
TXSeries for Multiplatforms

CICS Intercommunication Guide

Version 6.0

SC34-6644-00

���

TXSeries for Multiplatforms

CICS Intercommunication Guide

Version 6.0

SC34-6644-00

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

357.

First Edition (November 2005)

This edition replaces SC09-4462-04.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii

Who should read this book xiii

Document organization xiii

Conventions used in this book xiv

How to send your comments xv

Part 1. Intercommunication planning 1

Chapter 1. Introduction to CICS

intercommunication 3

Network protocols 3

Overview of the intercommunication facilities . . . 3

IBM CICS Universal Client products 4

Chapter 2. Intercommunication planning

and system design 5

Designing your network configuration 5

Communicating across TCP/IP connections . . . 5

Communicating across SNA connections 8

Mixing the communications methods 11

Summary of communication methods 13

Additional considerations 14

Ensuring that the system is still secure 14

Identifying the remote system 14

Identifying the user that initiated the request . . 15

Ensuring data integrity with synchronization

support 16

Converting between EBCDIC and ASCII data . . . 19

Performance issues for intercommunication 19

Choosing which intercommunication facility to

use 20

A checklist of application requirements 21

Operational issues for intercommunication 22

Bidirectional input and display on AIX 22

Part 2. Configuring for

intercommunication 23

Chapter 3. Configuring CICS for TCP/IP 25

Naming your region for a TCP/IP

intercommunication environment 25

Configuring CICS for CICS family TCP/IP support 26

Configuring LD entries for CICS family TCP/IP 27

Adding a service name to the TCP/IP

configuration 30

Increasing the size of the mbuf pool (AIX only) 30

Tuning TCP/IP on the Windows platform . . . 33

Configuring CD entries for CICS family TCP/IP 34

Using SMIT to configure CD entries (AIX only) 39

Configuring an IBM CICS Client to use CICS family

TCP/IP 42

Timeouts supported on TCP/IP connections

between a TXSeries for Multiplatforms region

and a Universal Client V3.1 or higher 43

CICS family TCP/IP Configuration examples . . . 43

CICS OS/2 configuration 44

Configuration for region cicsopen 45

Configuration for region cics 46

Configuring CICS for CICS PPC TCP/IP support . . 47

Configuring CD entries for CICS PPC TCP/IP . . 47

Summary of CICS attributes for TCP/IP resource

definitions 54

Configuring for autoinstallation of CD entries . . . 55

Configuring the default CD entry (CICS on Open

Systems) 56

Configuring the default CD entry (CICS for

Windows) 57

Configuring region database table sizes 58

What the supplied version of DFHCCINX does 58

The parameters passed to DFHCCINX 59

Writing your own version of DFHCCINX . . . 62

Installing your version of DFHCCINX into the

region 65

Chapter 4. Configuring CICS for SNA 67

Naming CICS regions in an SNA

intercommunication environment 67

Configuring CICS for local SNA support 70

Configuring CICS for local SNA from the

command line 75

Configuring CICS for local SNA support by

using the IBM TXSeries Administration Tool

(CICS on Windows platforms only) 77

Configuring CICS for local SNA support by

using SMIT (CICS for AIX only) 82

SNA Receive Timeout feature (For CICS on AIX

only) 88

Configuring CICS for PPC Gateway server SNA

support 89

Configuring CICS for PPC Gateway server SNA

support from the command line 95

Configuring CICS for PPC Gateway server SNA

support by using the IBM TXSeries

Administration Tool (CICS on Windows

platforms only) 98

Configuring CICS for PPC Gateway server SNA

support by using SMIT (CICS for AIX only) . . 103

Chapter 5. Configuring resources for

intercommunication 109

Configuring transactions for intersystem

communication 109

© Copyright IBM Corp. 1999, 2005 iii

Transactions over an SNA connection (CICS on

Open Systems only) 109

Back-end DTP transactions over TCP/IP and an

SNA connection 109

Configuring for the indoubt condition 109

Default modenames 110

SNA tuning 111

Configuring intrapartition TDQs for

intercommunication 111

Terminals as principal facilities 112

Remote terminals as principal facilities 112

Remote systems as principal facilities 112

Configuring Program Definitions (PD) for DPL . . 112

Example of a PD for DPL 113

Defining remote resources for function shipping 113

Defining remote files 113

Defining remote transient data queues 114

Defining remote temporary storage queues . . 115

Defining resources for transaction routing 116

Shipping terminal definitions 117

Fully qualified terminal identifiers 117

Defining terminals to the application-owning

region 118

Using the alias for a terminal in the

application-owning region 118

Defining remote transactions for transaction

routing 119

Defining remote transactions for asynchronous

processing 120

Chapter 6. Configuring intersystem

security 123

Overview of intersystem security 123

Implementing intersystem security 123

Summary of CICS intersystem security 124

Identifying the remote system 124

Authenticating systems across CICS family TCP/IP

connections 124

Authenticating systems across CICS PPC TCP/IP

connections 124

Authenticating systems across SNA connections 125

Authenticating systems across PPC Gateway server

connections 126

CICS link security 126

CICS user security 127

Method one: 127

Method two: 129

Setting the RemoteSysSecurity attribute to

trusted or verify 130

Setting up a CICS region to flow user IDs . . . 130

Setting up a CICS region to flow passwords . . 131

Receiving user IDs from SNA-connected

systems 133

Link security and user security compared 136

How the resource definition security attributes

are used 137

Examples of link and user security 139

Security and function shipping 141

Security requirements for the mirror transaction 141

Outbound security checking for

function-shipping requests 141

The NOTAUTH condition 141

EXEC CICS start requests from a remote system 142

Using CRTE and CESN to sign on from a remote

system 142

Intersystem security checklist 143

When link security or user security is used . . 143

When link security is used 143

When user security is used 143

Common configuration problems with intersystem

security 144

Remote user is logged in to wrong user ID . . 144

User IDs are not flowed to a remote system . . 145

Flowed user IDs are not received from a remote

system 145

CD RSLKeyMask and TSLKeyMask attributes

are ignored 145

Unexpected message ERZ045006W - no obvious

effect on security 145

Access is unexpectedly restrictive (message

ERZ045006W) 145

Access unexpectedly rejected or granted on

inbound request 146

Chapter 7. Data conversion 147

Introduction to data conversion 147

SBCS, DBCS, and MBCS data conversion

considerations 148

Numeric data conversion considerations . . . 149

Summary of data conversion for CICS

intercommunication functions 152

Code page support 153

Data conversion for function shipping, distributed

program link and asynchronous processing . . . 156

Which system does the conversion 156

How code page information is exchanged . . . 157

When TXSeries for Multiplatforms does not

convert the data 157

Avoiding data conversion 158

Standard data conversion for function shipping,

DPL and asynchronous processing 159

Non-standard data conversion (DFHUCNV) for

function shipping, DPL and asynchronous

processing 160

Data conversion for transaction routing 164

When is DFHTRUC called 165

Parameters passed to DFHTRUC 165

Writing your own version of DFHTRUC . . . 166

Installing your version of DFHTRUC into the

region 168

Data conversion for distributed transaction

processing (DTP) 169

Summary of data conversion 169

Data conversion for function shipping 169

Data conversion for transaction routing 170

Data conversion for distributed transaction

processing 171

Part 3. Operating an SNA

intercommunication environment . 173

iv TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 8. Creating and using a PPC

Gateway server in a CICS

environment 175

Overview of the PPC Gateway server 175

Sharing server names between a CICS region

and a PPC Gateway server 177

Process for making an intersystem request from

a CICS region through a PPC Gateway server . 178

Process for making an intersystem request to a

CICS region through a PPC Gateway server . . 179

Exchange log names (XLN) process 180

Choosing a management method 181

Using the CICS control program (cicscp)

