TXSeries for Multiplatforms Using IBM|
Communications Server for Windows Systems with
CICS, SC09-4470)|

TXSeries for Multiplatforms Using Microsoft SNA|
Server with CICS, SC09-4471]

TXSeries for Multiplatforms Using HP-UX|
SNAplus2 with CICS, SC09-4586]

TXSeries for Multiplatforms Using SNAP-IX foil
Solaris with CICS, SC09-4472|

CICS Family: Interproduct Communication,
SC33-0824

CICS Universal Client: Client Administration,
SC33-1792

[CICS Administration Guide|

TXSeries for Multiplatforms Application|
Programming Reference, SC34-6640f

CICS Family: API Structure, SC33-1007

CICS for OS/2 Intercommunication Guide,
SC33-0826

Communicating from CICS/400, SC33-0828

TXSeries for Multiplatforms Administration|
Reference, SC34-6641]

IBM 3270 Information Display Programmer’s
Reference,

TXSeries for Multiplatforms Messages and Codes |
SC34-6639)

TXSeries for Multiplatforms SFS Server and PPCl
Gateway Server: Advanced Administration)
SC34-6627|

TXSeries for Multiplatforms Concepts and|
Planning, SC34-6631]

TXSeries for Multiplatforms Problem|
Determination Guide, SC34-6636|

TXSeries for Multiplatforms Application|
Programming Guide, SC34-6634]

© Copyright IBM Corp. 1999, 2005

355

356 TXSeries for Multiplatforms: CICS Intercommunication Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the document. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2005 357

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking® AIX
AS/400® CICS
CICS/400 CICS/6000
CICS/ESA CICS/MVS
CICS/VSE CICSPlex®

358 TXSeries for Multiplatforms: CICS Intercommunication Guide

C-ISAM™ Database 2™

DB2 DB2 Universal Database™”
GDDM® IBM

IBM Registry IMS

Informix® Language Environment®
MVS MVS/ESA

0S/390® 0s/2

0S/400® RACF

RETAIN® RISC System/6000%
RS/6000 SOM®

Systems Application Architecture® System /390%

TXSeries TCS

VisualAge® VSE/ESA™

VTAM WebSphere®

z/0S

Domino®, Lotus®, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Visual Studio, Windows,
Windows NT®, and the Windows 95 logo are trademarks or registered trademarks

of Microsoft Corporation in the United States, other countries, or both.

Java" and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Acucorp and ACUCOBOL-GT are registered trademarks of Acucorp, Inc. in the
United States, other countries, or both.

Pentium® is a trademark of Intel Corporation in the United States, other countries,
or both.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 359

360 TXSeries for Multiplatforms: CICS Intercommunication Guide

Index

Numerics

15a00001/8890000 Program Error
Purging 223

15a00002/15a00101 Allocate Busy 223

15a00002/15a00102 Allocate Failure 224

15200003 /15200109 Allocate Timed
Out 224

15a00004/15a00103 Invalid Convid 224

15200004 /15200104 Invalid Mode/Partner
LU alias 224

15200004 /15200105 Invalid
Parameter 225

15a00004/15a0010d Synclevel Not
Supported Locally 224

15a00004/15a00110 Exchange log name
failed 225

15a00005/15a00108 State Error 225

15a00005/15a00111 Backout
required 225

15a00006/15a00106 Communications
Protocol Specific Error 226

15a00006/15a0010c Local SNA not
initialized 226

15a00007 /10086021 Transaction Unknown
on Remote System 226

15a00007 /10086031 PIP Data Not
Supported by the Remote System 226

15a00007 /10086032 PIP Data Incorrectly
Specified 226

15a00007 /10086034 Conversation Type
Mismatch 226

15a00007 /10086041 Sync Not Supported
by Remote Program or System 226

15a00007/80£6051 Security Violation 226

15200007 /84b6031 Remote Transaction
Temporarily Not Available 227

15200007 /84c0000 Remote Transaction
Not Available 227

15200007 /8640000 Conversation
Abnormal Termination 227

15a00007 /8640001 Conversation
Abnormal Termination 227

15a00007 /8640002 Conversation
Abnormal Termination 227

15a00007 /20000100 Conversation
Failure 226

15a00008/15a00107 Conversation
Terminated Normally 227

15a00009/8240000 Backed Out 228

15a0000a/15a0010a Unsupported 223

A

abend codes
A30A 332
ASP3 314
ATCV 331
ATNI 261
AXFX abend on CICS for
MVS/ESA 219

© Copyright IBM Corp. 1999, 2005

abnormal termination
APPC mapped conversations 299
ActivateOnStartup attribute (LD) 27
advanced program-to-program
communications (APPC) 3
DTP applications 4
AIX SMIT
changing attributes PPC Gateway
server 199
configuring CD entry 39, 52, 86, 106
configuring GD entry 103
configuring LD entry 31, 82
configuring RD entry 83, 104
creating PPC Gateway server 195
deleting PPC Gateway server 200
PPC Gateway server system
management 195
starting PPC Gateway server 197
stopping PPC Gateway server 198
AIX SNA Server/6000 9
ALLOCATE 304
APPC mapped conversations 286,
332
AllocateTimeout attribute (CD) 34, 47,
96, 99, 106
allocating a session
APPC mapped conversations 287
using ATI 287
already verified 133
alternate facility 281
alternate facility, defined 279
APPC mapped conversations
abnormal termination 295, 299
ALLOCATE command 286, 332
ASSIGN command 289
attaching partner transactions 288
CONNECT PROCESS command 288
CONVERSE command 295, 301
CONVID (acquiring) 286
ending one 298
EXTRACT PROCESS command 288,
289
FREE command 298, 299
front-end transaction 286
ISSUE ABEND command 295, 299
ISSUE ERROR command 295
RECEIVE command 301
SEND command 291
starting 286
state table, synchronization level
0 333
state table, synchronization level
1 335
state table, synchronization level
2 338
synchronization level 0, state
table 333
synchronization level 1, state
table 335
synchronization level 2, state
table 338

application design 282, 283
application programming
APPC mapped conversations 286
asynchronous processing 277
distributed program link (DPL) 247
distributed transaction processing
(DTP) 279
function shipping 259
transaction routing 264
APPLID 25, 68
APPLID passed with START
command 275
ASCII to EBCDIC data conversion 19,
147
ASP3 abend 314
ASSIGN command
APPC mapped conversations 289
APPLID option usage 275
in application owning system 265
asynchronous processing 273, 274, 275,
276, 277
application programming 277
data conversion 156
deferred sending of START
request 275
defining remote transactions 120
definition of 3
description of 20
example application 276
including start request in an
LUW 276
initiating asynchronous
processing 273
passing information with the START
command 274
security considerations 273
single transaction satisfying multiple
start requests 276
START/RETRIEVE interface 273
started transaction 276
attaching partner transactions
APPC mapped conversations 288
attaching secure sessions 125
audit messages 232
authentication 126
authorizing user access to CICS
signing on from a remote system
using CESN 142
auto start PPC Gateway server 191
autoinstall of CD entries 55
automatic transaction initiation
(ATI) 266
APPC mapped conversations 287
defining resources 116
EIBTRMID field 111
EIBTRMID field of 111
FacilityType attribute 111
in asynchronous processing 274
principal facility 111
resource definitions 116