configuration tool to manage a PPC Gateway

server 182

Creating a PPC Gateway server 182

Starting a PPC Gateway server 183

Stopping a PPC Gateway server 184

Destroying a PPC Gateway server 184

Using CICS commands to manage a PPC Gateway

server 184

Creating a PPC Gateway server 184

Starting a PPC Gateway server 186

Stopping a PPC Gateway server 187

Destroying a PPC Gateway server 188

Changing the attributes of a PPC Gateway

server 188

Listing the PPC Gateway servers defined on a

machine 188

Viewing the attributes of a PPC Gateway server 188

Listing the PPC Gateway servers running on a

machine 189

Releasing the lock of a PPC Gateway server . . 189

Using the IBM TXSeries Administration Tool to

manage a PPC Gateway server 190

Creating a PPC Gateway server 190

Starting a PPC Gateway server 191

Stopping a PPC Gateway server 193

Modifying the attributes of a PPC Gateway

server 193

Destroying a PPC Gateway server 194

Using SMIT to manage a PPC Gateway server . . 195

Creating a PPC Gateway server 195

Starting a PPC Gateway server 197

Stopping a PPC Gateway server 198

Viewing and changing the attributes of a PPC

Gateway server 199

Destroying a PPC Gateway server 200

Using ppcadmin commands 200

Viewing CICS configuration in the PPC

Gateway server 203

Viewing XLN process status in the PPC

Gateway server 204

Requesting the XLN process with a remote SNA

system 205

Viewing pending resynchronizations in the PPC

Gateway server 206

Canceling pending resynchronizations in the

PPC Gateway server 206

Viewing intersystem requests running in the

PPC Gateway server 207

Viewing LUWs in the PPC Gateway server . . 208

Changing CICS intercommunication definitions for

use with a PPC Gateway server 210

Chapter 9. Intersystem problem

determination 213

Intersystem problem solving process 213

Step 1. Understand the failure scenario 213

Step 2. Identify the failing component 214

Step 3. Fix the problem 215

Getting further help 215

Common intercommunication errors 216

Symptom: cannot start (acquire) SNA sessions 216

Symptom: the PPC Gateway server fails to start 217

Symptom: CICS will not configure the PPC

Gateway server 217

Symptom: CICS will not configure my

transactions in the PPC Gateway server . . . 217

Symptom: CICS cannot configure the PPC

Gateway server 218

Symptom: CICS for MVS/ESA transactions

abend AXFX 219

Symptom: SNA exchange log names (XLN) fails 219

Symptom: all inbound requests fail 220

Symptom: all outbound requests fail 220

Symptom: invalid or unrecognizable data is

passed to applications 221

Symptom: applications fail because of security

violations 221

Symptom: Transaction routing to CICS

Transaction Server for z/OS fail with

communications error 15a00007/a0000100 . . . 221

Symptom: Transaction routing causes screen

errors 222

Symptom: CICS fails to detect a predefined CD

entry, and autoinstalls another 222

SNA product-specific errors 223

CICS error codes 223

PPC Gateway server problem determination . . . 228

Format of PPC Gateway server messages and

trace 228

Tracing a PPC Gateway server 230

PPC Gateway server message descriptions . . 232

Part 4. Writing application

programs for intercommunication . 245

Chapter 10. Distributed program link

(DPL) 247

Comparing DPL to function shipping 247

BDAM files, and IMS, DL/I, and SQL databases 248

Performance optimization for DPL 248

Restrictions on application programs that use DPL 249

Security and DPL 250

Abends when using DPL 251

Taking sync points when using DPL or function

shipping 251

Contents v

Multiple DPL links to the same region 251

Two ways to implement DPL in your application

program 252

Implicitly specifying the remote system . . . 252

Explicitly specifying the remote system 252

Using the dynamic distributed program link user

exit 252

Information passed to the user exit 253

Initial invocation of the user exit 253

Changing the target CICS system 254

Changing the remote program name 255

Changing the mirror transaction name 255

Changing the user ID 255

Invoking the user exit at end of routed program 255

Chapter 11. Function shipping 257

How to use function shipping 257

Two ways to use function shipping 257

Serial connections 257

CICS file control data sets 258

Transient data 258

Local and remote names 258

Synchronization 258

Data security and integrity 258

Application programming for function shipping 259

File control 259

Temporary storage 260

Transient data 260

Exceptional conditions 260

Chapter 12. Transaction routing . . . 263

Initiating a transaction from a terminal 263

The initiating terminal 263

The initiated transaction 263

Application programming for transaction routing 264

Pseudo-conversational transactions 264

The terminal in the application-owning region 264

Using the assign command in the

application-owning region 265

Automatic transaction initiation (ATI) 266

Terminal definitions for ATI 266

Transaction definitions for ATI 266

Indirect links for transaction routing 266

Dynamic transaction routing 267

Writing a dynamic transaction routing user exit 268

Chapter 13. Asynchronous processing 273

Security considerations 273

How to use asynchronous processing 273

Two ways to initiate asynchronous processing 273

Starting and canceling remote transactions . . 274

The started transaction 276

Application programming for asynchronous

processing 277

Starting a transaction on a remote region . . . 277

Exceptional conditions for the EXEC CICS

START command 277

Retrieving data associated with a remotely

issued start request 277

Chapter 14. Distributed transaction

processing (DTP) 279

Concepts of distributed transaction processing

(DTP) 279

Conversations 280

Conversation states 280

Distributed processes 281

Maintaining data integrity 282

Designing distributed processes 283

Structuring distributed transactions 283

Designing conversations 285

Writing programs for CICS DTP 286

Conversation initiation and the front-end

transaction 286

Back-end transaction initiation 289

The back-end transaction fails to start 291

Transferring data on the conversation 291

Communicating errors across a conversation 295

Safeguarding data integrity 296

Ending the conversation 298

Checking the outcome of a DTP command . . 300

Testing the conversation state 303

Initial states 303

Summary of CICS commands for APPC mapped

conversations 304

Using DTP to check the availability of the

remote system 304

Chapter 15. Sync pointing a

distributed process 307

The EXEC CICS SYNCPOINT command 307

The EXEC CICS ISSUE PREPARE command . . . 308

The EXEC CICS SYNCPOINT ROLLBACK

command 308

When a backout is required 309

Synchronizing two CICS systems 309

SYNCPOINT in response to SYNCPOINT . . . 309

SYNCPOINT in response to ISSUE PREPARE 310

SYNCPOINT ROLLBACK in response to

SYNCPOINT ROLLBACK 311

SYNCPOINT ROLLBACK in response to

SYNCPOINT 311

SYNCPOINT ROLLBACK in response to ISSUE

PREPARE 312

ISSUE ERROR in response to SYNCPOINT . . 312

ISSUE ERROR in response to ISSUE PREPARE 313

ISSUE ABEND in response to SYNCPOINT . . 313

ISSUE ABEND in response to ISSUE PREPARE 314

Synchronizing three or more CICS systems . . . 314

Sync point in response to EXEC CICS

SYNCPOINT 314

Sync point rollback in response to EXEC CICS

SYNCPOINT 316

Conversation failure and the indoubt period . . 317

Part 5. Appendixes 319

Appendix A. DFHCNV - The data

conversion macros 321

vi TXSeries for Multiplatforms: CICS Intercommunication Guide

Using the DFHCNV macros 321

Examples of DFHCNV macros 322

Flow of DFHCNV macro sequence 324

The DFHCNV TYPE=INITIAL macro 324

The DFHCNV TYPE=ENTRY macro 325

The DFHCNV TYPE=KEY macro 327

The DFHCNV TYPE=SELECT macro 327

The DFHCNV TYPE=FIELD macro 328

The DFHCNV TYPE=FINAL macro 329

Appendix B. The conversation state

tables 331

How to use the state tables 331

The state numbers 331

The state conversation table notes 331

Synchronization level 0 conversation state table 333

Synchronization level 1 conversation state table 335

Synchronization level 2 conversation state table 338

Appendix C. Migrating DTP

applications 343

Migrating to LU 6.2 APPC mapped conversations 343

Differences between SNA and TCP/IP for DTP . . 343

Allocating a conversation 344

Use of conversation identifiers (CONVIDs) . . . 344

State after backout 344

Terminating a synchronization level 2 conversation 344

The EXEC CICS WAIT and EXEC CICS SEND

WAIT commands 345

Transaction identifiers 345

Migration considerations for function shipping . . 345

Appendix D. Data conversion tables

(CICS on Windows Systems and CICS

for Solaris only) 347

Bibliography 355

Notices 357

Trademarks and service marks 358

Index 361

Contents vii

viii TXSeries for Multiplatforms: CICS Intercommunication Guide

Figures

 1. Communicating with CICS family TCP/IP

support 7

 2. Communicating with CICS PPC TCP/IP . . . 8

 3. Using local SNA support to communicate across

SNA 9

 4. Using a PPC Gateway server to communicate

across SNA 10

 5. Communications using TCP/IP, a PPC

Gateway server, and SNA 12

 6. CICS region acting as a client gateway . . . 13

 7. A simple transaction 16

 8. A distributed application 16

 9. Acknowledgment processing 17

 10. Listener Definitions (LD) entry 29

 11. SMIT panel for adding an LD entry for CICS

family TCP/IP support 33

 12. General Communications Definitions (CD)

panel 37

 13. TCP/IP Communications Definitions (CD)

panel 37

 14. Security Communications Definitions (CD)

panel 38

 15. SMIT panel for adding a CD entry for CICS

family TCP/IP support 41

 16. IBM CICS Client Server and Driver examples 42

 17. CICS family TCP/IP example 44

 18. CICS OS/2 System Initialization Table . . . 45

 19. CICS OS/2 Connection and session table 45

 20. Listener Definitions (LD) entry 45

 21. Communications Definitions (CD) entry 46

 22. Communications Definitions (CD) entry 46

 23. Listener Definitions (LD) entry 46

 24. Communications Definitions (CD) entry 47

 25. General Communications Definitions (CD)

panel 48

 26. TCP/IP Communications Definitions (CD)

panel 48

 27. Security Communications Definitions (CD)

panel 49

 28. Two regions communicating across TCP/IP 50

 29. Two regions communicating across TCP/IP 51

 30. SMIT panel for adding a CD entry for CICS

PPC TCP/IP support 53

 31. An example network 69

 32. An example network using local SNA support 71

 33. Listener Definition window 78

 34. Region Definition Properties window 79

 35. Communication Definition window: General

tab 80

 36. Communication Definition window: SNA tab 81

 37. Communication Definition window: Security

tab 82

 38. Add Listener SMIT panel 83

 39. Show/Change Region SMIT panel (Part 1) 85

 40. Show/Change Region SMIT panel (Part 2) 86

 41. Add Communication SMIT panel 88

 42. An example network using PPC Gateway

server SNA support 92

 43. Region Definition Properties window 99

 44. Communication Definition window: General

tab 100

 45. Communication Definition window: SNA tab 101

 46. Communication Definition window: Security

tab 102

 47. Add Gateway SMIT panel 104

 48. Show/Change Region SMIT panel 105

 49. Add Communication SMIT panel 107

 50. The bind password exchange 125

 51. Representation of numbers 150

 52. Sample C function for halfword swap 151

 53. Sample C function for fullword swap 151

 54. Example record structure 152

 55. Data conversion for function shipping 157

 56. Avoiding data conversion 158

 57. Directory structure of the PPC Gateway

server (assumes an Open Systems platform) . 176

 58. How server names are shared between a

CICS region and a PPC Gateway server . . . 177

 59. Process for making an intersystem request

from a CICS region through a PPC Gateway

server 179

 60. Process for making an intersystem request to

a CICS region through a PPC Gateway server . 180

 61. Listing PPC Gateway servers with the cicsget

command 188

 62. PPC Gateway server attributes for cicsgwy 189

 63. Default PPC Gateway server attributes 189

 64. ps -ef | grep ppcgwy command 189

 65. New PPC GWY Server screen with example

configuration 191

 66. Start PPC GWY server screen 192

 67. Stop PPC GWY server screen 193

 68. PPC Gateway server Properties

screen—General tab 194

 69. Destroy PPC GWY Server screen 195

 70. Create PPC Gateway Server screen 197

 71. Auto Start a PPC Gateway Server screen 198

 72. Shutdown a PPC Gateway Server screen 199

 73. Show/Change PPC Gateway Server screen 200

 74. Using ppcadmin commands in interactive

mode 202

 75. Using ppcadmin commands in command

mode 202

 76. ppcadmin list luentries command 203

 77. ppcadmin query luentry command 204

 78. ppcadmin list xlns command 205

 79. ppcadmin force xln command with successful

results 205

 80. ppcadmin force xln command with

unsuccessful results 206

 81. ppcadmin query resync command 206

 82. ppcadmin cancel resync command 207

© Copyright IBM Corp. 1999, 2005 ix

83. ppcadmin list convs command 207

 84. ppcadmin query conv command 208

 85. ppcadmin list luws command 209

 86. ppcadmin query luw command 209

 87. Example PPC Gateway server message 228

 88. Distributed program link 248

 89. Serially connected systems 248

 90. Transferring a temporary storage queue 284

 91. Starting a conversation at synchronization

level 2 287

 92. Startup of a back-end APPC mapped

transaction at synchronization level 2 . . . 290

 93. Transferring data on a conversation at

synchronization level 2 292

 94. Checking the outcome of an EXEC CICS

SEND INVITE WAIT command 293

 95. Checking the outcome of an EXEC CICS

RECEIVE command 294

 96. EXEC CICS SYNCPOINT in response to

EXEC CICS SEND followed by EXEC CICS

SYNCPOINT on a conversation 309

 97. EXEC CICS SYNCPOINT in response to

EXEC CICS SEND INVITE followed by EXEC

CICS SYNCPOINT on a conversation . . . 310

 98. EXEC CICS SYNCPOINT in response to

EXEC CICS SEND LAST followed by EXEC

CICS SYNCPOINT on a conversation . . . 310

 99. EXEC CICS SYNCPOINT in response to

EXEC CICS ISSUE PREPARE on a

conversation 311

100. EXEC CICS SYNCPOINT ROLLBACK in

response to EXEC CICS SYNCPOINT

ROLLBACK on a conversation 311

101. EXEC CICS SYNCPOINT ROLLBACK in

response to EXEC CICS SYNCPOINT on a

conversation 312

102. EXEC CICS SYNCPOINT ROLLBACK in

response to EXEC CICS ISSUE PREPARE on a

conversation 312

103. EXEC CICS ISSUE ERROR in response to

EXEC CICS SYNCPOINT on a conversation . 313

104. EXEC CICS ISSUE ERROR in response to

EXEC CICS ISSUE PREPARE on a

conversation 313

105. EXEC CICS ISSUE ABEND in response to

EXEC CICS SYNCPOINT on a conversation . 314

106. EXEC CICS ISSUE ABEND in response to

EXEC CICS ISSUE PREPARE on a

conversation 314

107. A distributed sync point with all partners

running on CICS 315

108. Rollback during distributed sync pointing 317

109. Sample macro source for data conversion 322

110. Record layout for VSAM99 323

111. Description for record layout for VSAM99 323

112. Example of DFHCNV macro sequence 324

x TXSeries for Multiplatforms: CICS Intercommunication Guide

Tables

 1. Getting started road map xiii

 2. Conventions that are used in this book xiv

 3. Road map 1

 4. Road map 5

 5. Summary of communication methods across

TCP/IP and SNA 13

 6. Synchronization level used on outbound

intersystem requests 18

 7. Road map 23

 8. Where to next 26

 9. Road map 41

10. CICS family TCP/IP configuration example 44

11. Road map 54

12. Comparison of CICS resource definitions

TCP/IP connections 54

13. How CD attributes are set in an autoinstalled

CD entry 55

14. Fields in the DFHCCINX COMMAREA

structure, CICS_CCINX_Parameters 59

15. CD attributes that can be changed by

DFHCCINX 62

16. Communications products for various

platforms to enable local SNA support . . . 70

17. Comparison of CICS Communications

Definitions (CD) for local SNA connections . . 72

18. Comparison of CICS Listener Definitions (LD)

for local SNA connections 73

19. Comparison of CICS Region Definitions (RD)

for local SNA connections 74

20. Comparison of CICS Transaction Definitions

(TD) for local SNA connections 74

21. Communications products for various

platforms to enable PPC Gateway server SNA

support 90

22. Comparison of CICS Communications

Definitions (CD) for PPC Gateway server SNA

connections 93

23. Comparison of CICS Gateway Definitions (GD)

for PPC Gateway server SNA connections . . 94

24. Comparison of CICS Region Definitions (RD)

for PPC Gateway server SNA connections . . 95

25. Comparison of CICS Transaction Definitions

(TD) for PPC Gateway server SNA connections 95

26. Security keys assigned to example systems 128

27. Security keys assigned to example users 128

28. Which user ID is flowed when local task

issues a request 130

29. Comparing security options between

platforms 134

30. Defining security parameters 135

31. Example resource definitions for link security 140

32. CICS Shortcodes and code pages that

TXSeries for Multiplatforms supports . . . 153

33. Comparison of data conversion with other

CICS systems 158

34. Resource class abbreviations and resource

types 160

35. Road map 173

36. Communications products for various

platforms 175

37. ppcadmin commands that are applicable to

the CICS environment 201

38. The effect of updating CICS

intercommunication resource definitions . . 210

39. Sources of information for following the path

of a request 214

40. Required information for the service

representative 215

41. Message types 228

42. Trace types 229

43. Authority required by PPC Gateway Server 243

44. Road map 245

45. Indirect links for transaction routing 267

46. Conversation states available for each

synchronization level 280

47. CICS synchronization commands for use

across transactions 296

48. EIB and conversation state request responses 297

49. Indications of partner response 298

50. Command sequence for synchronization

levels 299

51. Interaction between some EIB fields 301

52. RECEIVE and CONFIRM flags 302

53. Relationship of cvda codes to conversation

states 303

54. CICS commands used in APPC mapped

conversations 304

55. Synchronization level 0 conversation state

table (states 1 to 8) 333

56. Synchronization level 0 conversation state

table (states 9 to 13) 334

57. Synchronization level 1 conversation state

table (states 1 to 8) 335

58. Synchronization level 1 conversation state

table (states 9 to 13) 336

59. Part 1 of Synchronization level 2 conversation

state table (states 1 to 8) 338

60. Part 1 of Synchronization level 2 conversation

state table (states 9 to 13) 339

61. Part 2 of Synchronization level 2 conversation

state table (states 1 to 8) 341

62. Part 2 of Synchronization level 2 conversation

state table (states 9 to 13) 342

63. SBCS data conversion table 347

64. DBSC and mixed data conversion table 351

65. SBCS and DBCS data conversion table 354

© Copyright IBM Corp. 1999, 2005 xi

xii TXSeries for Multiplatforms: CICS Intercommunication Guide

About this book

This book describes how CICS® systems communicate with other CICS systems. It

describes both how TXSeries® for Multiplatforms regions communicate with other

TXSeries for Multiplatforms regions, as well as with other members of the CICS

family (such as CICS Transaction Server for z/OS® and IBM CICS Universal

Clients), and with any application that supports the SNA LU 6.2 protocol.

It describes how to design and implement a network configuration for a TCP/IP

and an SNA network, how to configure the CICS resources, and how to design,

write, and manage the application programs.

Who should read this book

The book is intended for system administrators who design, configure, and

manage a network of interconnected CICS systems.

You should be familiar with the operation and configuration of a basic CICS

region. You should have a understanding of network operations for either TCP/IP

or SNA networks. Familiarity with the implementation and terminology used by

the partner system with which the CICS region communicates is also useful

Document organization

 Table 1. Getting started road map

If you want to... Refer to...

Read a summary of CICS communications Part 1, “Intercommunication planning,” on

page 1

Read how to configure CICS resources to

enable your system to communicate with

other systems

Part 2, “Configuring for

intercommunication,” on page 23

Read how to configure an SNA product TXSeries for Multiplatforms Using IBM®

Communications Server for AIX® with CICS,

TXSeries for Multiplatforms Using IBM

Communications Server for Windows® Systems

with CICS, TXSeries for Multiplatforms Using

Microsoft® SNA Server with CICS, TXSeries for

Multiplatforms Using HP-UX SNAplus2 with

CICS , and TXSeries for Multiplatforms Using

SNAP-IX for Solaris with CICS

Read how to manage your CICS system

when it is communicating with other

systems

Part 3, “Operating an SNA

intercommunication environment,” on page

173

Read how to write CICS transaction

programs that communicate with other

systems

Part 4, “Writing application programs for

intercommunication,” on page 245

© Copyright IBM Corp. 1999, 2005 xiii

Conventions used in this book

TXSeries for Multiplatforms documentation uses the following typographical and

keying conventions.

 Table 2. Conventions that are used in this book

Convention Meaning

Bold Indicates values that you must use literally, such as commands,

functions, and resource definition attributes and their values. When

referring to graphical user interfaces (GUIs), bold also indicates

menus, menu items, labels, buttons, icons, and folders.

Monospace Indicates text that you must enter at a command prompt.

Monospace also indicates screen text and code examples.

Italics Indicates variable values that you must provide (for example, you

supply the name of a file for file_name). Italics also indicates

emphasis and the titles of books.

< > Encloses the names of keys on the keyboard.

<Ctrl-x> Where x is the name of a key, indicates a control-character sequence.

For example, <Ctrl-c> means hold down the Ctrl key while you

press the c key.

<Return> Refers to the key labeled with the word Return, the word Enter, or

the left arrow.

% Represents the UNIX® command-shell prompt for a command that

does not require root privileges.

Represents the UNIX command-shell prompt for a command that

requires root privileges.

C:\> Represents the Windows command prompt.

> When used to describe a menu, shows a series of menu selections.

For example, ″Select File > New″ means ″From the File menu, select

the New command.″

Entering commands When instructed to “enter” or “issue” a command, type the

command and then press <Return>. For example, the instruction

“Enter the ls command” means type ls at a command prompt and

then press <Return>.

[] Encloses optional items in syntax descriptions.

{ } Encloses lists from which you must choose an item in syntax

descriptions.

| Separates items in a list of choices enclosed in { } (braces) in syntax

descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the

preceding item one or more times. Ellipses in examples indicate that

information was omitted from the example for the sake of brevity.

IN In function descriptions, indicates parameters whose values are

used to pass data to the function. These parameters are not used to

return modified data to the calling routine. (Do not include the IN

declaration in your code.)

OUT In function descriptions, indicates parameters whose values are

used to return modified data to the calling routine. These

parameters are not used to pass data to the function. (Do not

include the OUT declaration in your code.)

xiv TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 2. Conventions that are used in this book (continued)

Convention Meaning

INOUT In function descriptions, indicates parameters whose values are

passed to the function, modified by the function, and returned to

the calling routine. These parameters serve as both IN and OUT

parameters. (Do not include the INOUT declaration in your code.)

$CICS Indicates the full path name of the location in which the CICS

product is installed; for example, /usr/lpp/cics on AIX. If the CICS

environment variable is set to the product path name, you can use

the examples exactly as shown in this book; otherwise, you must

replace all instances of $CICS with the CICS product path name.

CICS on Open

Systems

Refers collectively to the CICS product for all supported UNIX

platforms.

TXSeries for

Multiplatforms

Refers collectively to the CICS for AIX, CICS for HP-UX, CICS for

Solaris, and CICS for Windows products.

CICS Refers generically to the CICS for AIX, CICS for HP-UX, CICS for

Solaris, and CICS for Windows products. Other CICS products in

the CICS Family are distinguished by their operating system (for

example, IBM mainframe-based CICS for the ESA, MVS™, and VSE

platforms).

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this book or any other

TXSeries for Multiplatforms documentation, send your comments by e-mail to

idrcf@hursley.ibm.com. Be sure to include the name of the book, the document

number of the book, the version of TXSeries for Multiplatforms, and, if applicable,

the specific location of the information you are commenting on (for example, a

page number or table number).

About this book xv

xvi TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 1. Intercommunication planning

This part introduces CICS intersystem communications. It describes the functions

that are available, and helps you plan and design your network.

 Table 3. Road map

If you want to... Refer to...

Read about the network protocols CICS

supports

“Network protocols” on page 3

Read about the intersystem communication

functions that CICS supports

“Overview of the intercommunication

facilities” on page 3

Read about the functions that are supported

by IBM CICS clients

“IBM CICS Universal Client products” on

page 4

Read about how to design your network “Designing your network configuration” on

page 5

© Copyright IBM Corp. 1999, 2005 1

2 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 1. Introduction to CICS intercommunication

In a multiple system environment, TXSeries for Multiplatforms regions can

communicate with other systems to:

v Provide users of the local region with services that are held on remote systems

v Provide users on remote systems with services that are held on the local region

This communication is achieved by networking the systems so that they can

cooperate directly and share data and applications. The communication between

the interconnected systems is referred to as intercommunication.

Network protocols

When two systems communicate, they need to agree on the set of rules that they

use to interpret the data that they exchange. These rules are known as network

protocols and they are defined in a network architecture. TXSeries for Multiplatforms

intercommunication is based on the IBM Systems Network Architecture (SNA) LU

6.2 protocol. This protocol, which is often referred to as advanced program-to-program

communications (APPC), was developed to handle the needs of two systems that

want to share data and applications. Therefore, it is ideally suited to the CICS

intercommunication environment.

TXSeries for Multiplatforms supports intercommunication across an SNA network

between a local region and the following:

v Other TXSeries for Multiplatforms regions

v Other CICS products such as CICS Transaction server for z/OS and CICS/400®

regions

v IBM CICS Universal Clients

v Applications on systems that support the SNA LU 6.2 protocol

In addition, TXSeries for Multiplatforms can emulate SNA LU 6.2 across TCP/IP

networks. This allows a local region to communicate with the following by means

of TCP/IP:

v Other TXSeries for Multiplatforms regions

v IBM CICS Universal Clients

The method of connecting your TXSeries for Multiplatforms regions to SNA and

TCP/IP networks is described in Chapter 2, “Intercommunication planning and

system design,” on page 5.

Overview of the intercommunication facilities

The CICS intercommunication facilities that TXSeries for Multiplatforms supports

simplify the operation of distributed systems. In general, this support extends the

standard CICS facilities (such as reading and writing to files and queues) so that

applications or users can use resources that are on remote systems without needing

to know where the resources are. TXSeries for Multiplatforms supports the

following CICS intercommunication facilities:

v Distributed program link (DPL) extends the use of the EXEC CICS LINK

command to allow a CICS application program to link to a program that resides

on a different CICS system.

© Copyright IBM Corp. 1999, 2005 3

v Function shipping allows an application program to access files, transient data

queues, and temporary storage queues that belong to another CICS system.

v Transaction routing allows the execution of a transaction on a remote system.

The transaction can display information on your terminal as if it were running

on your local system.

v Asynchronous processing extends the EXEC CICS START command to allow an

application to initiate a transaction to run on another CICS system. As with

standard EXEC CICS START calls, the transaction that is requested in the START

command runs independently of the application that is issuing the START

command.

v Distributed transaction processing (DTP) uses additional EXEC CICS

commands that allow two applications to run on different systems and pass

information between themselves. These EXEC CICS commands map to the LU

6.2 mapped conversation verbs that are defined in the SNA Architecture.

DTP is the only CICS intercommunication facility that can be used to

communicate with non-CICS applications. The non-CICS applications must use

advanced program-to-program communications (APPC) protocol.

IBM CICS Universal Client products

TXSeries for Multiplatforms provides CICS server support for the IBM CICS

Universal Client products. This means that TXSeries for Multiplatforms systems

can provide CICS server function to multiple workstations that are running the

IBM CICS Universal Client products.

The functions that are available to the client include:

v External call interface (ECI). This interface enables a non-CICS application

program that is running in the client workstation, to call a CICS program in the

server, and run it as a subroutine.

v External program interface (EPI). This interface enables an application program

to run in the client, and invoke a CICS transaction on the server that runs as

though it was started from a 3270 terminal. The transaction returns a 3270 data

stream to the client, which can capture it and present it in a graphical user

interface (GUI).

v Terminal emulation. This enables the client workstation to function as a 3270

terminal.

CICS Family: Interproduct Communication explains how intercommunication between

CICS family products is documented, and introduces the CICS intercommunication

facilities. This information is necessary for anyone who is involved in the planning

and implementation of communications between different CICS systems. CICS

Universal Client: Client Administration explains the planning, configuration, and

administration of the IBM CICS Universal Clients.

4 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 2. Intercommunication planning and system design

This planning and system design chapter describes the services that are provided

by TXSeries for Multiplatforms and its supporting products that enable it to

communicate with remote systems.

 Table 4. Road map

If you want to... Refer to...

Read about how systems can be connected

together

“Designing your network configuration”

Read about intersystem security issues “Ensuring that the system is still secure” on

page 14

Read about the integrity of data that is

distributed across a network

“Ensuring data integrity with

synchronization support” on page 16

Read about the conversion of data structures

when they are exchanged between systems

that use different ASCII or EBCDIC

encoding formats

“Converting between EBCDIC and ASCII

data” on page 19

Read about the performance of intersystem

transactions

“Performance issues for

intercommunication” on page 19

Read about the operation of your network “Operational issues for intercommunication”

on page 22

Read about bidirectional input and display “Bidirectional input and display on AIX” on

page 22

Together with information about your current systems, users and requirements,

you can use these sections to plan for the implementation of network configuration

and operations. Intercommunication requires cooperation between the

administrators of all of systems in the network. Therefore, it is important that the

administrators of the remote systems are involved in the planning process.

Designing your network configuration

TXSeries for Multiplatforms can communicate with remote systems across the

following connections:

v TCP/IP networks

v Systems Network Architecture (SNA) networks

The following sections introduce the ways that your CICS region can be connected

to other systems:

v “Communicating across TCP/IP connections”

v “Communicating across SNA connections” on page 8

v “Mixing the communications methods” on page 11

v “Summary of communication methods” on page 13

Communicating across TCP/IP connections

TCP/IP is a simple protocol that requires CICS to provide most of the support for

intercommunications, such as the data formats that are used to send intersystem

requests and the security that is needed to protect system resources.

© Copyright IBM Corp. 1999, 2005 5

TXSeries for Multiplatforms supports two types of communication over TCP/IP

connections:

v CICS family TCP/IP support, which allows connectivity to TXSeries for

Multiplatforms regions, and IBM CICS Universal Clients.

v CICS PPC TCP/IP support, which allows connectivity between CICS regions on

the same machine.

“Using CICS family TCP/IP” and “Using CICS PPC TCP/IP” on page 7 give more

detail on each of these types of TCP/IP communication.

Using CICS family TCP/IP

CICS family TCP/IP supports the following types of intersystem requests between

TXSeries for Multiplatforms and CICS OS/2 regions:

v Function Shipping

v Transaction Routing

v Distributed Program Link (DPL)

v Asynchronous Processing

Distributed Transaction Processing (DTP) is not supported.

IBM CICS Universal Clients can also use CICS family TCP/IP to connect to a

TXSeries for Multiplatforms region.

When the first request is made, a TCP/IP connection is acquired between the two

systems. This connection remains acquired while both systems are active and it can

carry many concurrent intersystem requests flowing in either direction.

A TXSeries for Multiplatforms region can be configured to accept TCP/IP

connections on one or more TCP/IP ports in the local machine. It can also receive

connection requests on one or more TCP/IP network adapters.

Note that the CICS family TCP/IP support does not provide the same level of

security that is available with PPC Executive TCP/IP support. This issue is

discussed in “Ensuring that the system is still secure” on page 14.

Figure 1 on page 7 shows a region that is running on a Windows platform and

using CICS family TCP/IP to communicate with a CICS OS/2 system and an IBM

CICS Universal Client.

6 TXSeries for Multiplatforms: CICS Intercommunication Guide

Synchronization levels: All intersystem requests that are flowed on a CICS family

TCP/IP connection use synchronization level 0 or 1. Synchronization levels are

described in “Ensuring data integrity with synchronization support” on page 16.

Configuration information: The instructions for configuring your region to use

CICS family TCP/IP are summarized in “Configuring CICS for CICS family

TCP/IP support” on page 26.

Using CICS PPC TCP/IP

CICS PPC TCP/IP support allows all types of intercommunication between CICS

regions on the same machine and is simple to configure.

When an intersystem request is made, CICS locates the remote region. Then, a

TCP/IP connection is set up between the two regions. This connection is used

exclusively by the intersystem request, and is closed down when the request has

completed.

Figure 2 on page 8 shows the PPC Executive that is being used to connect

applications that are running on two CICS regions on the same machine.

OS/2

CICS
application

CICS for
OS/2

TCP/IP
product

CICS
TERM

IBM CICS
Client

TCP/IP
product

TCP/IP

CICS for
Windows NT

CICS
application

Figure 1. Communicating with CICS family TCP/IP support

Chapter 2. Intercommunication planning and system design 7

Synchronization levels: CICS PPC TCP/IP supports synchronization levels 0, 1

and 2. For more information about the different synchronization levels, refer to

“Ensuring data integrity with synchronization support” on page 16.

Configuration information: The instructions for configuring a region to use CICS

PPC TCP/IP are summarized in “Configuring CICS for CICS PPC TCP/IP

support” on page 47.

Communicating across SNA connections

TXSeries for Multiplatforms regions can communicate across SNA with any system

that supports advanced program-to-program communications (APPC). This

includes CICS Transaction Server for z/OS, CICS/ESA, CICS/MVS, CICS/400, and

CICS/VSE. They can communicate between all TXSeries for Multiplatforms

regions. SNA can be used to communicate with IBM CICS Universal Clients. (In

SNA, APPC is used synonymously with the term LU Type 6.2, or LU 6.2.)

Two methods of SNA communication are available in TXSeries for Multiplatforms:

v Local SNA support

v SNA support that uses the CICS PPC Gateway server

Both of these methods of providing an SNA connection support all the CICS

intercommunication facilities to other CICS systems, and DTP is supported to

non-CICS systems.

Using local SNA support to communicate across SNA

Local SNA support provides the fastest SNA connectivity that CICS offers. It

enables TXSeries for Multiplatforms applications to communicate with every other

member of the CICS family.

IBM CICS Universal Clients can communicate with TXSeries for Multiplatforms

and use local SNA support.

Local SNA support requires an appropriate SNA product to be installed and

configured on the same machine as is the TXSeries for Multiplatforms region.

TXSeries for Multiplatforms supports the following SNA products:

v On Windows systems: Microsoft Microsoft SNA Server and IBM

Communications Server

v On AIX systems: IBM Communications Server

CICS
application

CICS
Region A

PPC
Executive

CICS PPC TCP/IP

PPC
Executive

CICS
Region B

CICS
application

Figure 2. Communicating with CICS PPC TCP/IP

8 TXSeries for Multiplatforms: CICS Intercommunication Guide

v On Solaris: SNAP-IX

v On HP:HP-UX SNAplus2

Figure 3 shows TXSeries for Multiplatforms using local SNA support to

communicate with other CICS systems and with other APPC applications. The

term APPC workstations refers to any small computer that is running APPC

applications.

Synchronization levels: Local SNA support allows the use of synchronization

levels 0 and 1. If you require synchronization level 2 support, you must use a PPC

Gateway server. This is described in “Using a PPC Gateway server to communicate

across SNA.” For information about the different synchronization levels, refer to

“Ensuring data integrity with synchronization support” on page 16.

Configuration information: The instructions for configuring your region to use

local SNA support are summarized in “Configuring CICS for local SNA support”

on page 70.

Using a PPC Gateway server to communicate across SNA

CICS can communicate with an SNA network by using a PPC Gateway server.

CICS communicates uses TCP/IP to communicate with the PPC Gateway server,

and the PPC Gateway server provides a link to the SNA network.

The PPC Gateway server can be on the same machine as is your CICS region, or it

can be on a different machine.

The PPC Gateway server uses an appropriate SNA product to connect to the

remote SNA systems. This SNA product must be installed and configured on the

machine on which the PPC Gateway server is running. For example, if the PPC

AIX MVS/ESA

CICS
application

CICS for AIX

Communications
Server for AIX

APPC Workstations

app app app

CICS
application

CICS for
MVS/ESA

VTAM IBM
CICS Client

SNA Network

SNA
Product

CICS for
Windows NT

CICS
application

Figure 3. Using local SNA support to communicate across SNA

Chapter 2. Intercommunication planning and system design 9

Gateway server is running on an RS/6000® machine, the SNA product is IBM

Communications Server for AIX. (Check with your sales representative for full

details of the supported SNA products for your PPC Gateway server machine.)

Figure 4 shows a TXSeries for Multiplatforms region using the PPC Executive to

connect to a PPC Gateway server machine, which in turn connects to an SNA

network.

Using more than one PPC Gateway server with a CICS region can be useful for the

following:

v To spread the network links from many remote machines across more than one

gateway machine, and therefore across multiple SNA products

v To introduce some redundancy, so that if one PPC Gateway server fails, another

is available as backup

v To spread the processing load across more than one PPC Gateway server

CICS
application

CICS for AIX

PPC Gateway
Server

Communications
Server for AIX

APPCWorkstations

app app app

CICS
application

CICS for
MVS/ESA

VTAM

SNA
Product

PPC Gateway
Server

PPC
Executive

CICS on
Open Systems

CICS
application

SNA Network

AIX

MVS/ESA

Figure 4. Using a PPC Gateway server to communicate across SNA

10 TXSeries for Multiplatforms: CICS Intercommunication Guide

A PPC Gateway server can also be shared by a number of CICS regions. This can

be desirable if your CICS regions do not make many SNA intercommunication

requests. However, this setup must be used with care because the PPC Gateway

server is only one operating system process and can become overwhelmed by too

many intercommunication requests. In addition, problem determination can be

more difficult if more than one region uses a PPC Gateway server.

Synchronization levels: A PPC Gateway server gives your region support for

synchronization levels 0, 1, and 2. If you require only synchronization level 0 or 1

and you plan to put the SNA product on the machine on which your CICS region

is running, you can use local SNA support. This is described in section “Using

local SNA support to communicate across SNA” on page 8. For information about

the different synchronization levels refer to “Ensuring data integrity with

synchronization support” on page 16.

Configuration information: The instructions for configuring your region to use a

PPC Gateway server are summarized in “Configuring CICS for PPC Gateway

server SNA support” on page 89.

Mixing the communications methods

You can mix the communication methods that you use to connect your CICS

regions. For example, a TXSeries for Multiplatforms region can use the PPC

Executive to communicate with another TXSeries for Multiplatforms region over

TCP/IP, while also communicating over SNA, by using both local SNA support

and a PPC Gateway server.

Figure 5 on page 12 shows two CICS on Open Systems regions (Region B and

Region C) that are communicating using CICS PPC TCP/IP with synchronization

level 2. Region A and Region D are communicating with CICS TCP using

synchronization level 1. The regions are also communicating across an SNA

network to a CICS for AIX region, some APPC workstations, and a CICS

Transaction Server for z/OS system. The communications with the CICS for AIX

region and the workstations use local SNA support. Local SNA support was

chosen because the APPC workstations do not support synchronization level 2. The

communications with CICS Transaction Server for z/OS are through a PPC

Gateway server because synchronization level 2 support is required. The PPC

Gateway server is running on the same machine as is the CICS for AIX region and

uses the same SNA product.

Chapter 2. Intercommunication planning and system design 11

Figure 6 on page 13 shows a CICS region being used as a client gateway. In this

setup, several IBM CICS Universal Clients are using CICS family TCP/IP to

connect to the region . The region is then routing these requests across an SNA

network to a mainframe CICS system.

CICS
application

CICS for AIX

Communications
Server for AIX

APPCWorkstations

app app app

CICS
application

CICS /ESA

VTAM

SNA Network

AIX MVS/ESA

SNA
Product

PPC Executive PPC Executive

CICS on Open
System Region A

CICS on Open
System Region B

CICS on Open
System Region C PPC Gateway

TCP/IP

CICS on Open System
Region D

Figure 5. Communications using TCP/IP, a PPC Gateway server, and SNA

12 TXSeries for Multiplatforms: CICS Intercommunication Guide

For information about how to configure your region to communicate with remote

systems, refer to Chapter 3, “Configuring CICS for TCP/IP,” on page 25 and

Chapter 4, “Configuring CICS for SNA,” on page 67. For information about the

different synchronization levels, refer to “Ensuring data integrity with

synchronization support” on page 16.

Summary of communication methods

The following table summarizes the communication methods that CICS on Open

Systems and CICS for Windows can use:

 Table 5. Summary of communication methods across TCP/IP and SNA

Communication

method

Best for: Restrictions:

CICS family

TCP/IP

Communicating at

synchronization level 0 or 1 with

TXSeries for Multiplatforms, IBM

CICS Universal Clients, and

RPC-only regions across TCP/IP

Distributed Transaction

Processing (DTP) is not

supported. CICS user security

must be configured with care

because it is not possible to

reliably authenticate (identify) the

remote system.

CICS PPC TCP/IP Communicating at

synchronization level 0, 1 or 2

with other TXSeries for

Multiplatforms regions

Must be on the same machine.

CICS for
MVS/ESA

SNA Network

SNA
Product

CICS for
Windows NT

TCP/IP

IBM CICS Clients

Figure 6. CICS region acting as a client gateway

Chapter 2. Intercommunication planning and system design 13

Table 5. Summary of communication methods across TCP/IP and SNA (continued)

Communication

method

Best for: Restrictions:

Local SNA Fast synchronization level 0 or 1

communication with remote LU

6.2 (APPC) systems. These

connections can be used to

connect to any CICS product.

A supported SNA product must

be installed on the same machine

as is the CICS region.

PPC Gateway Synchronization level 0, 1, and 2

communication with remote LU

6.2 (APPC) systems. These

connections can be used to

connect to any CICS product.

When using Communications

Server for AIX, Communications

Server for Windows, and HP-UX

SNAplus2, the PPC Gateway

server must be installed on a

machine along with a supported

SNA product.

To make the best use of the information that is given in this chapter, consider your

own installation: the systems you currently have and their capabilities, the

requirements of your users, and the requirements of the systems that you want to

have

If you are planning to connect your CICS region to a non-TXSeries for

Multiplatforms product, refer to Chapter 3, “Configuring CICS for TCP/IP,” on

page 25, and Chapter 4, “Configuring CICS for SNA,” on page 67.

Additional considerations

After planning your overall network configuration, review the following sections,

which introduce the other factors to consider:

v “Ensuring that the system is still secure”

v “Ensuring data integrity with synchronization support” on page 16

v “Converting between EBCDIC and ASCII data” on page 19

v “Performance issues for intercommunication” on page 19

v “Operational issues for intercommunication” on page 22

Ensuring that the system is still secure

Connecting your region to other systems enables the users of these systems to

share resources. CICS intercommunication provides extensions to CICS security

that ensure that resources are shared only with authorized users.

The system that is receiving the request performs checking for the following

purposes:

v Identifying the remote system that sent the request

v Identifying the user who initiated the request

v Controlling access to the CICS resources

Identifying the remote system

When systems connect, they pass identification information across the network.

This identification information can be trusted only if the communication method

provides the facilities to verify it. The process of verifying identification

information is called authentication; it is achieved for each of the communication

methods as follows:

14 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICS family TCP/IP

These connections provide no mechanisms for authenticating the remote

system. CICS can extract the Internet Protocol (IP) address and listening

port of the remote system, but no method exists for CICS to determine

whether the connection request is coming from an unauthorized system

that is deliberately trying to impersonate the genuine system. If a network

is private and secure, this might not be a problem for you. If this potential

security risk is a concern, consider using one of the other communication

methods. For further information about authenticating remote systems

when using CICS family TCP/IP connections, see “Authenticating systems

across CICS family TCP/IP connections” on page 124.

CICS PPC TCP/IP

CICS PPC TCP/IP uses an RPC request to set up each intersystem request.

As CICS PPC TCP/IP is used for communication between CICS regions on

the same machine, there is no need to verify the identity of the system that

is sending the request.

Local SNA

When an SNA connection is acquired, sessions are activated by using bind

flows. You can configure SNA to automatically verify the identity of each

system by defining a bind password for the two systems. Sessions are then

activated only if both systems have the same bind password. For further

information about authenticating remote systems when using local SNA

connections, see “Authenticating systems across SNA connections” on page

125.

PPC Gateway

An SNA connection that uses a PPC Gateway server can be viewed in two

parts. The SNA sessions from the PPC Gateway server to the remote

system can be protected by using bind passwords, and the requests that

flow between your region and the PPC Gateway server are protected

because the region is on the same machine. For further information on

authenticating remote systems when using PPC Gateway connections, see

“Authenticating systems across PPC Gateway server connections” on page

126.

Identifying the user that initiated the request

Intersystem requests can also flow with the user ID (and optionally a password).

CICS intercommunication security allows you to define the user ID that is assigned

to the intersystem request, based on your knowledge of the security mechanisms

that are available in the network and the remote system. It can be the user ID

flowed from the remote system or a user ID that is defined locally. Transaction

Security Level (TSL) keys and Resource Security Level (RSL) keys are then

assigned to the request, based on the User Definition (UD) entry for the assigned

user ID. You can also specify a TSL and RSL key mask, which restricts these keys

further so that the intersystem request has less access to the system than does the

local user who has the same user ID.

Intercommunication security is an extension of local security checking. Therefore, it

is important that you understand how CICS implements local security. Refer to the

CICS Administration Guide for further information about local security. Refer to

Chapter 6, “Configuring intersystem security,” on page 123, and “CICS user

security” on page 127 for more information about how to configure CICS

intercommunication security.

Chapter 2. Intercommunication planning and system design 15

Ensuring data integrity with synchronization support

When designing applications that update data on more than one system, it is

important to remember that network or system failures sometimes occur. These

failures are difficult to manage in a distributed environment because the

application is exposed to partial failures that do not occur in a single-system

environment. This is best shown with an example.

Consider the case of a single system in which an application is moving records

between two recoverable files, FILEA and FILEB, as shown in Figure 7. If a

problem occurs, for example, data is corrupted in one of the files, a transaction

abends, or a CICS region fails, CICS backs out the changes that were made before

the problem occurred. Consequently, the files return to the state in which they

were at the time the transaction was initially invoked.

 Now consider the case where FILEB resides on a remote system, as shown in

Figure 8. The work of the application is effectively split into two transactions,

TRN1 and TRN2. Because the application is distributed, it is now difficult for

TRN1 (in the local system) to detect problems with adding the record to FILEB (in

the remote system). If TRN1 cannot detect these problems, it might delete a record

from FILEA that has not been added to FILEB, and cause the record to be lost.

The solution is to use a form of acknowledgment processing so that the two

transactions in the application can ensure that they each complete their task

successfully. The exact form of this acknowledgment depends on the requirements

of the application. For example, the application can be transferring a list of

changed customer addresses between the two systems. As shown in Figure 9 on

page 17

Figure 7. A simple transaction

FILEA

CICSA

TRN1

CICSB

TRN2 FILEB

Figure 8. A distributed application

16 TXSeries for Multiplatforms: CICS Intercommunication Guide

page 17, after TRN2 writes a record to FILEB, it can send a message to TRN1,

indicating that the record can be deleted from FILEA.