361

automatic transaction initiation (ATI)
(continued)
restriction with shipped terminal
definitions 117
transient data trigger level 111
TriggeredTransld attribute 111
autostart PPC Gateway server 183, 186,
197
availability of remote regions 304

AXFX abend on CICS for MVS/ESA 219

back-end DTP transaction
availability 109
back-end transaction 285
backing out changes 314, 316
performance effect 282
to recoverable resources
backout 16, 308, 314, 316
definition 279
effect on performance 282
of recoverable resources 282
state after 344
backup of remote data 22
balancing work load 116, 267
basic mapping support (BMS)
with transaction routing 264
BDAM files, accessed by DPL 248
BDAM, restriction 257
big-endian machines 147
BIND
password 125
request 125
security, implementing 125
bind-time security
description of 14
planning for 14
byte ordering 149

282, 308

C

CANCEL command 274
CCIN 55
CECI 214
cell directory services (CDS)
name for CICS region 25
name for PPC Gateway server 176
CESN 142
CGWY 177,218
checking security 123
checking the conversation state of a
transaction 294
choosing intercommunication
facilities 20
CICS family TCP/IP 5
authenticating systems 124
configuring CD entry 34
configuring connections 26
configuring LD entry 27
functions supported 6
CICS on Open Systems and CICS for
Windows
availability of 304
CICS OS/2 panels 44

CICS 0OS/2 to TXSeries for
Multiplatforms data conversion 19
CICS region principal 25, 68
CICS_PPCGWY_SERVER 186, 197, 200
CICS_PPCGWY_VG 185
CICS_SNA_DEFAULT_MODE 110
CICS_SNA_THREAD_POOL_SIZE 111
CICS-supplied transactions
CGWY 177
cicsadd 210
cicscp command set 182
cicscp create ppcgwy_server 182
cicscp destroy ppcgwy_server 184
cicscp start ppcgwy_server 183
cicscp stop ppcgwy_server 184
cicscvt 159
cicsdelete 210
cicsget 188
cicsppcgwy 186, 188, 230
cicsppcgwycreate 184, 188
cicsppcgwydestroy 188
cicsppcgwylock 189
cicsppcgwyshut 187
CICSREGION 31, 39, 52, 82, 103
cicsupdate 188, 210
client/server model 281
client/server, defined 279
code page 147, 153, 157, 159, 321
cold start PPC Gateway server 183, 186,
191, 197
commands
ALLOCATE 304
APPC mapped conversations 304
CONNECT PROCESS 304
data integrity 296
FREE 304
INQUIRE CONNECTION 304
RETURN 304
SEND 304
COMMAREA, used with DPL 248
commit 16
commits, defined 279
committing changes
to recoverable resources 307
communication methods 5
CICS family TCP/IP 5
local SNA support 8, 25, 67, 70
PPC Gateway server 9, 25, 67, 89,
175
TCP/IP 5,25, 47
communication pairs, defined 279
Communications Definitions (CD) 210
autoinstall 55
configuring for CICS family
TCP/IP 34
configuring for CICS family TCP/IP
(SMIT) 39

configuring for CICS PPC TCP/IP 47

configuring for CICS PPC TCP/IP
(SMIT) 52

configuring for local SNA 75, 79, 86

configuring for local SNA (SMIT) 86

configuring for PPC Gateway server
SNA 96, 99, 106

configuring for PPC Gateway server
SNA (SMIT) 106

example 46, 53, 75,79, 86, 96, 99, 106

362 TXSeries for Multiplatforms: CICS Intercommunication Guide

Communications Server 8
Communications Server for AIX
tracing 230
configuration problems 144
configuring the PPC Gateway
server 177
confirm 16
confirm, defined 279
confreceive state, defined 279
CONNECT command 304
CONNECT PROCESS command
APPC mapped conversations 288
PIPLENGTH option 288
PIPLIST option 288
connection security 126, 127
connections
local SNA support 70
SNA and a PPC Gateway server 89
TCP/IP 47
ConnectionType attribute (CD) 75, 79,
86, 96, 99, 106
conversation identifiers 344
conversation state 280
conversation state, defined 279
conversation-level security 133
conversation, defined 279, 280
CONVERSE command
APPC mapped conversations 295,
301
CICS conversations 295
conversion of data between systems 19
conversion templates 324
CONVID (acquiring) 286
CONVID option
APPC mapped conversations 289,
291
WAIT command 291
CONVIDs 344
CRTE 142,214

D

data conversion 19

ASCII to EBCDIC 19

asynchronous processing 152

avoiding data conversion 158

between systems 19

byte ordering 149

byte swapping 150

CICS OS/2 TXSeries for
Multiplatforms 19

code pages 147, 153

conversion table 147

conversion templates 324

DFHTRUC 165

DFHUCNYV 160

distributed program link 152

distributed transaction
processing 169

EBCDIC to ASCIT 19

function shipping 156

key templates 324

numeric data 149

RemoteCodePageTR attribute 164

SBCS, DBCS, MBCS 148

shortcodes 157

transaction routing 164

data conversion (continued)
TXSeries for Multiplatforms to CICS
0s/2 19
data conversion exits
DFHTRUC 164
DFHUNCV 160
function shipping 160
transaction routing 164
data integrity 5, 282, 296
definition 279
function shipping 258
safegaurding 284
DB2, restriction 257
DBCS
double byte character set 148
DefaultSNAModeName attribute
(CD) 34,47,75,79, 86,96, 99, 106
DefaultUserld attribute 137
DefaultUserld attribute (RD) 265
deferred sending, START
NOCHECK 275
deferred transmission 299
APPC mapped conversations 291
design of intercommunication setup 5
designing for recovery 284
DFHCCINX 55, 58, 62
DFHCNYV macro
creating a template from 159
TYPE=ENTRY 321, 325
TYPE=FIELD 321, 328
TYPE=FINAL 321, 329
TYPE=INITIAL 321, 324
TYPE=KEY 321, 327
TYPE=SELECT 321, 327
DFHTRUC 165
DFHUCNV 160
distribued program link (DPL)
dynamic distributed program link
user exit 249
user exit 249
distributed processes 281
defininition 279
designing 283
distributed program link (DPL) 247
BDAM files, accessed by 248
COMMAREA 248
data conversion 156
definition of 3
description of 20
IMS databases, accessed by 248
overview of 247
performance optimization 248
serial connections 248
SQL databases, accessed by 248
subset 249
ways of using DPL 252
distributed transaction processing (DTP)
definition of 3
description of 21
migration of applications 343
distributed unit of work 16, 282
distributed unit of work, defined 279
DL/I databases
accessed by DPL 248
restriction 257
dynamic distributed program link user
exit 249, 252