Thus a record can never be lost because TRN1 deletes the record from FILEA only

when it knows that the record is written to FILEB. However, if TRN1 fails after it

receives the message to delete the record, but before the record is actually deleted

from FILEA, the record appears twice, once in FILEA and again in FILEB.

In this application, it probably does not matter whether a customer’s address is

updated once or twice. However, if the data in FILEA represents money in some

form, and the act of transferring it between the systems effectively transfers the

money from one bank account to another, two copies of the record cause the

money to be transferred twice.

A mechanism is required to ensure that the deletion from FILEA always occurs if

the write operation to FILEB is successful and never occurs if the write operation

to FILEB is unsuccessful. This requires a much more sophisticated coordination

between the two systems.

Because applications have different requirements, SNA defines three levels of

support that allow an application to coordinate updates across a number of

systems. These levels of support are called synchronization levels:

v synchronization level 0 (NONE): SNA provides no synchronization support.

The application must code its own.

v synchronization level 1 (CONFIRM): SNA provides the ability to send simple

acknowledgment requests.

v synchronization level 2 (SYNCPOINT): SNA provides the ability for two or

more CICS systems to treat the updates that are made by an application on these

systems as one logical unit of work (LUW). (LUW is a synonym of unit of work

(UOW)). When the application requests a synchronization point (sync point) by

using the EXEC CICS SYNCPOINT command or the final EXEC CICS RETURN

command, the updates on the remote systems are committed (made permanent)

if, and only if, updates to recoverable data that are made locally by the

transaction are also committed. If a failure occurs (for example, the transaction

abends) before all involved systems have agreed to commit, all the updates for

the application on each of the systems are backed out (undone). Alternatively, all

updates are backed out if the application issues the EXEC CICS SYNCPOINT

ROLLBACK command.

When SNA systems first establish contact, they agree the maximum

synchronization that they will use. The synchronization level for each individual

task is then determined either by CICS or by the application program. TXSeries for

FILEA

read

delete

CICSA

TRN1

record

OK

CICSB

TRN2

write

FILEB

Figure 9. Acknowledgment processing

Chapter 2. Intercommunication planning and system design 17

Multiplatforms supports all three synchronization levels across both SNA and

TCP/IP. Refer to “Designing your network configuration” on page 5 for more

information about these communication methods.

If the remote system and the communication network are able, TXSeries for

Multiplatforms uses synchronization level 2 conversations on function shipping,

asynchronous processing, and distributed program link (DPL) requests. Transaction

routing requests from TXSeries for Multiplatforms always use synchronization

level 1 conversations because they do not update recoverable data on the local

region. However, TXSeries for Multiplatforms can receive synchronization level 2

transaction routing requests from CICS Transaction Server for z/OS, CICS/ESA,

CICS/MVS, and CICS/VSE. Distributed transaction processing (DTP) uses the

synchronization level that is requested on the SYNCLEVEL parameter of the EXEC

CICS CONNECT PROCESS command. For further information on the CONNECT

PROCESS command, refer to the TXSeries for Multiplatforms Application

Programming Reference.

Note: For TXSeries for Multiplatforms to use synchronization level 2 with IBM

mainframe-based CICS systems, they must be at these levels:

v CICS/MVS®: 2.1.2

v CICS/ESA®: 3.3 or higher

v CICS/VSE®: 2.2 or higher

The following table summarizes the synchronization level that is used on

outbound intersystem requests. Refer to the following legend:

FS Function shipping

TR Transaction routing

AP Asynchronous processing

DPL Distributed program link

DTP Distributed transaction processing

NS Not supported

 Table 6. Synchronization level used on outbound intersystem requests

Function FS TR AP DPL DTP

Synchronization level chosen by: CICS CICS CICS CICS Application

Request to CICS/ESA, CICS/MVS,

CICS/VSE, or CICS/400 using local

SNA

1 1 1 1 0 or 1

Request to CICS/ESA, CICS/MVS,

CICS/VSE or CICS/400 using a PPC

Gateway and SNA

2 1 2 21 0, 1, or 2

Request to CICS OS/2 over SNA 1 1 1 1 0 or 1

Request to CICS OS/2, or TXSeries

for Multiplatforms over CICS family

TCP/IP

1 1 1 1 NS

Request to TXSeries for

Multiplatforms using CICS PPC

TCP/IP

2 1 2 21 0, 1, or 2

Request to TXSeries for

Multiplatforms over SNA when both

systems are using a PPC Gateway

2 1 2 21 0, 1, or 2

Request to TXSeries for

Multiplatforms over SNA when one

or both regions are using local SNA

1 1 1 1 0 or 1

18 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 6. Synchronization level used on outbound intersystem requests (continued)

Function FS TR AP DPL DTP

Request to non-CICS system over

SNA

NS NS NS NS 0, 1, or 2

Note: 1. DPL requests specifying SYNCONRETURN option use synchronization level 1 on

all requests.

Converting between EBCDIC and ASCII data

Of the systems to which your region can connect, some store data in different

character encodings. An example of this is that data that is held in the Extended

Binary-Coded Decimal Interchange Code (EBCDIC) format on an IBM

mainframe-based CICS system, and in the American National Standard Code for

Information Interchange (ASCII) format on a TXSeries for Multiplatforms system.

Differences exist also between data in CICS on Windows systems and data in CICS

on Open Systems, where the codes that are used for some characters vary and the

method that is used for representing numbers is different. This means that if data

that is transferred between two systems is to be useful, it must be converted from

the format that is used on the sending system to that which is used by the

receiving system.

CICS converts some data, such as the file names in function shipping requests,

without user setup. For other data, such as file records, users supply resource

definitions that identify the types of conversion that are to be applied to specified

fields in data records. Exits and user-replaceable conversion programs are also

available.

Chapter 7, “Data conversion,” on page 147 explains how to configure data

conversion when TXSeries for Multiplatforms is doing the conversion. The

following references provide further information:

v When the data is shipped from TXSeries for Multiplatforms to IBM

mainframe-based CICS and the data conversion takes place in IBM

mainframe-based CICS, you also need CICS Family: API Structure.

v When the data is shipped from TXSeries for Multiplatforms to CICS OS/2 and

the data conversion takes place on CICS OS/2, you need CICS for OS/2®

Intercommunication Guide.

v When the data is shipped from TXSeries for Multiplatforms to CICS/400 and the

data conversion takes place on CICS/400, you need Communicating from

CICS/400.

Data conversion is described in detail in Chapter 7, “Data conversion,” on page

147.

Performance issues for intercommunication

Sending data through a network takes time, so accessing resources on a remote

system takes longer than accessing resources on a local system. However, the

advantages of not having to replicate data on each system or requiring users to be

signed on to several systems can compensate for the increased response time.

You can minimize the performance impact of distributing a resource by choosing

the intercommunication facility carefully.

Chapter 2. Intercommunication planning and system design 19

Choosing which intercommunication facility to use

The intercommunication facilities that CICS supports are:

v Function shipping

v Transaction routing

v Asynchronous processing

v Distributed program link (DPL)

v Distributed transaction processing (DTP)

These facilities complement one another. This means that for each application, one

of the facilities is probably more efficient and easier to use than the others are. Use

the following descriptions to help you choose the facility that will give you the

best performance.

It is important to consider the level of support that is provided for these facilities

on the remote system. You can find information about the intercommunication

facilities that are supported by each of the CICS products in CICS Family:

Interproduct Communication .

When to use function shipping

Function shipping allows an application to read from, and write to, files,

temporary storage queues, and transient data queues that are on remote CICS

systems. The application issues the standard EXEC CICS commands to access these

data resources, and CICS packages the request and sends it to the required CICS

system. This system then unpackages and executes the request as if it were issued

by one of its local programs. The result of the request is sent back to the

originating system and is returned to your application, again as if the resource

were local.

Function shipping provides an easy way to access remote CICS data resources.

However, as each request is sent separately to the remote system, it can be better

to use distributed program link (DPL) or distributed transaction processing (DTP)

if the application requires many accesses to the remote data. Also, function

shipping is available only for accessing CICS resources, such as files and queues. If

you want to access non-CICS data, such as database records, on a remote system,

you must use another method.

When to use transaction routing

Transaction routing allows a user of your region to run a transaction on a remote

CICS system and see the results of that transaction on a local terminal as if the

transaction were running in your region. This is possible because the remote CICS

system can package up all the screen displays that are generated by the routed

transaction, and send them to your region, where they are unpackaged and

displayed as normal on the terminal screen. Transaction routing is therefore useful

if all the processing for a transaction is to take place on a single remote system.

When to use asynchronous processing

Asynchronous processing allows an application to start a transaction on a remote

CICS system at a particular time. The success or failure of this remotely started

transaction does not affect the application that started it. Therefore, it is useful for

conditions in which it is not necessary, or desirable, to keep a local transaction

waiting while the remote transaction is running.

When to use distributed program link (DPL)

Distributed program link allows an application to issue an EXEC CICS LINK to a

program that resides on another CICS system. Your application passes a

COMMAREA to the linked-to program that can contain instructions on the

20 TXSeries for Multiplatforms: CICS Intercommunication Guide

processing required. The linked-to program then executes and returns the results,

again in a COMMAREA, to the original application. DPL is extremely useful if an

application needs to make a large number of accesses to a remote resource, for

example, to search through a file on a remote CICS system to find a particular data

record, which is then displayed to the user. The local application can use DPL to

connect to a program on the system that owns the data, passing details of which

record is required. The linked-to program can search through the file and return

the required record to the local application. Using DPL in this case is significantly

more efficient that using function shipping to read each record remotely. DPL has

the restriction that the COMMAREA cannot be more than 32700 bytes long. If your

transaction needs to transfer large amounts of data between two CICS regions,

consider using DTP.

When to use distributed transaction processing (DTP)

Distributed transaction processing is the most flexible of all the

intercommunication facilities. It allows an application to send as much data as it

needs, between one or more systems, at any point in its processing. However, this

means it is the most complex to use because the application is responsible for

setting up the communications with the remote system, sending and receiving the

data, and finally closing the communications down when it is finished. It is the

only intercommunication facility that is available to your application if it requires

communication with a non-CICS system.

A checklist of application requirements

This checklist describes possible application requirements and summarizes which

intercommunication facility is likely to be the most efficient:

v A terminal user wants to run a transaction on a remote CICS system. Use

transaction routing.

v A transaction needs to read and write data that is all on a remote CICS system.

Function shipping seems an obvious choice here, but it does have a higher

overhead than transaction routing does. If no processing is required on the local

system, transaction routing is more efficient. If some processing is required

locally, you might consider distributed program link (DPL) or distributed

transaction processing (DTP). As a general rule, it is often best to process data as

close to its source as possible because this is likely to reduce the amount of data

that is sent across the network.

v A transaction needs to read and write a small amount of data from several CICS

systems. Function shipping is a good choice here. It is easy to use and it is

unlikely that much scope exists for pruning the amount of data that is sent

across the network by having a transaction run in each system that owns a

particular piece of data.

v A transaction needs to read or write data that is stored on a remote database

that is accessible by another CICS system. Use distributed program link (DPL) or

distributed transaction processing (DTP) if function shipping is not supported

for these data resources.

v A transaction needs to start one or more transactions in a remote CICS system

and does not need to wait for the results. Use asynchronous processing.

v An application needs to search through a file on a remote CICS system and

retrieve particular pieces of information. Use distributed program link (DPL).

v An application needs to transfer a large amount of data from one system to

another. Use distributed transaction processing (DTP).

v An application needs to coordinate a number of related updates on several

systems. Use distributed transaction processing (DTP).

Chapter 2. Intercommunication planning and system design 21

v An application needs to communicate with a non-CICS system. Use distributed

transaction processing (DTP).

For more information, see Part 4, “Writing application programs for

intercommunication,” on page 245.

Operational issues for intercommunication

Below is a list of some of the issues that can affect you. It is worth investing some

time on these issues to prevent problems when your system is in production.

v Backup of remote data: Ensure that site of the remote data that is used by the

users of your region is backed up frequently enough and that disaster recovery

procedures are in place to restore the data in the event of a failure.

v Problem determination support: Ensure you have a contact at the remote

system site to help you track down problems with distributed applications. You

need to arrange for the remote system to save transaction dumps and other

problem determination aids for failed applications that are started by

intersystem requests from your region.

v System availability: Ensure that the remote system will be available when your

users require it.

v Network monitoring: Ensure that a clear understanding exists of who is

responsible for monitoring the throughput and availability of the network.

v Compensation for resources used: If the remote systems that will be connecting

to your region are owned by a different organization, some negotiation can be

required to agree on a charging scheme for the resources that are used by

remote users at each site on a day-to-day basis.

For more information, see “Performance issues for intercommunication” on page

19.

Bidirectional input and display on AIX

CICS is enabled for bidirectional input and display on local CICS terminals.

Customers who are using data fields that include information expressed in

Hebrew, Arabic, or other right-to-left languages can enter and display information

as they normally do.

22 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 2. Configuring for intercommunication

Before two systems can communicate, they need to know something about the

identity and characteristics of each other, and they need information about the

method that they will use to communicate. They also need to understand the

resources that they will share, and the security checks that they will impose. This

part describes these configuration requirements:

 Table 7. Road map

If you want to... Refer to...

Read about configuring CICS to support

TCP/IP

Chapter 3, “Configuring CICS for TCP/IP,”

on page 25

Read about configuring CICS to support

SNA

Chapter 4, “Configuring CICS for SNA,” on

page 67

Read about configuring the CICS resources

that will be shared with other systems

Chapter 5, “Configuring resources for

intercommunication,” on page 109

Read about configuring CICS to enable only

authorized systems and users to gain access

its resources

Chapter 6, “Configuring intersystem

security,” on page 123

Read about configuring CICS to support

data conversion when other systems

represent data in a different format

Chapter 7, “Data conversion,” on page 147

© Copyright IBM Corp. 1999, 2005 23

24 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 3. Configuring CICS for TCP/IP

TXSeries for Multiplatforms offers you a choice of two ways of using TCP/IP

protocols:

v CICS family TCP/IP support, which allows connectivity to other TXSeries for

Multiplatforms, CICS OS/2 regions, and IBM CICS Universal Clients

v CICS PPC TCP/IP support, which allows connectivity to other TXSeries for

Multiplatforms regions

For introductory information on these two ways of using TCP/IP, refer to “Using

CICS family TCP/IP” on page 6, and “Using CICS PPC TCP/IP” on page 7.

To configure CICS for TCP/IP, perform the following steps:

For CICS family TCP/IP connections:

1. Identify a local name for your region.

2. Set up a Listener Definitions (LD) entry for your region.

3. Set up a Communications Definitions (CD) entry for each remote system with

which your region is to communicate.

For CICS PPC TCP/IP connections:

1. Identify a local name for your region.

2. Set up a Communications Definitions (CD) entry for each remote system with

which your region is to communicate.

The information that follows describes how each of these steps is accomplished.

The references in the road map tables guide you from one step to the next.

When using CICS on AIX or Windows systems:

CICS commands are used to configure the CICS LD and CD entries.

However, if you are using CICS on an AIX system, you can also use the

System Management Interface Tool (SMIT) to configure these resources. If you

are using CICS on a Windows system, you can use the IBM TXSeries

Administration Tool.

Naming your region for a TCP/IP intercommunication environment

In an intercommunication environment, remote systems need to know the name of

your CICS region in order to:

v Send your region intersystem requests

v Apply security checks and data conversion to intersystem requests that are

received from your region

The name by which remote systems identify your region depends upon the

communication method. The one- through eight-character name that you specify

when you create your region is referred to as the region name, or the APPLID.

A remote TXSeries for Multiplatforms region or a CICS OS/2 Version 3 (or later)

region that is communicating over CICS family TCP/IP also knows your region by

© Copyright IBM Corp. 1999, 2005 25

its APPLID. However, a Version 2 CICS OS/2 region builds a name for your region

based on its network adapter address and port number. For example, if your

region is using the TCP/IP host name cicsopen.cicsland.com or

aix5.cicsland.com and port number 1435, your region would be known as

“05G2OXPN”. This name is returned by the cicstcpnetname command, as follows:

For further information about the cicstcpnetname command, refer to the TXSeries

for Multiplatforms Administration Reference.

Your CICS region also has a name that is available to local applications and

resource definitions. CICS applications and resource definitions use a one- through

four-character name called the SYSID to specify the name of the system where a

resource resides. If the resource is remote, the SYSID is the one- through

four-character name of a Communications Definitions (CD) entry. If the resource is

local, the application or resource definition can either not specify a SYSID, or use

the local SYSID. The local SYSID is defined in the LocalSysId attribute of your

region’s Region Definitions (RD) entry. The default value is ISC0, and you can

change this value when you create your region or restart it. Whatever value your

region uses, ensure that it is different from the names of all CD entries and

Terminal Definitions (WD) entries that are used by your CICS region’s local

transactions.

When using CICS for AIX: If you are using SMIT to configure the RD entry, the

SMIT field name for the LocalSysId command

attribute is Region system identifier (short name).

 Table 8. Where to next

If you want to... Refer to...

Use CICS family TCP/IP support “Configuring CICS for CICS family TCP/IP

support”

Use PPC TCP/IP support “Configuring CICS for CICS PPC TCP/IP

support” on page 47

Configuring CICS for CICS family TCP/IP support

CICS family TCP/IP support is enabled in your region by configuring:

v A Listener Definitions (LD) entry with Protocol=TCP

A TCP LD entry is required for each TCP/IP port that CICS regions and IBM

CICS Universal Clients can use to contact the region. While the maximum

number of simultaneous connections through a single port is virtually unlimited,

the system configuration must be adjusted to deal with the load effectively. As a

general rule, a single listener process should not be handling more than about

500 connections (and even this might be restricted by file descriptor limits or

thread limits that are imposed by operating system configuration). Above this

number of connections for a single port, the TCPProcessCount attribute should

be used to adjust the number of operating system processes that CICS uses to

listen for connections. Determining the optimum number of connections that are

simultaneously active to a single listener is dependent on workload profiles, and

cannot be exactly predicted, but the above general rule should help. Configuring

a LD entry is described in “Configuring LD entries for CICS family TCP/IP” on

page 27.

cicstcpnetname -a aix5.cicsland.com -p 1435

05G2OXPN

26 TXSeries for Multiplatforms: CICS Intercommunication Guide

v A Communications Definitions (CD) entry for each remote system with

ConnectionType=ppc_tcp

The CD entries can be defined to the region by using the standard CICS RDO

commands such as cicsadd, or the IBM TXSeries Administration Tool (in CICS

for Windows), or they can be autoinstalled when a remote system acquires the

connection. The RDO technique is described in “Configuring CD entries for

CICS family TCP/IP(CICS on Open Systems only)” on page 34, and the

autoinstall method is described in “Configuring for autoinstallation of CD

entries” on page 55.