dynamic transaction routing 116, 266,
267

E

EBCDIC to ASCII data conversion 19,
147
EIB fields 309
EIBCOMPL, APPC mapped
conversations 301
EIBCONE, APPC mapped
conversations 301
EIBEOC, APPC mapped
conversations 301
EIBERR 291, 308
EIBERR, APPC mapped
conversations 295, 300
EIBERR, CICS conversations 293
EIBERRCD 291
EIBERRCD, APPC mapped
conversations 295, 300
EIBERRCD, CICS conversations 293
EIBFREE 291, 309
EIBFREE, APPC mapped
conversations 295, 300
EIBNODAT, APPC mapped
conversations 301
EIBNODAT, CICS conversations 293
EIBRCODE, APPC mapped
conversations 300
EIBRECV, APPC mapped
conversations 301
EIBRLDBK 308, 316, 317
EIBRSRCE 287
EIBSIG, APPC mapped
conversations 295, 300
EIBSYNC 307, 317
EIBSYNC, APPC mapped
conversations 300
EIBSYNRB 308, 317
EIBSYNRB, APPC mapped
conversations 300, 301
EIBCOMPL flag
APPC mapped conversations 301
EIBCONF flag
APPC mapped conversations 301
EIBEOC flag
APPC mapped conversations 301
EIBERR flag 300, 308
APPC mapped conversations 291,
295
CICS conversations 293
EIBERRCD field
APPC mapped conversations 291,
295, 300
CICS conversations 293
EIBFREE flag 309
APPC mapped conversations 291,
295, 300
EIBNODAT flag
APPC mapped conversations 301
CICS conversations 293
EIBRCODE field
APPC mapped conversations 300
EIBRECV flag
APPC mapped conversations 301
EIBRLDBK flag 308, 316, 317

EIBRSRCE field
APPC mapped conversations 287
EIBSIG flag
APPC mapped conversations 295,
300
EIBSYNC flag 307, 317
APPC mapped conversations 300
EIBSYNRB flag 308, 317
APPC mapped conversations 300,
301
EIBTRMID field 111
ending a conversation
APPC mapped session 298
ensuring data integrity 5
environment va riables
CICS_SNA_DEFAULT_MODE 110
environment variables
CICS_PPCGWY_SERVER 186, 197,
200
CICS_PPCGWY_VG 185
CICS_SNA_THREAD_POOL_
SIZE 111
CICSREGION 31, 82, 103
ERZ045006W message occurs 145
exceptional conditions
function shipping 260
exchange log names 180, 204, 205
problems 219
EXEC CICS ALLOCATE 286
EXEC CICS commands
summary 304
EXEC CICS CONNECT PROCESS 288,
289
EXEC CICS CONVERSE 295
EXEC CICS ISSUE ABEND 296, 297, 299
EXEC CICS ISSUE
CONFIRMATION 296, 297
EXEC CICS ISSUE ERROR 295, 296, 297
EXEC CICS ISSUE SIGNAL 295
EXEC CICS RECEIVE 292, 293
EXEC CICS RETRIEVE 277
EXEC CICS RETURN 16
EXEC CICS SEND 291
EXEC CICS SEND CONFIRM 296, 297
EXEC CICS SEND CONFIRM
INVITE 297
EXEC CICS SEND CONFIRM LAST 297
EXEC CICS SEND INVITE 292, 295
EXEC CICS SEND INVITE WAIT 292
EXEC CICS SEND LAST 297, 299
EXEC CICS SEND LAST CONFIRM 299
EXEC CICS SEND LAST WAIT 299
EXEC CICS START 277
EXEC CICS SYNCPOINT 16, 298, 299
EXEC CICS SYNCPOINT
ROLLBACK 16, 298
EXEC CICS WAIT CONVID 292
execution-time choice 257
explicit naming of remote system 257
EXTRACT ATTRIBUTES 344
EXTRACT ATTRIBUTES command 281,
285
EXTRACT PROCESS command
APPC mapped conversations 288,
289

Index 363

F

Facilityld attribute 287
FacilityType attribute 111, 287
failures
back-end transaction 291
intersystem session 279, 284
notification of 291
file control
function shipping 258, 259
files, securing 126, 127
flowing user IDs outbound 130
FREE command
APPC mapped conversations 298,
299
FREE command use of 304
front-end transaction 285
APPC mapped conversations 286
function shipping
application programming 259
BDAM, restriction 257
data conversion 156
DB2, restriction 257
defining remote resources 113
files 113
temporary storage queues 115
transient data queues 114
definition of 3
description of 20
DL/I, restriction 257
exceptional conditions 260
EXEC CICS START 141, 142
execution-time choice 257
explicit naming of remote
system 257
file control 258, 259
IMS, restriction 257
local and remote names 258
migration considerations 345
mirror transaction 142
mirror transaction abnormal
termination 261
overview 257
remote system, naming 257
security 141
START command 141, 142
synchronization 258
SYNCPOINT, use in 259
temporary storage 260
transient data 258, 260
transparent to application 257
Function shipping
execution-time choice 273
explicit naming of remote
system 273
Timeouts 261
function shipping data conversion
DFHUCNV 160
non-standard conversion 160
program parameters 161
standard conversion 159
the supplied program 160

G

gateway
planning for 5

Gateway Definitions (GD) 210
configuring for PPC Gateway server
SNA 95,98, 103
configuring for PPC Gateway server
SNA (SMIT) 103
example 95, 98, 103
GatewayCDSName attribute (GD) 95,
98, 103
GatewayLUName attribute 68
GatewayLUName attribute (GD) 95, 98,
103
GatewayName attribute (CD) 34, 47, 96,
99, 106
GatewayPrincipal attribute 126
GatewayPrincipal attribute (GD) 95, 98,
103
GDS ISSUE PREPARE command 308

H

help 213

IBM mainframe-based CICS
availability of 304
IBM TXSeries Administration Tool
changing attributes PPC Gateway
server 193
creating PPC Gateway server 190
destroying PPC Gateway server 194
PPC Gateway server system
management 190
starting PPC Gateway server 191
stopping PPC Gateway server 193
IMS databases, accessed by DPL 248
IMS, restriction 257
inbound, defined 279
indirect links for transaction routing 266
indoubt condition 109
INQUIRE CONNECTION
command 304
INQUIRE FILE command 258
integrity of data 282
intercommunication design 5
intercommunication security 123
intersystem requests, security of 123
intersystem security
configuring for 136
implementing 136
INVITE option
SEND command (APPC
mapped) 292
ISCINVREQ 260
IsShippable attribute 117
ISSUE ABEND command
APPC mapped conversations 295
ISSUE ERROR command
APPC mapped conversations 295
ISSUE PREPARE command 308

L

LINK command 247
link keys, definition of 127
link security 126

364 TXSeries for Multiplatforms: CICS Intercommunication Guide

link security (continued)
configuring for 136
description of 14
implementing 136
planning for 14
LinkUserld attribute 136
LinkUserld attribute (CD) 34, 47, 75, 79,
86, 96, 99, 106, 265
Listener Definitions (LD) 210
configuring for CICS family
TCP/IP 27
configuring for CICS family TCP/IP
(SMIT) 31
configuring for local SNA 75, 77, 82
configuring for local SNA (SMIT) 82
example 32, 45, 46, 75, 77, 82
ListenerName attribute (CD) 34
little-endian machines 147
local and remote names of resources 258
local Logical Unit (LU) name 25, 68
local queuing of START commands 275
local SNA support 5, 8, 70
Local TPN Profile 109
local transaction profile used 109
LocalLUName attribute 68
LocalLUName attribute (RD) 75, 78, 83
LocalNetworkname attribute (RD) 75,
78, 83
LocalSysld attribute (RD) 25, 68, 75, 78,
83, 96, 98, 104
logical unit (LU) name 68
Logical Unit (LU) name 25
logical unit of work (LUW) 16, 208, 279,
282
LU62 3
LU-LU verification 125
LUTYPE6.2 3
LUW (logical unit of work) 208, 282

M

mapped conversations
migration of 343
master/slave, defined 279
MBCS
multi byte character set 148
migration
distributed transaction processing
(DTP) 343
DTP 343
function shipping considerations 345
transaction identifiers 345
transactions to transaction routing
environment 264
mirror transaction
abnormal termination 142
security 141
mirror transaction abnormal
termination 261
model
client/server 281
peer-to-peer 281
modename 110
default modename 110
DefaultSNAModeName (CD) 110

N

name of region 25, 47, 68
network failures and data integrity 5
network monitoring 22
network name
LocalNetworkName 69
RemoteNetworkName 35, 50
network protocols 3, 5
NOAUTH condition 142
NOCHECK parameter 277
improving performance 275
local queuing 275
START command 275

o)

operational issues 22
OPERKEYS
option on ASSIGN command 265

outbound users, flowing 130
outbound, defined 279
OutboundUserlds attribute 130
OutboundUserlds attribute (CD) 34, 47,

75,79, 86, 96, 99, 106, 265
overview of security 123

P

partner transaction, connecting 288
password verification 133
peer-to-peer model 281
peer-to-peer, defined 279
performance issues 19
performance optimization, DPL 248
persistent verification 133
PIPLENGTH option
CONNECT PROCESS command 288
PIPLIST option
CONNECT PROCESS command 288
planning 5
ASCII to EBCDIC data conversion 19
choosing intercommunication
facilities 20
CICS on Open Systems to CICS OS/2
data conversion 19
CICS OS/2 to TXSeries for
Multiplatforms data conversion 19
conversion of data between
systems 19
data conversion between systems 19
data integrity 5
EBCDIC to ASCII data conversion 19
gateway 5
intercommunication facilities 20
network protocols 5
performance issues 19
security of resources 14
SNA 5
synchronization 5
Systems Network Architecture 5
TCP/IP 5
Transmission Control
Protocol/Internet Protocol 5
PPC Executive 5

PPC Gateway server 5,9, 89

PPC Gateway server (continued)

altering CICS intercommunication
definitions 210

autostart 183, 186, 191, 197

canceling pending resynchronizations
(ppcadmin) 206

CGWY 177

changing attributes 188

changing attributes (ALX SMIT) 199

changing attributes (IBM TXSeries
Administration Tool) 193

cicscp command set 182

cicscp create ppcgwy_server 182

cicscp destroy ppcgwy_server 184

cicscp start ppcgwy_server 183

cicscp stop ppcgwy_server 184

cicsppcgwy 186, 188

cicsppcgwycreate 184, 188

cicsppcgwydestroy 188

cicsppcgwylock 176

cicsppcgwyshut 187

cold start 183, 186, 191, 197

configuring 177

creating 184, 188

creating (AIX SMIT) 195

creating (cicscp) 182

creating (IBM TXSeries Administration
Tool) 190

deleting 188

deleting (AIX SMIT) 200

deleting (cicscp) 184

deleting (IBM TXSeries Administration
Tool) 194

Gateway Server Definitions
(GSD) 177

listing attributes 188

listing running 189

lock 189

messages 228

overview 175

planning for 5

ppcadmin administration command
set 200

requesting XLN process
(ppcadmin) 205

running (view) 189

starting 186, 188, 230

starting (AIX SMIT) 197

starting (cicscp) 183

starting (IBM TXSeries Administration
Tool) 191

stopping 187

stopping (AIX SMIT) 198

stopping (cicscp) 184

stopping (IBM TXSeries
Administration Tool) 193

trace 228

tracing 230

unlock 189

viewing attributes 188

viewing CICS configuration
(ppcadmin) 203

viewing intersystem requests
(ppcadmin) 207

viewing LUWs (ppcadmin) 208

viewing pending resynchronizations
(ppcadmin) 206

PPC Gateway server (continued)
viewing XLN process status
(ppcadmin) 204
ppcadmin 180, 200
ppcadmin cancel resync 206
ppcadmin force xIn 205
ppcadmin list convs 207
ppcadmin list luentries 203
ppcadmin list luws 208
ppcadmin list xIns 204
ppcadmin query conv 207
ppcadmin query luentry 203
ppcadmin query luw 208
ppcadmin query resync 206
ppcgwy 189
preparing a partner for sync point 308
principal facility 111, 281
principal facility, defined 279
PRINSYSID
option on ASSIGN command 265
problem determination support 22
problems 144
program development
APPC mapped conversations 286
programming
APPC mapped conversations 286
programs, securing 126, 127
PROTECT parameter
START command 276
Protocol attribute (LD) 27, 75,77, 82
protocols 5
SNA 25, 67,70, 89
TCP/IP 25,47
pseudo-conversational transactions
with transaction routing 264