Examples of CICS family TCP/IP connections are shown in “CICS family TCP/IP

Configuration examples” on page 43.

Configuring LD entries for CICS family TCP/IP

This section describes how to configure LD entries for your system. For CICS on

Open Systems, see “Configuring LD entries for CICS family TCP/IP (CICS on

Open Systems)”; for CICS for Windows, see “Configuring LD entries for CICS

family TCP/IP (CICS for Windows only)” on page 28.

Configuring LD entries for CICS family TCP/IP (CICS on Open

Systems)

CICS family TCP/IP support requires at least one Listener Definitions (LD) entry

with Protocol=TCP. The TCPAddress and TCPService attributes are used to define

the network adapters and port number on which CICS is to accept connection

requests.

TCPAddress defines the network adapter addresses. It can be specified in the

following ways:

v The Internet Protocol (IP) address in dotted decimal notation. For example,

1.23.45.67. Do not use leading zeros when specifying an address in dotted

decimal notation. CICS interprets such an entry as octal.

v The Internet Protocol (IP) address in dotted hexadecimal notation. For example,

0x01.0x17.0x2D.0x43.

v The host name defined in the Internet name service. For example,

aix5.cicsland.com.

The TCPService attribute specifies a TCP/IP service name. This service name is

configured in the TCP/IP configuration file called /etc/services and defines a

TCP/IP port number. How to add entries to /etc/services is described in “Adding a

service name to the TCP/IP configuration” on page 30.

The following example shows TCPAddress and TCPService in a CICS family

TCP/IP LD entry called CICSTCP. Notice also that ActivateOnStartup=yes as CICS

will activate listeners only during region start up. Any LD entries that are added

while the region is running will be used by the CICS region only when the region

is restarted.

The command to add LD entry CICSTCP to the CICS region’s permanent database

is:

 CICSTCP: ActivateOnStartup=yes

 Protocol=TCP

 TCPAddress="aix5.cicsland.com"

 TCPService="cicstcp"

Chapter 3. Configuring CICS for TCP/IP 27

cicsadd -r cics -P -c ld CICSTCP TCPAddress ="aix2.cicsland.com"

 TCPService="cicstcp"

The ActivateOnStartup and Protocol attributes are not specified because the

default values are being used. (The command cicsget -r regionName -c ld ""

will display the default attributes for the LD entries).

Alternatively, the TCPAddress and TCPService attributes can be left blank. A

blank TCPAddress indicates that CICS can use the address of any of the TCP/IP

network adapters on the machine. A blank TCPService attribute means that CICS

will listen for connections on port 1435.

CICS does not need an entry in /etc/services if TCPService="". However, it is

recommended that you add an entry for the 1435 port to document that your

region is using it.

Note: If you have multiple network adapters, and you configure a LD entry with

TCPAddress=""), that listener cannot be used for CICS family TCP/IP

connections with other CICS server regions. However, such a listener can be

used to support CICS family TCP/IP connections from the CICS server to

IBM CICS Universal Clients. If you want to use CICS family TCP/IP

support between CICS regions, you must ensure that your LD entry defines

only one network adapter address.

Configuring LD entries for CICS family TCP/IP (CICS for

Windows only)

A Listener Definitions (LD) entry describes how your CICS region should connect

to a network. For CICS family TCP/IP support, a LD entry is required for each

TCP/IP port that will be used to receive requests.

To define a LD entry for CICS family TCP/IP, you select your region name from

the main panel of the IBM TXSeries Administration Tool. Then select the Listener

resource from the Resources option of the Subsystem menu.

This action displays the list of LD entries that you have already defined.

Select the New option of the Listeners menu, and the properties notebook window

is displayed, as shown in Figure 10 on page 29.

 CICSTCP: ActivateOnStartup=yes

 Protocol=TCP

 TCPAddress=""

 TCPService=""

28 TXSeries for Multiplatforms: CICS Intercommunication Guide

Enter a name for the LD entry in Listener name. This can be up to eight characters

in length, and is a local name that your CICS region uses to identify the LD entry

in CICS messages. It must be different from the names of all other LD entries that

are in your region. However, it does not have to be unique within the network and

does not have to relate to any other names that are used in the network.

The Protocol should be TCP/IP.

The IP address is the TCP/IP address of the machine on which your CICS region

is running. It can be expressed in any of the following ways:

v The Internet Protocol (IP) address in dotted decimal notation. For example,

1.23.45.789. Do not use leading zeros when specifying an address in dotted

decimal notation. CICS interprets such an entry as octal.

v The Internet Protocol (IP) address in dotted hexadecimal notation. For example,

0x01.0x17.0x2D.0x315.

v The host name defined in the Internet name service. For example,

cicsopen.cicsland.com. If a host name is used, it must map to only one IP

address.

Alternatively, the IP address can be left blank to indicate that CICS can use any of

the TCP/IP network adapters that are on the machine.

The TCP/IP service attribute specifies a TCP/IP service name that, in turn, defines

a TCP/IP port number. Adding service entries is described in “Adding a service

name to the TCP/IP configuration” on page 30.

Figure 10. Listener Definitions (LD) entry

Chapter 3. Configuring CICS for TCP/IP 29

The default value for the TCP/IP service attribute is blank, which requests that

CICS uses the 1435 port that is the port assigned to CICS by the Internet Assigned

Number Authority (IANA).

When you have filled in all the attributes, select either Permanent or Both to create

the LD entry.

If Permanent is selected, the CICS command that the IBM TXSeries Administration

Tool will issue for the example shown above is:

The cicsadd command is passed the name of each attribute with its required value.

This attribute name can be displayed by placing the mouse pointer over the

description of the attribute on the IBM TXSeries Administration Tool page.

You must restart your region in order to use this listener. You should perform a

cold start if you selected Permanent, or auto start if you selected Both.

Refer to the TXSeries for Multiplatforms Administration Reference for a description of

the cicsadd command.

Adding a service name to the TCP/IP configuration

The service name that is specified in the CICS family TCP/IP Listener Definitions

(LD) entry is defined in the TCP/IP configuration file /etc/services. The example

below shows three service name entries from /etc/services. Each entry begins with

a service name (cicstcp1). This is followed by the TCP/IP port number (8595) and

/tcp. You can also add a comment to the end of the line. This must begin with a

hash character (#).

Note: The allocation of port number to services is not enforced. System

administrators can set up the /etc/services file as they choose, including

using port 1435 for a service other than CICS. Therefore always check

whether you have chosen a port number that is unique to your machine,

and that is not being used by any other CICS region, listener, or TCP

application. If your region is using the CICS default port number 1435, it is

recommended that you add an entry to /etc/services for this port number

to document that it is in use. This might prevent the systems administrator

from configuring another application or CICS region with this port. For

example:

Increasing the size of the mbuf pool (AIX only)

If your local machine is managing many TCP/IP connections, it might run out of

space in the mbuf pool. This is an area of memory that TCP/IP allocates when AIX

is initialized. The default size is 2 MB, which will manage up to about 800 CICS

family TCP/IP connections.

C:\ cicsadd -r cicswint -P -c ld CICSTCP \

 Protocol=TCP \

 TCPAddress="wint127.cicsland.com" \

 TCPService="cicstcp"

 cicstcp1 8595/tcp # TCP listener1 for region regionName

 cicstcp2 8596/tcp # TCP listener2 for region regionName

 cicstcp3 8597/tcp # TCP listener3 for region regionName

 cicstcp 1435/tcp # TCP Listener used by region regionName

30 TXSeries for Multiplatforms: CICS Intercommunication Guide

You can display size of the mbuf pool, along with other network options, by using

the no -a command. The mbuf pool size is called thewall. It is expressed in

multiples of 1024 bytes, so in the example below, the mbuf pool size is 2048 x 1024

bytes (2 MB).

The no -o thewall command allows you to change the mbuf pool size. The

example below sets the mbuf pool size to 4096 x 1024 bytes (4 MB). (You will need

to be the root user to issue this command.)

The no command operates only on the current running kernel, so it must be rerun

each time your machine is started up. To configure your machine to run this

command automatically on startup, add the command to the /etc/rc.net file.

 Attention: Be careful when you use the no command because it performs no

range checking on the parameters that you specify. If used incorrectly, the no

command can cause your system to become inoperable.

Using SMIT to configure LD entries (AIX only)

When using CICS for AIX, you can use SMIT to configure the Listener Definitions

(LD) entries. To support CICS family TCP/IP, you must configure an LD entry

with the Protocol type field set to TCP. You will need an LD entry for each

TCP/IP port that CICS regions and IBM CICS Universal Clients use to contact the

region. The optimum number of connections simultaneously active through a

single port is about 200 and the maximum is around 450 connections.

To add an LD entry for CICS family TCP/IP to your region:

v Ensure that you are logged on to AIX with enough privileges to change the

region database. (For example, log onto AIX as the root user.)

v Optionally set the environment variable CICSREGION to the name of your

CICS region. For example:

 % export CICSREGION=cics

v Enter smitty cicsregion to start SMIT.

v Use option Change Working CICS Region to select your CICS region. (This is

required only if you have not set up CICSREGION before starting SMIT.)

v Select options:

 � Define Resources for a CICS Region

 � Manage Resource(s)

 � Listeners

 � Add New

This displays the Add Listener panel. Enter a model Listener Definition (LD)

entry name. This could be the name of an LD entry that you have defined

already. Alternatively, press the Enter key to use the default.

Figure 11 on page 33 shows an example of a SMIT Add Listener panel.

v Type in the name of the LD entry in the Listener Identifier field, and the values

that you require for TCP adapter address and TCP service name.

– The TCP adapter address field defines the network adapter addresses of your

machine. It can be specified in the following ways:

 % no -a | grep thewall

 thewall = 2048

 % no -o thewall 4096

Chapter 3. Configuring CICS for TCP/IP 31

- The Internet Protocol (IP) address in dotted decimal notation. For example,

1.23.45.67. Do not use leading zeros when specifying an address in dotted

decimal notation. CICS interprets such an entry as octal.

- The Internet Protocol (IP) address in dotted hexadecimal notation. For

example, 0x01.0x17.0x2D.0x43.

- The host name that is defined in the Internet name service. For example,

aix5.cicsland.com.
– The TCP service name field specifies the service name that CICS uses when

starting TCP/IP. This service name is configured in the TCP/IP configuration

file called /etc/services and defines a TCP/IP port number.

This is described further in “Adding a service name to the TCP/IP

configuration” on page 30.

The TCP adapter address and TCP service name attributes can remain blank. A

blank TCP adapter address indicates that CICS can use the address of any of the

TCP/IP network adapters that are on the machine. A blank TCP service name

attribute means that CICS will listen for connections on port 1435.

CICS does not need an entry in /etc/services if TCP service name="". However,

it is recommended that you add an entry for the 1435 port to document that

your region is using it.

Note: If you have multiple network adapters, and you configure a LD entry

with TCP adapter address=""), that listener cannot be used for CICS

family TCP/IP connections with other CICS server regions. However,

such a listener can be used to support CICS family TCP/IP connections

from the CICS server to IBM CICS Universal Clients. If you want to use

CICS family TCP/IP support between CICS regions, you must ensure that

your LD entry defines only one network adapter address.

v Then press the Enter key to create the LD entry.

Figure 11 on page 33 shows an example of the SMIT panel for adding a new LD

entry.

32 TXSeries for Multiplatforms: CICS Intercommunication Guide

Tuning TCP/IP on the Windows platform

The default settings for the KeepAliveTime and TcpTimedWaitDelay registry

settings can cause delays if a network failure occurs. This section discusses what

you must consider for these registry settings when you are connecting Windows

Client terminals (cicslterm.exe) that are hard-named to a Windows region over

TCP/IP. A terminal or a connection is hard-named when you give it a specific

name in the DFHCCINX (for connections), or in the DFHCHATX (for terminals).

TCP/IP’s KeepAliveTime registry setting

The KeepAliveTime value sets the time that can elapse without a communication

from an endpoint connection before the system checks whether the endpoint

connection is still active. The default value is 7,200,000 milliseconds (2 hours). If a

network failure occurs while this registry setting is set to this default setting, two

hours can elapse before the failed endpoint connection is cleared and able to be

reused.

You can lower the value for the KeepAliveTime registry setting, which increases

network activity on idle connections, but the activity on active connections is not

affected. However, if the KeepAliveTime value is set too low, active connections

can terminate incorrectly because of latency on the network. The appropriate value

for the KeepAliveTime registry setting differs for each installation. Some

installations run efficiently by using a value as low as five seconds.

You can change the KeepAliveTime registry setting in the following Windows

registry location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters

Microsoft SNA Server’s KeepAlive registry setting: If you are using the

Microsoft SNA Server over encapsulated IP and you have applied the

 Add Listener

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...1] [Entry Fields]

* Model Listener Identifier ""

* Region name [vijn] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate resource at cold start? yes +

 Resource description [Listener Definition]

* Number of updates 0

 Protect resource from modification? no +

 Protocol type TCP +

 TCP adapter address []

 TCP service name []

 Number of TCPIP listener processes to use [1] #

 local SNA Server Protocol Type TCP +

[MORE...10]

F1=Help F2=Refresh F3=Cancel F4=List

Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image

Esc+9=Shell Esc+0=Exit Enter=Do

Figure 11. SMIT panel for adding an LD entry for CICS family TCP/IP support

Chapter 3. Configuring CICS for TCP/IP 33

KeepAliveTime registry setting change in the Windows registry, you possibly need

to configure the Microsoft SNA Server not to use TCP/IP’s KeepAlive facility.

For example, suppose that the implementation has a Local Area Network (LAN)

with IBM Universal Clients connecting to a local server that is using SNA Server to

connect to a mainframe. In this configuration, if the value for TCP’s

KeepAliveTime registry setting is set low (to detect terminal disconnections

quickly), configure the SNA Server not to use TCP/IP’s KeepAlive facility.

However, if the value of TCP’s KeepAliveTime registry setting is set high enough

to allow the external link to be correctly registered, the SNA Server can be

configured to use the SNA KeepAlive registry setting.

To configure the Microsoft SNA Server not to use TCP/IP’s KeepAlive facility, set

the value for SNA’s KeepAlive registry setting to NO in the Windows Registry.

You can change the registry settings for the Microsoft SNA Server configuration in

the following Windows registry location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\SnaBase\Parameters\SnaTcp

TcpTimedWaitDelay settings

The Microsoft Windows implementation of TCP/IP uses a default value for the

TcpTimedWaitDelay registry setting of 240 seconds (four minutes). If a network

failure occurs, it is possible that CICS will not detect the failure of an active session

(as opposed to an idle session) for four minutes. The TcpTimedWaitDelay setting is

by Microsoft SNA Server with encapsulated IP.

The value for the TcpTimedWaitDelay is derived from the Maximum Segment

Length (MSL), which is the maximum time that an IP packet can exist. The setting

for the TcpTimedWaitDelay registry setting must be twice the value of the MSL to

allow enough time for the final packet to be delivered and the response to be

received. For example, if a TCP/IP implementation has an average of 30 seconds

for an MSL, set the TcpTimedWaitDelay value at 1 minute to allow enough time

for packet delivery and response.

 Attention: Reducing the value of the TcpTimedWaitDelay registry setting on a

congested network can result in spurious failures. Before making any changes to

this registry setting, ensure that the packet delivery times for your implementation

are stable.

You can change the TcpTimedWaitDelay registry setting in the following Windows

registry location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters

Configuring CD entries for CICS family TCP/IP

This section describes how to configure CD entries for your system. For CICS on

Open Systems, see “Configuring CD entries for CICS family TCP/IP(CICS on

Open Systems only)”; for CICS for Windows, see “Configuring Communications

Definitions (CD) entries for CICS family TCP/IP (CICS for Windows only)” on

page 36.

Configuring CD entries for CICS family TCP/IP(CICS on Open

Systems only)

To define a CICS family TCP/IP connection in your region, configure a

Communications Definitions (CD) entry that has ConnectionType=ppc_tcp.

34 TXSeries for Multiplatforms: CICS Intercommunication Guide

To configure the location of the remote system in a CICS family TCP/IP CD entry,

use the RemoteTCPAddress and RemoteTCPPort attributes.

RemoteTCPAddress specifies the machine, or more specifically the network

adapter card on the machine, on which the remote system is running. It can be

specified in the following ways:

v The Internet Protocol (IP) address in dotted decimal notation. For example,

1.23.45.67. Do not use leading zeros when specifying an address in dotted

decimal notation. CICS interprets such an entry as octal.

v The Internet Protocol (IP) address in dotted hexadecimal notation. For example,

0x01.0x17.0x2D.0x43.

v The host name that is defined in the Internet name service. For example,

aix5.cicsland.com. If a host name is used, it must map to only one IP address.

You can check this by using the host command. For example:

The RemoteTCPPort attribute must be set to the port number that the remote

system is using to listen for connection requests. The default value for

RemoteTCPPort is 1435, which is the port that is assigned to CICS by the Internet

Assigned Number Authority (IANA).

The ListenerName attribute must be set to the name of a Listener Definitions (LD)

entry that is defined in the local region that has Protocol=TCP. This LD entry

defines the IP address and port number that the remote system must use to contact

the local region. CICS requires the ListenerName attribute to be correctly

configured, even if this connection is to be used only for outbound requests,

because a cicsip process, which is started as a result of the LD entry, is required to

open the TCP/IP connection. (“Configuring LD entries for CICS family TCP/IP”

on page 27 describes how to set up an LD entry.)

The RemoteLUName attribute should be set to the remote region name (that is, the

APPLID), unless the remote system is a version 2 CICS OS/2 or version 2 CICS for

Windows system, when it should be the netname that is returned by the

cicstcpnetname command:

The subject of how regions are named is discussed further in “Naming your region

for a TCP/IP intercommunication environment” on page 25. For further

information about the cicstcpnetname command, see the TXSeries for Multiplatforms

Administration Reference.

The following attributes are not required for a CICS family TCP/IP connection and

can remain as the default value:

v RemoteNetworkName

v SNAConnectName

v GatewayName

v AllocateTimeout

v RemoteSysEncrypt

Refer to “Data conversion for transaction routing” on page 164 for information

about how to configure the RemoteCodePageTR attribute.