R

RBA files, note about 258
RDO 210
RECEIVE command
APPC mapped conversations 301
receive state, defined 279
record lengths for remote files 114
recoverable resources 282
canceling changes to 282, 308
committing changes to 282, 307
region
name 68
Region Definitions (RD)
configuring for local SNA 75, 78, 83
configuring for local SNA (SMIT) 83
configuring for PPC Gateway server
SNA 96, 98, 104
configuring for PPC Gateway server
SNA (SMIT) 104
example 75,78, 83, 96, 98, 104
region name 25, 47
remote and local names of resources 258
remote files
defining 113
file names 114
record lengths 114
Remote Procedure Call (RPC)
authenticated 126
PPC Gateway server to region
communication 177, 179

365

Index

Remote Procedure Call (RPC) (continued)
region to PPC Gateway server
communication 177, 178
remote regions, availability 304
remote system security 126
remote system, naming 257
remote temporary storage queues
defining 115
remote terminals
terminal identifiers 117
terminal names 118
remote transactions
deadlock time out 120
defining for asynchronous
processing 120
defining for transaction routing 119
security 120
transaction names 120
Transaction Work Area (TWA) 120
remote transient data queues
defining 114
RemoteLUName attribute 117
RemoteLUName attribute (CD) 34, 47,
75,79, 86, 96, 99, 106
RemoteName attribute 118
RemoteNetworkName attribute (CD) 34,
47,75, 79, 86, 96, 99, 106
RemoteSysEncrypt attribute (CD) 34, 47
RemoteSysld attribute 118, 257
RemoteSysSecurity attribute 136
RemoteSysSecurity attribute (CD) 34, 47,
75,79, 86, 96, 99, 106, 265
RemoteTCPAddress attribute (CD) 34
RemoteTCPPort attribute (CD) 34
rerouting transactions 116, 267
resource definition 210
resource definition online
shippable terminal definitions 117
resource definitions
ATI 116
automatic transaction initiation
(ATI) 116
transaction routing 116
resource security
configuring for 136
implementing 136
resource security level
resources used 22
resynchronization 180, 206
RETRIEVE command 277
RETURN 16
RETURN command use of 304
rollback 16, 282
rollback, defined 279
RSLKey attribute 136
RSLKeyList 127
RSLKeyList attribute 136
RSLKeyMask 126
RSLKeyMask attribute 136
RSLKeyMask attribute (CD) 34, 47, 75,
79, 86, 96, 99, 106
RuntimeProtection attribute 126

S

SBCS
single byte character set 148

126, 127

security
ASSIGN command 265
asynchronous processing 273
attaching sessions 125
BIND password 125
BIND request 125
bind-time, implementing 125
checking 123
checklist 143
configuration problems 144
connection 126
files, securing 126, 127
flowing user IDs outbound 130
function shipping 141
function shipping, considerations for

the user 141

intercommunication 123
intersystem requests 123
intersystem, configuring for 136
link 126
link keys, definition of 127
link keys, retrieving 265
LU-LU verification 125
mirror transaction 141
outbound users, flowing 130
OutboundUserlds attribute 130
overview of 123
planning 14
problems 144
programs, securing 126, 127
remote sign on 142
remote system 126
resource security level
RSLKeyList 127
session 125
signing on, remote 142
SNA 123
SNA bind-time 125
symptoms 144
temporary storage, securing 126, 127
terminals, securing 126, 127
transaction security level 126, 127
transient data, securing 126, 127
TSLKeyList attribute 127
TSLKeyMask attribute 126
user 127
userid, retrieving 265
users, securing 126, 127

SEND command 304
APPC mapped conversations 291,

292

send state, defined 279

serial connections
distributed program link (DPL) 248
function shipping 257

server and IBM CICS Client 4

session security 125

sessions
allocating under ATI 287

SET FILE command 258

shippable terminal definitions 117

shippable terminal, transaction

routing 263

shortcodes

data conversion 157

126, 127

366 TXSeries for Multiplatforms: CICS Intercommunication Guide

SMIT
changing attributes PPC Gateway
server 199
creating PPC Gateway server 195
deleting PPC Gateway server 200
PPC Gateway server system
management 195
starting PPC Gateway server 197
stopping PPC Gateway server 198
SMIT panels
configuring CD entries
106
configuring GD entries 103
configuring LD entries 31, 82
configuring RD entries 83, 104
SNA 5,8,9,282
attaching sessions 125
BIND password 125
BIND request 14, 125
bind-time security 125
bind-time security, implementing 125
local Logical Unit (LU) name 25, 68
Local TPN Profile 109
logical unit (LU) name 25, 68
LU-LU verification 125
planning for 5
security 123
session security 125
synchronization level 16
TCP /1P, differences between for
DTP 343
TPN Profile 109
transaction availability 109
use of 3
SNAConnectName attribute (CD) 34, 47,
75,79, 86, 96, 99, 106
SNAModeName attribute (TD) 75, 79,
86, 96, 99, 106
SQL databases, accessed by DPL 248
START command 142, 277
START/RETRIEVE 273, 275, 276
deferred sending 275
improving performance 275
local queuing 275
passing information with the START
command 274
RETRIEVE command 276
retrieving data sent with START
command 276
TERMID parameter 277
terminal acquisition 277
state after backout 344
state of a conversation 280
STATE option 281, 285
state tables
synchronization level 0 333
synchronization level 1 335
synchronization level 2 338
using 331
state transition, defined 279
state variable 279, 281
structured distributed transactions 283
subset of calls for DPL 249
supplied transactions
CGWY 177
surrogate terminal 264
symptoms 144

39, 52, 86,

sync point 16, 282
preparing a partner for 308
sync point, defined 279
synchronization 5, 282
function shipping 258
levels of 282
synchronization level 5, 16, 282
definitions of 5
described 5
SNA support for 8,9, 70, 89
TCP/IP support for 5
synchronization level 2
problems 219
synchronization point, defined 279
synchronization, defined 279
synchronize, defined 279
SYNCPOINT 16
SYNCPOINT command 307
SYNCPOINT ROLLBACK 16, 344
SYNCPOINT ROLLBACK
command 308
syncreceive state, defined 279
SYSID 25, 47, 68
SYSIDERR 277
SYSIDERR condition, on START
command 276
system availability 22
system design 5
system failures and data integrity 5