 $ host aix5.cicsland.com

 aix5.cicsland.com is 1.23.45.67

cicstcpnetname -a <RemoteTCPAddress> -p <RemoteTCPPort>

Chapter 3. Configuring CICS for TCP/IP 35

The following example shows a command to add a CD entry called TOSF to the

CICS region’s permanent database. Only some of the attributes are specified. The

attributes that are not specified are set to their default values. You can view the

default values for a CD entry for your region by using cicsget -r regionName -c

cd "".

Refer to Chapter 6, “Configuring intersystem security,” on page 123 for

information about how to configure the following security attributes:

v OutboundUserIds

v RemoteSysSecurity

v LinkUserId

v TSLKeyMask

v RSLKeyMask

Configuring Communications Definitions (CD) entries for CICS

family TCP/IP (CICS for Windows only)

A Communications Definitions (CD) entry describes details of a remote system and

how your local region should communicate with it. To define a CD entry for a

remote system, select your region name from the main panel of the IBM TXSeries

Administration Tool. Then select the Communication resource from the Resources

option of the Subsystem menu.

This displays the list of CD entries that you have already defined.

Select the New option of the Communications menu. The properties notebook

window is displayed.

The attributes for a CD entry are grouped into four pages:

General

Attributes that are required by all CD entries.

SNA Attributes that describe how the remote system communicates over a SNA

network. Attributes on this page are not applicable to a CICS family

TCP/IP CD entry.

TCP/IP

Attributes that describe how the remote system connected to the TCP/IP

network.

Security

Attributes that define how security will be managed.

The General page is shown in Figure 12 on page 37.

cicsadd -r cics -P -c cd TOSF \

 ConnectionType=ppc_tcp \

 RemoteLUName="cicsosf1" \

 RemoteTCPAddress="digital.cicsland.com" \

 RemoteTCPPort=1435 \

 ListenerName="CICSTCP" \

 LinkUserId="LINKTOSF"

36 TXSeries for Multiplatforms: CICS Intercommunication Guide

Enter the four-character SYSID for this CD entry. This is the CD entry’s key and

must be different from that which is used by other CD entries in your region.

However, the name is used only by local resources and applications. It does not

have to be unique within the network, and it does not relate to any other values in

the remote system.

The Connection type should be changed to CICS TCP/IP. The Code page for

transaction routing should be the code page that is used to flow transaction

routing data across the network. The correct code page depends on the national

language of your local region and the type of the remote system. Chapter 7, “Data

conversion,” on page 147 describes how to determine the value.

Select the TCP/IP tab to display the TCP/IP attributes, which is shown in

Figure 13. This panel is used to describe the remote CICS region and its location in

the TCP/IP network.

Figure 12. General Communications Definitions (CD) panel

Figure 13. TCP/IP Communications Definitions (CD) panel

Chapter 3. Configuring CICS for TCP/IP 37

For most CD entries the Remote APPLID is the name of the remote CICS region.

The exceptions are when the remote system is either:

v CICS OS/2 version 2

v CICS for Windows

For these systems the APPLID must be generated by using the cicstcpnetname

utility. This is described in the TXSeries for Multiplatforms Administration Reference.

The Remote IP address is the TCP/IP address of the machine on which the remote

CICS region is running. It can be expressed in one of the following ways:

v The Internet Protocol (IP) address in dotted decimal notation. For example,

1.23.45.67. Do not use leading zeros when specifying an address in dotted

decimal notation. CICS interprets such an entry as octal.

v The Internet Protocol (IP) address in dotted hexadecimal notation. For example,

0x01.0x17.0x2D.0x43.

v The host name that is defined in the Internet name service. For example,

aix5.cicsland.com. If a host name is used, it must map to only one IP address.

The Remote IP port attribute must be set to the port number that the remote

system will be using to listen for TCP/IP connection requests. The default value is

1435, which is the port that is assigned to CICS by the Internet Assigned Number

Authority (IANA).

The Local Listener attribute must be set to the name of a TCP Listener Definitions

(LD) entry that is defined in the local region. This LD entry defines the IP address

and port number that the remote system must use to contact the local region. CICS

requires the Local Listener attribute to be correctly configured even if this CD

entry is only to be used for outbound requests, because the cicsip process, which is

started as a result of the LD entry, is required to open the TCP/IP connection.

Further information about how to configure the LD is given in “Configuring LD

entries for CICS family TCP/IP” on page 27.

Select the Security tab to display the security attributes, which are shown in

Figure 14. These attributes describe the security checking that applies to all

intersystem requests that use this CD entry.

Figure 14. Security Communications Definitions (CD) panel

38 TXSeries for Multiplatforms: CICS Intercommunication Guide

Selecting the Local option for Inbound request security indicates that CICS should

run all incoming intersystem requests from the remote system under the user ID

that is specified in UserID for inbound requests. The User Definitions (UD) entry

for this user ID determines which resources these intersystem requests can access.

This type of security is called Link Security, and is described in “CICS link

security” on page 126.

Selecting either Verify or Trusted causes CICS to apply User Security to incoming

intersystem requests. This means CICS uses the security information (such as user

ID and password) that is sent with the intersystem request. CICS also uses the user

ID that is specified in UserID for inbound requests to restrict the resources that

inbound intersystem requests can access. For more information about User

Security, see “CICS user security” on page 127.

Security information that is sent with outbound requests is controlled by the Send

user ID with outbound requests options. “Setting up a CICS region to flow user

IDs” on page 130 and “Setting up a CICS region to flow passwords” on page 131

describe how these options work.

After you have filled in all the attributes, select either Permanent or Both to create

the CD entry.

If Permanent is selected, the CICS command that the IBM TXSeries Administration

Tool will issue for the example shown above is:

The cicsadd command is passed the name of each attribute with its required value.

You can display this attribute name by placing the mouse pointer over the

description of the attribute on the IBM TXSeries Administration Tool panel. Any

attribute that is not specified on the cicsadd command is set to its default value.

How to view and change the default values for CD entry attributes is described in

“Configuring the default CD entry (CICS on Open Systems)” on page 56.

Refer to the TXSeries for Multiplatforms Administration Reference for a description of

the cicsadd command.

Using SMIT to configure CD entries (AIX only)

When using CICS for AIX, you can use the AIX System Management Interface Tool

(SMIT) to configure the Communications Definitions (CD) entries. To support CICS

family TCP/IP, you must configure a CD entry with the Connection type field set

to ppc_tcp.

To add a CD entry for CICS family TCP/IP to your region:

v Ensure that you are logged on to AIX with enough privileges to change the

region database. (For example, log onto AIX as the root user.)

v Optionally set the environment variable CICSREGION to the name of your

CICS region. For example:

cicsadd -r cics -P -c cd TOSF \

 ConnectionType=ppc_tcp \

 RemoteLUName="cicsosf1" \

 RemoteTCPAddress="aix.cicsland.com" \

 RemoteTCPPort=1435 \

 ListenerName="CICSTCP" \

 LinkUserId="LINKTOSF"

Chapter 3. Configuring CICS for TCP/IP 39

$ export CICSREGION=cics

 $

v Enter smitty cicsregion to start SMIT.

v Use option Change Working CICS Region to select your CICS region. (This is

required only if you have not set up CICSREGION before starting SMIT.)

v Select options:

 � Define Resources for a CICS Region

 � Manage Resource(s)

 � Communications

 � Add New

This displays the Add Communication panel. Enter a model Communications

Definition (CD) entry name. This could be the name of a CD entry that you have

defined already. Alternatively, press the Enter key to use the default.

Figure 15 on page 41 shows an example of a SMIT Add Communication panel.

v The Communication Identifier field is the name of the CD entry. This name is

used in the SYSID option of CICS commands.

v The Connection type field specifies ppc_tcp to indicate that this is a CD entry

for CICS family TCP/IP.

v You configure the location of the remote system by using the TCP address for

the remote system and TCP port number for the remote system fields.

– The TCP address for the remote system specifies the machine, or more

specifically the network adapter card on the machine, on which the remote

system is running. It can be specified in the following ways:

- The Internet Protocol (IP) address in dotted decimal notation. For example,

1.23.45.67. Do not use leading zeros when specifying an address in dotted

decimal notation. CICS interprets such an entry as octal.

- The Internet Protocol (IP) address in dotted hexadecimal notation. For

example, 0x01.0x17.0x2D.0x43.

- The host name that is defined in the Internet name service. For example,

aix5.cicsland.com. If a host name is used, it must map to only one IP

address. You can check this by using the host command.
– The TCP port number for the remote system field must be set to the port

number that the remote system is using to listen for connection requests. The

default value for TCP port number for the remote system is 1435, which is

the port assigned to CICS by the Internet Assigned Number Authority

(IANA).
v The Listener Definition (LD) entry name field must be set to the name of an

LD entry that is defined in the local region that has Protocol type of TCP. This

LD entry defines the IP address and port number that the remote system is to

use to contact the local region. CICS requires the Listener definition (LD) entry

name field to be correctly configured, even if this connection is to be used only

for outbound requests, because a cicsip process, which is started as a result of

the LD entry, is required to open the TCP/IP connection. (“Using SMIT to

configure LD entries (AIX only)” on page 31 describes how to set up a LD

entry.)

v The security levels that your CICS region will use are configured with:

– Send userids on outbound requests?

– Security level for inbound requests

– UserId for inbound requests

– Transaction Security Level (TSL) Key Mask

– Resource Security Level (RSL) Key Mask

Chapter 6, “Configuring intersystem security,” on page 123 describes how CICS

security is configured.

40 TXSeries for Multiplatforms: CICS Intercommunication Guide

v Refer to “Data conversion for transaction routing” on page 164 for information

about how to configure the Code page for transaction routing field.

v The following fields are not required for CICS family TCP/IP connections, and

can remain as the default value:

– SNA network name for the remote system

– SNA profile describing the remote system

– Gateway Definition (GD) entry name

– Timeout on allocate (in seconds)

– Transmission encryption level

– Default modename for a SNA connection

Figure 15 shows an example of the SMIT panel for adding a new CD entry.

 Table 9. Road map

If you want to... Refer to...

Review examples and a summary of CICS

configurations

“CICS family TCP/IP Configuration

examples” on page 43, and “Summary of

CICS attributes for TCP/IP resource

definitions” on page 54

 Add Communication

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Communication Identifier [TOSF]

* Model Communication Identifier ""

* Region name [cics] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate the resource at cold start? yes +

 Resource description [Connection

to cicsosf1]

* Number of updates 0

 Protect resource from modification? no +

 Connection type ppc_tcp

 +

 Name of remote system [cicsosf1]

 SNA network name for the remote system []

 SNA profile describing the remote system []

 Default modename for a SNA connection []

 Gateway Definition (GD) entry name []

 Listener Definition (LD) entry name [CICSTCP]

 TCP address for the remote system [digital.cicsland.com]

 TCP port number for the remote system [1435] #

 Timeout on allocate (in seconds) [0] #

 Code page for transaction routing [ISO8859-1]

 Set connection in service? yes +

 Send userids on outbound requests? sent +

 Security level for inbound requests local +

 UserId for inbound requests [LINKTOSF]

 Transaction Security Level (TSL) Key Mask [none]

 Resource Security Level (RSL) Key Mask [none]

 Transmission encryption level none +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 15. SMIT panel for adding a CD entry for CICS family TCP/IP support

Chapter 3. Configuring CICS for TCP/IP 41

Table 9. Road map (continued)

If you want to... Refer to...

Read about configuring CICS resources Chapter 5, “Configuring resources for

intercommunication,” on page 109

Read about intercommunication security Chapter 6, “Configuring intersystem

security,” on page 123

Read about data conversion Chapter 7, “Data conversion,” on page 147

Configuring an IBM CICS Client to use CICS family TCP/IP

This section describes how to configure an IBM CICS Client to connect to a CICS

region through CICS family TCP/IP. For detailed information about how to

configure a CICS Client, refer to CICS Universal Client: Client Administration.

The client initialization file needs a Server section for each region it will

communicate with, and a Driver section for each Protocol used. Example Server

and Driver sections are shown in Figure 16.

The parameters are as follows:

Server

The name that the Client uses for the region.

NetName

The character or numeric TCP/IP identifier for the host. This can be an IP

address (like 1.23.45.67), or a hostname (for example, cicsopen, or

cicsopen.cicsland.com). A hostname is looked up in the Client’s HOSTS file, or

its name server.

Protocol

This must match a Driver entry in the Client’s Driver section.

Description

An optional description of the server that is returned in some programming

functions on the Client.

UpperCaseSecurity

It is recommended that this be set to N for a TXSeries for Multiplatforms

region. This prevents user IDs and passwords being converted to uppercase by

the Client (which it does by default). Unless all the user IDs and passwords on

the region are in uppercase only, this conversion could cause errors.

InitialTransid

This parameter is optional. If present, it is used as the first transaction (with

any parameters following it) run when the client terminal emulator connects to

the server.

Server = cicsopen

 NetName = cicsopen.cicsland.com

 Protocol = TCPIP

 Description = CICS on cicsopen region

 UpperCaseSecurity = N

 InitialTransid = CESN

 ModelTerm = ibm-cics-client

 Port = 1435

Driver = TCPIP

 DriverName = CCLIBMIP

Figure 16. IBM CICS Client Server and Driver examples

42 TXSeries for Multiplatforms: CICS Intercommunication Guide

ModelTerm

This parameter is optional. When a Client terminal is autoinstalled into a

TXSeries for Multiplatforms region, the model Terminal Definition used will

have a DevType of this value. See the TXSeries for Multiplatforms Administration

Reference for further details. The default value is ibm-cics-client.

Port

The port on which the CICS for Windows region listens for connections. If the

parameter is omitted (or set to 0), the Client’s TCP/IP SERVICES file is

searched for a CICS entry. If this is not found, the default of 1435 is used.

Driver

Any 1- through 8-character name.

DriverName

The client device driver for the TCP/IP product that the Client uses.

Timeouts supported on TCP/IP connections between a

TXSeries for Multiplatforms region and a Universal Client V3.1

or higher

A TXSeries for Multiplatforms region can time out transactions that are running

over TCP/IP connections to an IBM CICS Universal Client V3.1 and higher based

on the value that is specified in the region’s Transaction Definitions (TD) Timeout

attribute. When a Universal Client V3.1 or higher connects to a TXSeries for

Multiplatforms region, it identifies itself as a client that can support timeout

functions. In this case, the value that is set in the region’s Transaction Definitions

(TD) Timeout attribute automatically overrides any value that is set in the Region

Definitions (RD) XPRecvTimeout attribute. If the region waits for a response from

the client longer than the time that is specified in its Transaction Definitions (TD)

Timeout attribute, the region abends the transaction and flows the abend to the

client.

The following conditions can then occur:

v If the region receives a response from the client, the connection is maintained

and the client can submit further transactions.

v If the region receives no response from the client, the TCP/IP connection to the

client is checked. If still no response is received from the client, the connection

closes and all transactions that are running over it are terminated.

v If the region cannot contact the client, the connection closes and all transactions

that are running over it are terminated.

An IBM CICS Universal Client V3.1 and higher can time out External Call Interface

(ECI) programs based on the value that is in the eci_timeout field in the ECI

parameter block. If the client times out a transaction in this case, the transaction is

purged on the server, and returns an A147 abend code.

CICS family TCP/IP Configuration examples

The examples that follow show a CICS for Windows region called cicswint

communicating with a CICS on Open Systems region, called cics, and with a CICS

OS/2 region called CICSOS2. Table 8 on page 26 shows the TCP/IP host names and

ports that the CICS regions use, and Figure 17 on page 44 summarizes the

configuration that is discussed in this section.

Chapter 3. Configuring CICS for TCP/IP 43

Table 10. CICS family TCP/IP configuration example

cicswint cics CICSOS2

Local TCP/IP host wint127.cicsland.com aix.cicsland.com warp3.cicsland.com

Listening port 1435 1435 5566

When using CICS for AIX

The examples in this section show CICS commands being used to configure

the resources. If you are using CICS for AIX, you could use the System

Management Interface Tool (SMIT) to configure the resources.

CICS OS/2 configuration

You define the CICS OS/2 listener in the System Initialization Table (SIT) by using

the CEDA transaction. The host name of the local machine, warp3.cicsland.com

and the listening port of 5566 is shown in Figure 18 on page 45.

/etc/services

cicstcp 1435/tcp

cicsosf1

Protocol=TCP
TCPAddress=digital.cicsland.com
TCPService=cicstcp

ConnectionType=cics_tcp
RemoteLUName=cicswint
RemoteTCPAddress=wint127.cicsland.com
RemoteTCPPort=1435
ListenerName=CICSTCP

CICS
Appl

CICSOS2

TCP/IP local host name: WARP3.CICSLAND.COM
TCP/IP local host port: 5566

Local host name: WARP3.CICSLAND.COM
Remote host name: WINT127.CICSLAND.COM
Remote host port: *

System Initialization Table (SIT)

Connection and Session Table

TCP/IP

\etc\services

cicstcp 1435/tcp

cicswint

Listener Definition (LD) CICSTCP:

Protocol=TCP
TCPAddress=wint127.cicsland.com
TCPService=cicstcp

ConnectionType=cics_tcp
RemoteLUName=05G1HSOM
RemoteTCPAddress=warp3.cicsland.com
RemoteTCPPort=5566
ListenerName=CICSTCP

ConnectionType=cics_tcp
RemoteLUName=cicsosf1
RemoteTCPAddress=digital.cicsland.com
RemoteTCPPort=1435
ListenerName=CICSTCP

CICS
Appl

Figure 17. CICS family TCP/IP example

44 TXSeries for Multiplatforms: CICS Intercommunication Guide

Figure 19 shows the CICS OS/2 definition of the connection from the CICSOS2

region to the cics region. You define it in the Connection and Session Table (TCS®)

by using the CEDA transaction. Note that CICS OS/2 expands the Remote host

port value of "*" to 1435.

Configuration for region cicsopen

Figure 20 shows the Listener Definitions (LD) entry that enables cicsopen to

receive CICS family TCP/IP connection requests from remote systems.

 Update Add View Delete Exit Help

 FAASIT3 System Initialization Table-2

 More : - +

 Group Name : FAASYS

 System Communications

 Local System ID. : COS2

 Local System Appl ID . . . : CICSOS2

 Default Remote System ID . :

 NETBIOS Support

 NETBIOS Listener Adapter . : (0, 1, or B)

 Maximum NETBIOS Systems. . : 0 (0-255)

 TCP/IP Support

 TCP/IP Local Host Name . . : WARP3.CICSLAND.COM

 TCP/IP Local Host Port . . : 5566 (* or 1-65535)

 Maximum TCP/IP Systems . . : 25 (0-255)

 PNA Support

 Load PNA Support : M (Y or N)

 PNA Model Terminal : MPNA

 Enter F1=Help F3=Exit F7=Bkwd F8=Fwd F10=Actions F12=Cancel

Figure 18. CICS OS/2 System Initialization Table

 Update Add View Delete Exit Help

 FAATCS5 Connection and Session Table

 Connection Name. : 6000

 Group Name : COMMS

 Connection Type. : TCP (APPC, NETB or TCP)

 Connection Priority. : 086 (0-255)

Description. : CONNECTION TO CICS

Session Details

 Session Count. : 10 (1-99)

 Session Buffer Size. . . : 40000 (512-40000)

 Attach Security. : L (L=Local, V=Verify)

 Partner Code Page. . . . : 00037

TCP/IP Details

 Local host name. : WARP3.CICSLAND.COM

 Remote host name : AIX5.CICSLAND.COM

 Remote host port : * (1-65535, OR *)

Enter F1=Help F3=Exit F10=Actions F12=Cancel

Figure 19. CICS OS/2 Connection and session table

 CICSTCP:

 ActivateOnStartup=yes

 Protocol=TCP

 TCPAddress="cicsopen.cicsland.com"

 TCPService="cicstcp"

Figure 20. Listener Definitions (LD) entry

Chapter 3. Configuring CICS for TCP/IP 45

The TCPService name is configured in the /etc/services file.

Figure 21 shows the Communications Definitions (CD) entry for the connection

from cicsopen to CICSOS2. The CICS OS/2 region is version 2, so you set the

RemoteLUName attribute by using the cicstcpnetname command:

 % cicstcpnetname -a warp3.cicsland.com -p 5566

 05G1HSQM

Figure 22 shows the CD entry for the connection from cicsopen to cics. Note that

CICS on Open Systems regions use their region name for the RemoteLUName

attribute.

Configuration for region cics

Figure 23 shows the Listener Definitions (LD) entry that enables cicsosf1 to

receive CICS family TCP/IP connection requests from remote systems.

The TCPService name is configured in the /etc/services file as follows:

Figure 24 on page 47 shows the Communications Definitions (CD) entry for the

connection from cics to cicswint.

 cicstcp 1435/tcp # TCP Listener used by region cicsopen

 TOS2:

 ConnectionType=cics_tcp

 RemoteLUName="05G1HSQM"

 RemoteTCPAddress="warp3.cicsland.com"

 RemoteTCPPort=5566

 ListenerName="CICSTCP"

 RemoteCodePageTR="IBM-037"

Figure 21. Communications Definitions (CD) entry

 TOSF:

 ConnectionType=ppc_tcp

 RemoteLUName="cics"

 RemoteTCPAddress="aix.cicsland.com"

 RemoteTCPPort=1435

 ListenerName="CICSTCP"

 RemoteCodePageTR="ISO8859-1"

Figure 22. Communications Definitions (CD) entry

 CICSTCP:

 ActivateOnStartup=yes

 Protocol=TCP

 TCPAddress="aix.cicsland.com"

 TCPService="cicstcp"

Figure 23. Listener Definitions (LD) entry

 cicstcp 1435/tcp # TCP Listener used by region cics

46 TXSeries for Multiplatforms: CICS Intercommunication Guide

Configuring CICS for CICS PPC TCP/IP support

To configure a connection for CICS PPC TCP/IP support you must:

v Configure a Communications Definitions (CD) entry for each remote region with

the attribute ConnectionType=ppc_tcp.

This is described in “Configuring CD entries for CICS PPC TCP/IP.”

Configuring CD entries for CICS PPC TCP/IP

A Communications Definitions (CD) entry describes details of a remote system and

how your local region should communicate with it. To define a CD entry for a

remote system, select your region name from the main panel of the IBM TXSeries

Administration Tool. Then select the Communication resource from the Resources

option of the Subsystem menu.

This displays the list of CD entries that you have already defined.

Select the New option of the Communications menu. The properties notebook

window will be displayed.

The attributes for a CD entry are grouped into four pages:

General

Attributes that are required by all CD entries.

SNA Attributes that describe how the remote system communicates over an

SNA network. Attributes on this page are not applicable to an CICS PPC

TCP/IP CD entry.

TCP/IP

Attributes that describe how the remote system is connected to the TCP/IP

network.

Security

Attributes that define how security is to be managed.

The General page is shown in Figure 25 on page 48.

 TWIN:

 ConnectionType=ppc_tcp

 RemoteLUName="cicswint"

 RemoteTCPAddress="wint127.cicsland.com"

 RemoteTCPPort=1435

 ListenerName="CICSTCP"

 RemoteCodePageTR="ISO8859-1"

Figure 24. Communications Definitions (CD) entry

Chapter 3. Configuring CICS for TCP/IP 47

Enter the four-character SYSID for the CD entry. This is the CD entry’s key, so it

must be different from that which is used by all other CD entries in your region.

However, the name is used only by local resources and applications, and does not

have to be unique within the network. It does not have to relate to any other

names in the remote system.

The Connection type should be changed to be PPC TCP/IP, and the Code page

for transaction routing should be the code page that is used to flow transaction

routing data across the network. The correct code page depends on the national

language of your local region and the type of the remote system. Chapter 7, “Data

conversion,” on page 147 describes how to determine this value.

Select the TCP/IP tab to display the TCP/IP attributes, as shown in Figure 26.

These attributes describe the remote system.

Figure 25. General Communications Definitions (CD) panel

Figure 26. TCP/IP Communications Definitions (CD) panel

48 TXSeries for Multiplatforms: CICS Intercommunication Guide

If the remote system is a CICS region, the Remote APPLID is the name of this

CICS region.

Select the Security tab to display the security attributes, which are shown in

Figure 27. These attributes describe the security checking that is applied to all

intersystem requests that use this CD entry.

Selecting the Local option for Inbound request security indicates that CICS should

run all incoming intersystem requests from the remote system under the user ID

that is specified in UserID for inbound requests. The User Definitions (UD) entry

for this user ID will determine which resources these intersystem requests can

access. This type of security is called Link Security, and is described in “CICS link

security” on page 126.

Selecting either Verify or Trusted results in CICS applying User Security to

incoming intersystem requests. This means that CICS uses the security information

(such as user ID and password) that is sent with the intersystem request. CICS also

uses the user ID that is specified in UserID for inbound requests to restrict the

resources that inbound intersystem requests can access. For more information

about User Security, see “CICS user security” on page 127.

Security information that is sent with outbound requests is controlled by the Send

user ID with outbound requests options. “Setting up a CICS region to flow user

IDs” on page 130 and “Setting up a CICS region to flow passwords” on page 131

describe how these options work.

After you have filled in all the attributes, select either the Permanent or Both

button to create the CD entry.

If Permanent is selected, the CICS command that the IBM TXSeries Administration

Tool will issue for the example shown above is:

Figure 27. Security Communications Definitions (CD) panel

Chapter 3. Configuring CICS for TCP/IP 49

The cicsadd command is passed the name of each attribute with its required value.

You can display this attribute name by placing the mouse pointer over the

description of the attribute on the IBM TXSeries Administration Tool page. Any

attribute that is not specified on the cicsadd command is set to its default value.

How to view and change the default values for CD entry attributes is described in

“Configuring the default CD entry (CICS on Open Systems)” on page 56.

Refer to the TXSeries for Multiplatforms Administration Reference for a description of

the cicsadd command.

Figure 28 illustrates how the RD and CD attributes in two CICS regions should

correspond if they are to communicate.

Note that the RemoteNetworkName is given a value in one of the regions. This

attribute is not required for a CICS PPC TCP/IP connection. However, if it is

specified, it must match the LocalNetworkName value that is in the other region.

 For CICS on Open Systems only:

 You define a CICS PPC TCP/IP connection in your region by using a

Communications Definitions (CD) entry that has ConnectionType=ppc_tcp.

The location of the remote system is configured in the CD entry with the

RemoteLUName and RemoteNetworkName attributes.

If the remote system is a CICS on Open Systems and CICS for Windows region,

you should set the RemoteLUName attribute to the name of the remote region,

and the RemoteNetworkName to the value that is coded in the remote region’s

Region Definitions (RD) attribute LocalNetworkName.

cicsadd -r cicsopen -P -c cd RMTE \

 ConnectionType=ppc_tcp \

 RemoteLUName="cics9000" \

 LinkUserid="LINKRMTE" \

 RemoteSysSecurity=trusted

Figure 28. Two regions communicating across TCP/IP

50 TXSeries for Multiplatforms: CICS Intercommunication Guide

The AllocateTimeout attribute defines, in seconds, how long CICS should wait for

the remote system to accept an intersystem request. The default value is 0, which

means “wait forever”. You should set this timeout attribute to a value such as 60 in

order to activate the timeout process. Then, if the remote system becomes

overloaded, or fails while accepting an intersystem request, the CICS transaction

that is issuing the intersystem request is not left hanging.

The following attributes are not required for a CICS PPC TCP/IP connection and

can be left as the default value:

v SNAConnectName

v GatewayName

v ListenerName

v RemoteTCPAddress

v RemoteTCPPort

v RemoteSysEncrypt

v DefaultSNAModeName

Refer to “Data conversion for transaction routing” on page 164 for information

about how to configure the RemoteCodePageTR attribute.

Refer to Chapter 6, “Configuring intersystem security,” on page 123 for

information about how configure the following security attributes:

v OutboundUserIds

v RemoteSysSecurity

v LinkUserId

v TSLKeyMask

v RSLKeyMask

Figure 29 shows a CICS on Open Systems or a CICS for Windows region named

cicsopen communicating with a CICS on Open Systems region named cics9000,

and shows the attributes that their CD entries use to define the connection between

them.

 The command shown below adds the RMTE CD entry to the region cicsopen’s

permanent database:

Figure 29. Two regions communicating across TCP/IP

Chapter 3. Configuring CICS for TCP/IP 51

The attributes that are not specified on the cicsadd command are set to their

default values. You can view the default values for a CD entry by using the

command cicsget -r regionName -c cd "" .

Using SMIT to configure CD entries (AIX only)

When using CICS for AIX, you can use the AIX System Management Interface Tool

(SMIT) to configure the Communications Definitions (CD) entries. To add a CD

entry for CICS PPC TCP/IP to your region, you must:

v Ensure you are logged on to AIX with enough privileges to change the region

database. (For example, log onto AIX as the root user.)

v Optionally set the environment variable CICSREGION to the name of your

CICS region. For example:

 % export CICSREGION=cics

 %

v Enter smitty cicsregion to start SMIT.

v Use option Change Working CICS Region to select your CICS region. (This is

required only if you have not set up CICSREGION before starting SMIT.)

v Select options:

 � Define Resources for a CICS Region

 � Manage Resource(s)

 � Communications

 � Add New

This displays the Add Communication panel. Enter a model Communications

Definition (CD) entry name. This could be the name of a CD entry that you have

defined already. Alternatively, press the Enter key to use the default.

Figure 30 on page 53 shows an example of a SMIT Add Communication panel.

v Communication Identifier is the name of the CD entry.

v Name of remote system is the LU name of the remote system, and SNA

network name for the remote system is the name of the network that to which

the remote system is attached.

If the remote system is a CICS on Open Systems or CICS for Windows region,

you should set the Name of remote system attribute to the name of the remote

region, and the SNA network name for the remote system to the value that is

coded in the remote region’s Region Definitions (RD) attribute Network name to

which local region is attached.

v Timeout on allocate (in seconds) defines how long your CICS region should

wait for the remote system to accept requests. A value of 60 seconds is

suggested. The default value is 0, which means "wait forever". You should set

this timeout field to a value such as 60 in order to activate the timeout process.

Then, if the remote system becomes overloaded, or fails while accepting an

intersystem request, the CICS transaction that is issuing the intersystem request

is not left hanging.

v The security levels that your CICS region will use are configured with:

– Send userids on outbound requests?

– Security level for inbound requests

– UserId for inbound requests

– Transaction Security Level (TSL) Key Mask

– Resource Security Level (RSL) Key Mask

cicsadd -r cicssopen -P -c cd RMTE \

 ConnectionType=ppc_tcp \

 RemoteLUName="cics9000" \

 RemoteNetworkName="MYSNANET" \

 AllocateTimeout=60

52 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 6, “Configuring intersystem security,” on page 123 describes how CICS

security is configured.

v Refer to “Data conversion for transaction routing” on page 164 for information

about how to configure the Code page for transaction routing field.

v The following fields are not required for a CICS PPC TCP/IP connection and

can remain as the default value:

– SNA profile describing the remote system

– Gateway Definition (GD) entry name

– Listener Definition (LD) entry name

– TCP address for the remote system

– TCP port number for the remote system

– Transmission encryption level

– Default modename for a SNA connection

v Press the Enter key to create the CD entry.

Figure 30 shows an example of the SMIT panel for adding a new CD entry.

 Add Communication

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Communication Identifier [OPEN]

* Model Communication Identifier ""

* Region name [cics] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate the resource at cold start? yes +

 Resource description [Connection

to cicsopen]

* Number of updates 0

 Protect resource from modification? no +

 Connection type ppc_tcp +

 Name of remote system [cicsopen]

 SNA network name for the remote system []

 SNA profile describing the remote system []

 Default modename for a SNA connection []

 Gateway Definition (GD) entry name []

 Listener Definition (LD) entry name []

 TCP address for the remote system []

 TCP port number for the remote system [1435] #

 Timeout on allocate (in seconds) [60] #

 Code page for transaction routing [ISO8859-1]

 Set connection in service? yes +

 Send userids on outbound requests? sent +

 Security level for inbound requests trusted +

 UserId for inbound requests [LINKOPEN]

 Transaction Security Level (TSL) Key Mask [none]

 Resource Security Level (RSL) Key Mask [none]

 Transmission encryption level none +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 30. SMIT panel for adding a CD entry for CICS PPC TCP/IP support

Chapter 3. Configuring CICS for TCP/IP 53

For more information, see the TXSeries for Multiplatforms Administration Reference.

 Table 11. Road map

If you want to... Refer to...

Read a summary of CICS configurations “Summary of CICS attributes for TCP/IP

resource definitions”

Read about configuring CICS resources Chapter 5, “Configuring resources for

intercommunication,” on page 109

Read about controlling intersystem security Chapter 6, “Configuring intersystem

security,” on page 123

Read about intersystem data conversion .Chapter 7, “Data conversion,” on page 147

Summary of CICS attributes for TCP/IP resource definitions

Table 12 lists the important resource definition attributes that are used for

intersystem communications for TCP/IP connections.

 Table 12. Comparison of CICS resource definitions TCP/IP connections

Resource Definition CICS family TCP/IP

connections

CICS PPC TCP/IP

connections

Communications Definition

(CD) AllocateTimeout

Not applicable. Wait time in seconds for an

intersystem request to be

started in the remote system.

Communications Definition

(CD) ConnectionType

Set to ppc_tcp.

Communications Definition

(CD) GatewayName

Not required. Not required.

Communications Definition

(CD) ListenerName

Set to the name of a locally

defined Listener Definition

(LD) entry that has

Protocol=TCP.

Set to blank ("").

Communications Definition

(CD) RemoteLUName

Set to the region name

(APPLID) of the remote

system, or netname returned

by the cicstcpnetname

command.

Set to the region name

(APPLID) of the remote

system.

Communications Definition

(CD) RemoteNetworkName

Not required. Set to blank

("").

Not required. Set to blank

("") or the value from the

LocalNetworkName attribute

in the remote system’s

Region Definition (RD) entry.

Communications Definition

(CD) RemoteTCPAddress

Set to the host name or

Internet address of the

remote network adapter.

Not required.

Communications Definition

(CD) RemoteTCPPort

Set to the number of the port

that the remote system is

listening on.

Not required.

Communications Definition

(CD) SNAConnectName

Not required. Not required.

Region Definition (RD)

LocalLUName

Not required. Not required.

54 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 12. Comparison of CICS resource definitions TCP/IP connections (continued)

Resource Definition CICS family TCP/IP

connections

CICS PPC TCP/IP

connections

Region Definition (RD)

LocalNetworkName

Not required. Set to blank

("") or the name of the local

SNA network.

Not required. Set to blank

("") or the name of the local

SNA network.

Transaction Definition (TD)

TPNSNAProfile

Not required. Not required.

Listener Definition (LD)

entry

At least one LD entry is

required with Protocol=TCP.

The TCPAddress and

TCPService attributes must

also be configured.

Not required.

Gateway Definition (GD)

entry

Not required. Not required.

Configuring for autoinstallation of CD entries

Note on network protocols

CICS can autoinstall CD entries for IBM CICS Universal Clients that are

connected over either TCP/IP or SNA networks. The information in this

section applies to both network protocols.

 CICS automatically creates (autoinstall) a Communications Definitions (CD) entry

for an IBM CICS Client when it connects to your region. It also autoinstalls a CD

entry if a remote CICS region acquires a CICS family TCP/IP connection to your

local region and a suitable CD entry is not already defined in your region.

Irrespective of whether the remote system is an IBM CICS Client or a CICS region,

the attributes that are assigned to an autoinstalled CD entry are set from:

v Information that is extracted from the network.

v Information that is received from the remote system. This information is

received by the CICS transaction CCIN.

v Information from the CICS supplied program DFHCCINX. This program is

called each time an autoinstall takes place. It is passed information about the

remote system and can veto the install or change some of the attributes that are

assigned to the CD entry. You can customize this program.

v Information that is configured in the default CD entry called "".

Table 13 shows how this information is used to set each of the CD attributes.

 Table 13. How CD attributes are set in an autoinstalled CD entry

CD attribute Value

SYSID (key of the CD entry) An initial value is proposed by CICS that is unique in

the region. The DFHCCINX program can override

this. However, the autoinstall fails if DFHCCINX

changes the SYSID to the name of an existing CD

entry.

Chapter 3. Configuring CICS for TCP/IP 55

Table 13. How CD attributes are set in an autoinstalled CD entry (continued)

CD attribute Value

RemoteLUName An initial value is extracted from the network. The

DFHCCINX program can override this. However,

DFHCCINX should not change it when the network

is between two CICS regions because this causes

some intersystem requests to fail.