T

TCP/IP 5

configuring connections 47

naming your region 25

planning for 5

SNA, differences between for

DTP 343

transaction availability 109

use of 3
TCPAddress attribute (LD) 27
TCPService attribute (LD) 27
temporary storage

function shipping 260
temporary storage, securing 126, 127
TERMID parameter, START

command 277

terminal definition

transaction routing 263
terminal not found user exit 266
terminals, securing 126, 127
termination, abnormal

APPC mapped conversations 300
testing the conversation state 303
TPN profile 109
TPNSNAProfile attribute 109
tracing

PPC Gateway server 230
transaction

availability 109

back-end 285

back-end DTP 109

front-end 285

performance considerations 109

profiles used 109
Transaction Definitions (TD)

transaction routing 263

transaction identifiers, migration of 345
transaction processing
definition of 3
transaction routing
alias for terminals 118
application programming 264
ATI 266
basic mapping support 264
data conversion 164
defining remote resources 116
defining remote resources,
terminals 118
defining remote resources,
transactions 119
defining resources 116
description of 20
dynamic 116, 267
indirect links 266
overview of 263
pseudo-conversational
transactions 264
resource definitions 116
surrogate terminal 264
terminal, initiating 263
transaction, initiated 263
use of ASSIGN command in
application owning system 265
transaction security level 126, 127
transient data
function shipping 258, 260
principal facility 111
remote 111
securing 126, 127
trigger level 111
TriggeredTransld attribute 111
TSLKey attribute 136
TSLKeyList attribute 127, 136
TSLKeyMask attribute 126, 136
TSLKeyMask attribute (CD) 34, 47, 75,
79, 86, 96, 99, 106
two-phase commit 109
TXSeries for Multiplatforms to CICS
0S/2 data conversion 19

U

unit of work (UOW) 16
user access to CICS
security 142
user exits
DFHTRUC 164
DFHUCNV 160
dynamic distributed program
link 252
dynamic transaction routing 116,
266, 267
terminal not found 266
user securing 127
user security 127
configuring for 136
description of 14
ESM, description of 14

External Security Manager, description

of 14

implementing 136

planning for 14
user, securing 126

USERID
option on ASSIGN command 265

\'

verifying passwords 133
VSAM RBA files, note about 258

w

WAIT 276
APPC mapped conversations 288,
291
WAIT option (APPC mapped)
SEND command 291
work-load balancing 116, 267

X

XLN 180, 204, 205
problems 219
Xno 219

Index 367

368 TXSeries for Multiplatforms: CICS Intercommunication Guide

SC34-6644-00

9pIN<) UOT)ROTUNUILIOIINU] Q)] surioperdynyy 10§ sogy,

00-7799-¥€DS (9 UOISIOA

‘uoLjewdojul autds

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Conventions used in this book
	How to send your comments

	Part 1. Intercommunication planning
	Chapter 1. Introduction to CICS intercommunication
	Network protocols
	Overview of the intercommunication facilities
	IBM CICS Universal Client products

	Chapter 2. Intercommunication planning and system design
	Designing your network configuration
	Communicating across TCP/IP connections
	Using CICS family TCP/IP
	Using CICS PPC TCP/IP

	Communicating across SNA connections
	Using local SNA support to communicate across SNA
	Using a PPC Gateway server to communicate across SNA

	Mixing the communications methods
	Summary of communication methods
	Additional considerations

	Ensuring that the system is still secure
	Identifying the remote system
	Identifying the user that initiated the request

	Ensuring data integrity with synchronization support
	Converting between EBCDIC and ASCII data
	Performance issues for intercommunication
	Choosing which intercommunication facility to use
	When to use function shipping
	When to use transaction routing
	When to use asynchronous processing
	When to use distributed program link (DPL)
	When to use distributed transaction processing (DTP)

	A checklist of application requirements

	Operational issues for intercommunication
	Bidirectional input and display on AIX

	Part 2. Configuring for intercommunication
	Chapter 3. Configuring CICS for TCP/IP
	Naming your region for a TCP/IP intercommunication environment
	Configuring CICS for CICS family TCP/IP support
	Configuring LD entries for CICS family TCP/IP
	Configuring LD entries for CICS family TCP/IP (CICS on Open Systems)
	Configuring LD entries for CICS family TCP/IP (CICS for Windows only)

	Adding a service name to the TCP/IP configuration
	Increasing the size of the mbuf pool (AIX only)
	Using SMIT to configure LD entries (AIX only)

	Tuning TCP/IP on the Windows platform
	TCP/IP's KeepAliveTime registry setting
	TcpTimedWaitDelay settings

	Configuring CD entries for CICS family TCP/IP
	Configuring CD entries for CICS family TCP/IP(CICS on Open Systems only)
	Configuring Communications Definitions (CD) entries for CICS family TCP/IP (CICS for Windows only)

	Using SMIT to configure CD entries (AIX only)

	Configuring an IBM CICS Client to use CICS family TCP/IP
	Timeouts supported on TCP/IP connections between a TXSeries for Multiplatforms region and a Universal Client V3.1 or higher

	CICS family TCP/IP Configuration examples
	CICS OS/2 configuration
	Configuration for region cicsopen
	Configuration for region cics

	Configuring CICS for CICS PPC TCP/IP support
	Configuring CD entries for CICS PPC TCP/IP
	Using SMIT to configure CD entries (AIX only)

	Summary of CICS attributes for TCP/IP resource definitions
	Configuring for autoinstallation of CD entries
	Configuring the default CD entry (CICS on Open Systems)
	Configuring the default CD entry (CICS for Windows)
	Configuring region database table sizes
	What the supplied version of DFHCCINX does
	The parameters passed to DFHCCINX
	Writing your own version of DFHCCINX
	What DFHCCINX can do
	Logging messages to the CCIN log
	Assigning a value to RemoteCodePageTR
	Preventing autoinstall
	Controlling the management of passwords

	Installing your version of DFHCCINX into the region

	Chapter 4. Configuring CICS for SNA
	Naming CICS regions in an SNA intercommunication environment
	Configuring CICS for local SNA support
	Configuring CICS for local SNA from the command line
	Configuring CICS for local SNA support by using the IBM TXSeries Administration Tool (CICS on Windows platforms only)
	Configuring CICS for local SNA support by using SMIT (CICS for AIX only)
	SNA Receive Timeout feature (For CICS on AIX only)

	Configuring CICS for PPC Gateway server SNA support
	Configuring CICS for PPC Gateway server SNA support from the command line
	Configuring CICS for PPC Gateway server SNA support by using the IBM TXSeries Administration Tool (CICS on Windows platforms only)
	Configuring CICS for PPC Gateway server SNA support by using SMIT (CICS for AIX only)

	Chapter 5. Configuring resources for intercommunication
	Configuring transactions for intersystem communication
	Transactions over an SNA connection (CICS on Open Systems only)
	Back-end DTP transactions over TCP/IP and an SNA connection
	Configuring for the indoubt condition
	Default modenames
	SNA tuning

	Configuring intrapartition TDQs for intercommunication
	Terminals as principal facilities
	Remote terminals as principal facilities
	Remote systems as principal facilities

	Configuring Program Definitions (PD) for DPL
	Example of a PD for DPL

	Defining remote resources for function shipping
	Defining remote files
	FD entries for remote files
	Example of a file definition for function shipping

	Defining remote transient data queues
	TDD entries for remote transient data queues
	Example of a TDD for function shipping

	Defining remote temporary storage queues
	TSD entries for remote temporary storage queues
	Example of a TSD for function shipping

	Defining resources for transaction routing
	Shipping terminal definitions
	Fully qualified terminal identifiers
	Defining terminals to the application-owning region
	Example of a WD entry for a remote terminal

	Using the alias for a terminal in the application-owning region
	Defining remote transactions for transaction routing
	TD attributes for remote transactions
	Example of a TD entry for a remote transaction

	Defining remote transactions for asynchronous processing

	Chapter 6. Configuring intersystem security
	Overview of intersystem security
	Implementing intersystem security
	Summary of CICS intersystem security

	Identifying the remote system
	Authenticating systems across CICS family TCP/IP connections
	Authenticating systems across CICS PPC TCP/IP connections
	Authenticating systems across SNA connections
	Authenticating systems across PPC Gateway server connections
	CICS link security
	CICS user security
	Method one:
	Method two:
	The differences between these two methods:

	Setting the RemoteSysSecurity attribute to trusted or verify
	Setting up a CICS region to flow user IDs
	Setting up a CICS region to flow passwords
	To send passwords after local verification
	To send passwords without local verification
	Do not send passwords
	No password checks

	Receiving user IDs from SNA-connected systems

	Link security and user security compared
	How the resource definition security attributes are used
	Map 1. Start
	Map 2. RemoteSysSecurity=local (Link Security)
	Map 3. RemoteSysSecurity=trusted and a user ID is not Flowed (User Security)
	Map 4. RemoteSysSecurity=trusted and a user ID is Flowed (User Security)
	Map 5. RemoteSysSecurity=verify and a user ID is not Flowed (User Security)
	Map 6. RemoteSysSecurity=verify and a user ID is Flowed (User Security)

	Examples of link and user security

	Security and function shipping
	Security requirements for the mirror transaction
	Outbound security checking for function-shipping requests
	The NOTAUTH condition
	EXEC CICS start requests from a remote system

	Using CRTE and CESN to sign on from a remote system
	Intersystem security checklist
	When link security or user security is used
	When link security is used
	When user security is used

	Common configuration problems with intersystem security
	Remote user is logged in to wrong user ID
	User IDs are not flowed to a remote system
	Flowed user IDs are not received from a remote system
	CD RSLKeyMask and TSLKeyMask attributes are ignored
	Unexpected message ERZ045006W - no obvious effect on security
	Access is unexpectedly restrictive (message ERZ045006W)
	Access unexpectedly rejected or granted on inbound request

	Chapter 7. Data conversion
	Introduction to data conversion
	SBCS, DBCS, and MBCS data conversion considerations
	Numeric data conversion considerations
	Summary of data conversion for CICS intercommunication functions

	Code page support
	Data conversion for function shipping, distributed program link and asynchronous processing
	Which system does the conversion
	How code page information is exchanged
	When TXSeries for Multiplatforms does not convert the data
	Avoiding data conversion
	Standard data conversion for function shipping, DPL and asynchronous processing
	Using cicscvt to build the conversion templates

	Non-standard data conversion (DFHUCNV) for function shipping, DPL and asynchronous processing
	Performance and data conversion

	Data conversion for transaction routing
	When is DFHTRUC called
	Parameters passed to DFHTRUC
	Writing your own version of DFHTRUC
	Installing your version of DFHTRUC into the region

	Data conversion for distributed transaction processing (DTP)
	Summary of data conversion
	Data conversion for function shipping
	Data conversion for transaction routing
	Data conversion for distributed transaction processing

	Part 3. Operating an SNA intercommunication environment
	Chapter 8. Creating and using a PPC Gateway server in a CICS environment
	Overview of the PPC Gateway server
	Sharing server names between a CICS region and a PPC Gateway server
	Process for making an intersystem request from a CICS region through a PPC Gateway server
	Process for making an intersystem request to a CICS region through a PPC Gateway server
	Exchange log names (XLN) process

	Choosing a management method
	Using the CICS control program (cicscp) configuration tool to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Destroying a PPC Gateway server

	Using CICS commands to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Destroying a PPC Gateway server
	Changing the attributes of a PPC Gateway server
	Listing the PPC Gateway servers defined on a machine
	Viewing the attributes of a PPC Gateway server
	Listing the PPC Gateway servers running on a machine
	Releasing the lock of a PPC Gateway server

	Using the IBM TXSeries Administration Tool to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Modifying the attributes of a PPC Gateway server
	Destroying a PPC Gateway server

	Using SMIT to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Viewing and changing the attributes of a PPC Gateway server
	Destroying a PPC Gateway server

	Using ppcadmin commands
	Viewing CICS configuration in the PPC Gateway server
	Viewing XLN process status in the PPC Gateway server
	Requesting the XLN process with a remote SNA system
	Viewing pending resynchronizations in the PPC Gateway server
	Canceling pending resynchronizations in the PPC Gateway server
	Viewing intersystem requests running in the PPC Gateway server
	Viewing LUWs in the PPC Gateway server

	Changing CICS intercommunication definitions for use with a PPC Gateway server

	Chapter 9. Intersystem problem determination
	Intersystem problem solving process
	Step 1. Understand the failure scenario
	Step 2. Identify the failing component
	Step 3. Fix the problem
	Getting further help

	Common intercommunication errors
	Symptom: cannot start (acquire) SNA sessions
	Symptom: the PPC Gateway server fails to start
	Symptom: CICS will not configure the PPC Gateway server
	Symptom: CICS will not configure my transactions in the PPC Gateway server
	Symptom: CICS cannot configure the PPC Gateway server
	Symptom: CICS for MVS/ESA transactions abend AXFX
	Symptom: SNA exchange log names (XLN) fails
	Symptom: all inbound requests fail
	Symptom: all outbound requests fail
	Symptom: invalid or unrecognizable data is passed to applications
	Symptom: applications fail because of security violations
	Symptom: Transaction routing to CICS Transaction Server for z/OS fail with communications error 15a00007/a0000100
	Symptom: Transaction routing causes screen errors
	Symptom: CICS fails to detect a predefined CD entry, and autoinstalls another

	SNA product-specific errors
	CICS error codes
	PPC Gateway server problem determination
	Format of PPC Gateway server messages and trace
	Tracing a PPC Gateway server
	PPC Gateway server message descriptions
	Audit messages
	Attention messages
	Fatal messages

	Part 4. Writing application programs for intercommunication
	Chapter 10. Distributed program link (DPL)
	Comparing DPL to function shipping
	BDAM files, and IMS, DL/I, and SQL databases
	Performance optimization for DPL
	Restrictions on application programs that use DPL
	Security and DPL
	Abends when using DPL
	Taking sync points when using DPL or function shipping
	Multiple DPL links to the same region

	Two ways to implement DPL in your application program
	Implicitly specifying the remote system
	Explicitly specifying the remote system

	Using the dynamic distributed program link user exit
	Information passed to the user exit
	Initial invocation of the user exit
	Changing the target CICS system
	Changing the remote program name
	Changing the mirror transaction name
	Changing the user ID
	Invoking the user exit at end of routed program

	Chapter 11. Function shipping
	How to use function shipping
	Two ways to use function shipping
	Serial connections
	CICS file control data sets
	Transient data
	Local and remote names
	Synchronization
	Data security and integrity

	Application programming for function shipping
	File control
	Temporary storage
	Transient data
	Exceptional conditions
	Remote region not available
	Invalid request
	Mirror transaction abnormal termination
	Long-running mirror transactions
	Timeout on function shipped requests

	Chapter 12. Transaction routing
	Initiating a transaction from a terminal
	The initiating terminal
	The initiated transaction

	Application programming for transaction routing
	Pseudo-conversational transactions
	The terminal in the application-owning region
	Using the assign command in the application-owning region

	Automatic transaction initiation (ATI)
	Terminal definitions for ATI
	Transaction definitions for ATI
	Indirect links for transaction routing

	Dynamic transaction routing
	Writing a dynamic transaction routing user exit
	How information is passed between CICS and the user exit
	Changing the target CICS system
	Changing the program name
	Telling CICS whether to route or terminate a transaction
	If the system is unavailable or not known
	Invoking the user exit at the end of routed transactions
	Invoking the user exit on abend

	Chapter 13. Asynchronous processing
	Security considerations
	How to use asynchronous processing
	Two ways to initiate asynchronous processing
	Starting and canceling remote transactions
	Passing information with the START command
	Passing an APPLID with the EXEC CICS START command
	Improving performance of intersystem START requests
	Deferred sending of START requests with the NOCHECK parameter
	Local queuing of EXEC CICS START commands for remote transactions
	Including EXEC CICS START request delivery in a logical unit of work

	The started transaction
	Started transaction satisfying multiple EXEC CICS START requests
	Terminal acquisition by a remotely initiated CICS transaction

	Application programming for asynchronous processing
	Starting a transaction on a remote region
	Exceptional conditions for the EXEC CICS START command
	Retrieving data associated with a remotely issued start request

	Chapter 14. Distributed transaction processing (DTP)
	Concepts of distributed transaction processing (DTP)
	Conversations
	Conversation states
	Distributed processes
	Maintaining data integrity

	Designing distributed processes
	Structuring distributed transactions
	Avoiding performance problems
	Facilitating maintenance
	Going for reliability
	Protecting sensitive data
	Data conversion
	Safeguarding data integrity

	Designing conversations

	Writing programs for CICS DTP
	Conversation initiation and the front-end transaction
	Allocating a conversation
	Using ATI to allocate a conversation identifier (CONVID)
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	The back-end transaction fails to start
	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The EXEC CICS CONVERSE command

	Communicating errors across a conversation
	Requesting invite from the partner transaction
	Demanding invite from the partner transaction

	Safeguarding data integrity
	How to synchronize a conversation using CONFIRM commands
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to EXEC CICS SEND CONFIRM
	How to synchronize conversations using EXEC CICS SYNCPOINT commands

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Checking EIB fields and the conversation state

	Testing the conversation state
	Initial states
	Summary of CICS commands for APPC mapped conversations
	Using DTP to check the availability of the remote system

	Chapter 15. Sync pointing a distributed process
	The EXEC CICS SYNCPOINT command
	The EXEC CICS ISSUE PREPARE command
	The EXEC CICS SYNCPOINT ROLLBACK command
	When a backout is required
	Synchronizing two CICS systems
	SYNCPOINT in response to SYNCPOINT
	SYNCPOINT in response to ISSUE PREPARE
	SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK
	SYNCPOINT ROLLBACK in response to SYNCPOINT
	SYNCPOINT ROLLBACK in response to ISSUE PREPARE
	ISSUE ERROR in response to SYNCPOINT
	ISSUE ERROR in response to ISSUE PREPARE
	ISSUE ABEND in response to SYNCPOINT
	ISSUE ABEND in response to ISSUE PREPARE

	Synchronizing three or more CICS systems
	Sync point in response to EXEC CICS SYNCPOINT
	Sync point rollback in response to EXEC CICS SYNCPOINT
	Conversation failure and the indoubt period

	Part 5. Appendixes
	Appendix A. DFHCNV - The data conversion macros
	Using the DFHCNV macros
	Examples of DFHCNV macros
	Flow of DFHCNV macro sequence

	The DFHCNV TYPE=INITIAL macro
	The DFHCNV TYPE=ENTRY macro
	The DFHCNV TYPE=KEY macro
	The DFHCNV TYPE=SELECT macro
	The DFHCNV TYPE=FIELD macro
	The DFHCNV TYPE=FINAL macro

	Appendix B. The conversation state tables
	How to use the state tables
	The state numbers
	The state conversation table notes

	Synchronization level 0 conversation state table
	Synchronization level 1 conversation state table
	Synchronization level 2 conversation state table

	Appendix C. Migrating DTP applications
	Migrating to LU 6.2 APPC mapped conversations
	Differences between SNA and TCP/IP for DTP
	Allocating a conversation
	Use of conversation identifiers (CONVIDs)
	State after backout
	Terminating a synchronization level 2 conversation
	The EXEC CICS WAIT and EXEC CICS SEND WAIT commands
	Transaction identifiers
	Migration considerations for function shipping

	Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only)
	Bibliography
	Notices
	Trademarks and service marks

	Index