RemoteNetworkName

SNAConnectName

GatewayName

ListenerName

RemoteTCPAddress

RemoteTCPPort

Values for these attributes are extracted from the

network and from information that is received by the

CCIN transaction.

InService

AllocateTimeout

OutboundUserIds

RemoteSysEncrypt

DefaultSNAModeName

Values for these attributes are retrieved from the

default CD entry called "".

RemoteCodePageTR An initial value can be received by the CCIN

transaction and this is passed to DFHCCINX.

DFHCCINX can use the received code page name,

the RemoteCodePageTR attribute from the default

CD entry (""), or supply a new value.

RemoteSysSecurity

LinkUserId

Initial values for these attributes are taken from the

default CD entry called "". DFHCCINX can override

these values. DFHCCINX can also control how

passwords that are received from CICS Clients are

managed. This is explained further in “Controlling

the management of passwords” on page 64.

TSLKeyMask

RSLKeyMask

These attributes are always set to all in an

autoinstalled CD entry. Therefore, if you want to

restrict access to your region for autoinstalled CD

entries, use the LinkUserId attribute.

The sections that follow describe how to configure your region so that

autoinstalled CD entries have the correct attributes.

Configuring the default CD entry (CICS on Open Systems)

As shown in Table 13 on page 55, the default CD entry, "", is used as a template for

autoinstalled CD entries. Therefore, it is important that it contains the attributes

that you want to be assigned to autoinstalled CD entries. You can view the current

settings of the default CD entry by using the cicsget command.

56 TXSeries for Multiplatforms: CICS Intercommunication Guide

Use the information that is given in Table 13 on page 55 and “What the supplied

version of DFHCCINX does” on page 58 to determine which attributes need

changing. The RemoteCodePageTR attribute often needs changing in a DBCS

environment. The following sections explain which CD attributes are important for

each type of connection:

v “Configuring CD entries for CICS family TCP/IP(CICS on Open Systems only)”

on page 34,

v “Configuring CD entries for CICS PPC TCP/IP” on page 47,

v “Configuring CICS for PPC Gateway server SNA support” on page 89

When you have determined which values you require for the default CD entry, use

the cicsupdate command to change the attributes. For example, to change the

LinkUserId attribute in the default CD entry:

When the required attributes are set in the default CD entry, restart your region to

allow it to read the new values.

Configuring the default CD entry (CICS for Windows)

To view and possibly change the default attributes for a Communications

Definitions (CD) entry, select your region name from the main panel of the IBM

TXSeries Administration Tool. Then select the Communication resource from the

Resources option of the Subsystem menu.

This displays the list of CD entries that you have already defined.

Select the Defaults option of the Communications menu. A properties notebook

window is displayed showing the existing default values.

From this window you can change any of the default values. For example, if your

region is running in a DBCS environment, you might want to change the Code

 cicsget -c cd -r cicsunix ""

 GroupName=""

 ActivateOnStartUp=yes

 ResourceDescription="Communications Definition"

 AmendCounter=0

 Permanent=no

 ConnectionType=local_sna

 RemoteLUName=""

 RemoteNetworkName=""

 SNAConnectName=""

 GatewayName=""

 ListenerName=""

 RemoteTCPAddress=""

 RemoteTCPPort=""

 AllocateTimeout=0

 RemoteCodePageTR="ISO8859-1"

 InService=yes

 OutboundUserIds=sent

 RemoteSysSecurity=local

 LinkUserId=""

 TSLKeyMask=none

 RSLKeyMask=none

 RemoteSysEncrypt=none

 DefaultSNAModeName=""

% cicsupdate -c cd -r cicsunix "" LinkUserId="LINKAUTO"

Chapter 3. Configuring CICS for TCP/IP 57

page for transaction routing to the code page that is used by your CICS clients, so

that the supplied version of DFHCCINX sets up the correct code page when these

clients connected.

Select Permanent to save any changes that you have made.

Configuring region database table sizes

The Region Definitions (RD) attribute ClassTableSize indicates how much storage

is assigned to the internal hash tables that are used to access each resource

definition entry. For maximum efficiency, the value that is supplied for each type

of resource definition entry is normally twice the number of entries that are

defined in the region database. So, for example, if you had five Communications

Definitions (CD) entries defined in the region database, you would code a value of

10 for the CD.

When you are using autoinstall, the number of CD entries in the region database is

changing. Therefore, when you code ClassTableSize, remember to include the

number of expected autoinstall CD entries in your calculation.

Note: The hash table storage is allocated from the region pool size. Therefore, if

you increase the amount of storage that is used by the hash tables, you

might also need to increase the size of region pool that is configured in the

RD attribute MaxRegionPool.

What the supplied version of DFHCCINX does

The supplied version of DFHCCINX accepts all installation requests. In addition, it

does the following:

v Uses the values that are supplied by CICS for the CD entry name (SYSID) and

RemoteLUName

v Checks the code page that is received from the remote system. If the remote

system requested a code page, DFHCCINX checks whether a iconv conversion

template is between the local code page and the remote code page. If a

conversion template exists, the received code page is used for the

RemoteCodePageTR attribute in the autoinstalled CD entry. If no conversion

template exists, or if the remote system did not supply a code page, the code

page from the RemoteCodePageTR attribute in the default CD entry "" is used.

v Sets up client security. If the CD entry is for an IBM CICS Client that is using a

CICS family TCP/IP connection ECI request, or a cicslterm on Windows,

RemoteSysSecurity is set to verify and passwords are checked and discarded.

Otherwise RemoteSysSecurity is set to the value from the default CD entry. The

LinkUserId is set to the value from the default CD entry for all autoinstalled CD

entries.

v Log a message to the CCIN log. DFHCCINX writes a message to the Transient

Data queue, CCIN, which is defined to write to a file called:

For example:

 /var/cics_regions/regionName/data/CCIN.out

 date time CD entry ’TN03’ for CICS server ’TNX43W03’ has been

 installed with code page ’ISO8859-1’

58 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHCCINX cannot prevent an uninstall (delete) of a CD entry. So for an uninstall

request, DFHCCINX only logs a message to the CCIN log. For example:

DFHCCINX can be changed. If the default version of DFHCCINX does not match

the needs of your region, refer to “The parameters passed to DFHCCINX” and

“Writing your own version of DFHCCINX” on page 62, which describe the

information that is passed to DFHCCINX, and how to use this information to write

your own version.

The parameters passed to DFHCCINX

The parameters for DFHCCINX are passed a COMMAREA structure called

CICS_CCINX_Parameters, which contains fields shown in Table 14

 Table 14. Fields in the DFHCCINX COMMAREA structure, CICS_CCINX_Parameters

C datatype Field name Size

cics_sshort_t Length 2-byte signed integer

cics_ubyte_t RequestType 1-byte unsigned integer

cics_ubyte_t SystemType 1-byte unsigned integer

cics_sshort_t ApplIdLength 2-byte signed integer

cics_char_t ApplId 9-byte character array

cics_sshort_t SysIdLength 2-byte signed integer

cics_char_t SysId 5-byte character array

cics_sshort_t RemoteCodePageLength 2-byte signed integer

cics_char_t RemoteCodePage 80-byte character array

cics_sshort_t LocalCodePageLength 2-byte signed integer

cics_char_t LocalCodePage 80-byte character array

cics_sshort_t DefaultCodePageLength 2-byte signed integer

cics_char_t DefaultCodePage 80-byte character array

cics_ubyte_t RemoteSysSecurity 1-byte unsigned integer

cics_sshort_t LinkUserIdLength 2-byte signed integer

cics_char_t LinkUserId 9-byte character array

cics_ubyte_t ConnectionType 1-byte unsigned integer

cics_ulong_t RemoteTCPAddress 4-byte unsigned integer

cics_ushort_t RemoteTCPPort 2-byte unsigned integer

cics_char_t RemoteSNALUName 9-byte character array

cics_ubyte_t ReturnCode 1-byte unsigned integer

cics_ulong_t ConnectionProtection 4-byte unsigned integer

The fields in the COMMAREA for an install request are:

Length

The size of the CICS_CCINX_Parameters structure.

RequestType

Indicates whether it is an install or an uninstall request. For an install

request this would be set to 0.

 date time CD entry ’@RP1’ for CICS client ’@RP1AAAA’ has been deleted

Chapter 3. Configuring CICS for TCP/IP 59

SystemType

Indicates whether the install request is for a client or a server. For a client,

this field is set to 0; for a server, its value is 1.

ApplIdLength

Length of the NETNAME in the Netname field.

ApplId

NETNAME of the remote system padded on the right with NULLs (0x00).

The value that is returned in this field is set in the RemoteLUName

attribute of the installed CD entry. Do not change this value if the CD

entry is for a CICS server.

SysIdLength

The length of the SYSID in the SysId field.

SysId The four-character key for the CD entry padded on the right with NULLs

(0x00).

RemoteCodePageLength

The length of the code page in RemoteCodePage.

RemoteCodePage

This is the code page that is received from the remote system, padded on

the right with NULLs (0x00). The value in this field when DFHCCINX

returns to CICS is used to set the RemoteCodePageTR attribute in the

installed CD entry.

LocalCodePageLength

The length of the code page in LocalCodePage.

LocalCodePage

This is the code page for the local region, padded on the right with NULLs

(0x00).

DefaultCodePageLength

The length of the code page in DefaultCodePage.

DefaultCodePage

This is the code page from the RemoteCodePageTR attribute of the default

CD entry "", padded on the right with NULLs (0x00).

RemoteSysSecurity

This indicates the type of security that CICS should use when receiving

requests from the remote system. This is the value from the

RemoteSysSecurity attribute of the default CD entry, "". The value that

DFHCCINX returns in this field is used to set the RemoteSysSecurity field

in the installed CD entry. Use:

v 0 for RemoteSysSecurity=local

v 1 for RemoteSysSecurity=verify

v 2 for RemoteSysSecurity=trusted

If the remote system is an IBM CICS Client, this field is used to determine

whether the password should be kept or discarded. Possible values of this

field are:

v 0x00 to indicate that the password should be checked, then discarded

v 0x10 to indicate that the password should not be checked, and should be

discarded

v 0x20 to indicate that the password should be checked, then kept

v 0x30 to indicate that the password should not be checked, but should be

kept

60 TXSeries for Multiplatforms: CICS Intercommunication Guide

The use of this field is explained in “Controlling the management of

passwords” on page 64, and “Setting up a CICS region to flow passwords”

on page 131.

LinkUserIdLength

The length of the user ID in LinkUserId.

LinkUserId

When DFHCCINX is called, this field contains the LinkUserId attribute

(padded on the right with NULLs (0x00)) from the default CD entry, "".

The value that is returned to CICS by DFHCCINX is set in the LinkUserId

attribute of the installed CD entry.

ConnectionType

This indicates the type of connection on which the CCIN request was

received. It is set to:

v 1 for ConnectionType=local_sna

v 2 for ConnectionType=cics_tcp or for a local client (cicslterm)

v 4 for ConnectionType=ppc_gateway

v 8 for ConnectionType=ppc_tcp

v 10 for ConnectionType=cics_ipc

RemoteTCPAddress

If ConnectionType=2 (cics_tcp, or a cicslterm), this field contains the

TCP/IP address of the TCP connected client or system. Alternatively, if it is

set to "12345678" (network order), it is a cicslterm.

RemoteTCPPort

If ConnectionType=2 (cics_tcp, or cicslterm), this field contains the TCP

port number of the remote system. If it is set to zero (0), it is a cicslterm.

RemoteSNALUName

If ConnectionType=1 (local_sna) or if ConnectionType=4 (ppc_gateway),

this field contains the SNA logical unit (LU) name of the remote system.

ReturnCode

Set this field to indicate whether CICS is to proceed with the installation

request. Use:

v 0 to indicate that the install can proceed.

v 1 to indicate that the install can proceed, but a response is to be sent to

the remote system to indicate that a problem exists with the code page.

v 0x10 to veto the install.

The fields in the COMMAREA for an uninstall request are:

Length

The size of the CICS_CCINX_Parameters structure

RequestType

Indicates whether it is an install or an uninstall request. For an uninstall

request, this field is set to 1.

SystemType

Indicates if the install request is for a client or a server. For a client, this

field is set to 0; for a server, it is set to 1.

ApplIdLength

Length of the NETNAME in the Netname field.

Chapter 3. Configuring CICS for TCP/IP 61

ApplId

The value that is returned in this field is from the RemoteLUName

attribute of the CD entry.

SysIdLength

The length of the SYSID in the SysId field.

SysId The four-character key for the CD entry.

The remainder of the fields in the uninstall COMMAREA are set to NULLs (Ox00).

Writing your own version of DFHCCINX

The source for the supplied version of DFHCCINX (cics_ccinx.ccs), along with a

Makefile to build it, are in directory:

In addition, a header file that describes the parameters that are passed to

DFHCCINX, is provided in file prodDir/include/cics_ccinx.h. cics_ccinx.ccs is

written in the C programming language, so the program begins at the main

function. “What the supplied version of DFHCCINX does” on page 58 describes

what this program does. The sections below suggest some changes to the supplied

version. When you have created your own version, “Installing your version of

DFHCCINX into the region” on page 65 describes how to install it in your region.

Note: If you want to change the functions in the supplied cics_ccinx.ccs file, copy

cics_ccinx.ccs to your own directory before modifying it so that you can

refer to the original version if necessary. In CICS on Open Systems, if you

want to use the sample Makefile, copy that to you own directory also, and

modify the PROGRAM. variable to the path name to which your compiled

DFHCCINX should be written. The value of PROGRAM in the supplied

Makefile overwrites the supplied DFHCCINX in prodDir/bin.

What DFHCCINX can do

DFHCCINX is passed a parameter structure in a COMMAREA that contains

information about the CD entry that is to be installed or uninstalled. “The

parameters passed to DFHCCINX” on page 59 describes this parameter structure.

For an install request, the parameter structure contains the values that CICS is

using for some of the CD attributes. It also contains information about the remote

system and the type of connection that is used to contact the region. Table 15

shows the values that can be changed by DFHCCINX. Alternatively, DFHCCINX

can veto the installation request by setting the ReturnCode field to 0x10.

DFHCCINX can also use EXEC CICS commands to perform any additional set up

for the remote system. However, it must not access the principal facility because

this is reserved for the use of CICS only.

 Table 15. CD attributes that can be changed by DFHCCINX

COMMAREA field names Corresponding CD attribute Restrictions

SysId (and SysIdLength) CD entry key If this is changed to the name of a CD entry

that is already defined in the region, the install

fails.

ApplId (and ApplIdLength) RemoteLUName Do not change this field if the remote system is

a CICS region. Otherwise, transaction routing

and asynchronous processing requests that

involve the remote region might fail.

 prodDir/samples/ccinx

62 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 15. CD attributes that can be changed by DFHCCINX (continued)

COMMAREA field names Corresponding CD attribute Restrictions

RemoteCodePage (and

RemoteCodePageLength)

RemoteCodePageTR None

RemoteSysSecurity RemoteSysSecurity None

LinkUserId (and

LinkUserIdLength)

LinkUserId None

DFHCCINX cannot prevent an uninstall (delete) of a CD entry. It is called so that it

can maintain private data or log messages.

Logging messages to the CCIN log

The supplied version of DFHCCINX logs information to the CCIN transient data

queue each time it is called. This allows you to keep track of the remote systems

that are connecting to your region. The function in the supplied version of

DFHCCINX that writes the log messages is called CCINX_LogMessage. You can

change this routine to log different information. Alternatively, if you do not need

this information, you could remove the calls to CCINX_LogMessage from the main

function of DFHCCINX. Removing this logging enables DFHCCINX to run faster,

and saves disk space, especially if you have many IBM CICS Clients connecting to

the region.

Assigning a value to RemoteCodePageTR

The supplied version of DFHCCINX validates the code page that is received from

the remote system, by attempting to access the data conversion template that

translates between the local code page and the code page that is requested by the

remote system. This method works in all environments. However, it is an

inefficient method for a particular installation in which the conversion templates

available are static. Therefore, you can improve the performance of DFHCCINX by

hardcoding the code page that is assigned to an autoinstall CD entry. For example,

if all remote systems were to use the code page that was configured in the default

CD entry, "", the function CCINX_CheckCodePage in the supplied DFHCCINX

could be changed to copy the DefaultCodePage into the RemoteCodePage field.

Alternatively, DFHCCINX could have a static table that assigns code pages based

on the information about remote system, or the received code page.

Preventing autoinstall

For security reasons, you might want to prevent some or all CD entries from

autoinstalling in your region. For example, you might want to disable autoinstall

completely, or for a particular connection type. Alternatively, you might choose to

allow autoinstall only for particular remote systems.

CICS does not autoinstall a CD entry if DFHCCINX returns ReturnCode=0x10 in its

parameter structure. Therefore, you can use the information that is passed to

DFHCCINX to restrict when autoinstall is to proceed. In the example below,

DFHCCINX is preventing all autoinstall requests for CICS family TCP/IP

connections. This would mean that IBM CICS Clients could not connect to your

region by using CICS family TCP/IP because they require an autoinstalled CD

entry. A remote CICS region could connect across CICS family TCP/IP only if you

had explicitly defined a CD entry for it.

Chapter 3. Configuring CICS for TCP/IP 63

Note: The constants that begin CICS_CCINX_ are defined in the C language header

file cics_ccinx.h, which is supplied with DFHCCINX.

Controlling the management of passwords

In some conditions, it might be necessary for the local CICS region to send a

password and user ID to a remote system. This can occur if, for example, your

CICS region is acting as a client gateway to a CICS for MVS/ESA™ host and you

want to control all security with RACF® at the host. It is also needed when your

SNA product does not support sending already_verified userids (such as the

Microsoft Microsoft SNA Server for Windows), and you want to implement user

security.

CICS does not normally save passwords that it receives when a user signs on.

However, if you require CICS to pass the password on to a remote system, it must

save it. The DFHCCINX exit supplies options that can be used to override entries

in the default CD entry so that passwords that are received from CICS on Open

Systems client ECI requests, or from CICS for Windows cicslterm, are kept so that

they can later be passed on to a remote system.

Note: When CICS saves the password in storage, the password is encrypted.

However when passwords are sent over an SNA network, they are sent in

plain text. This is a requirement of the SNA architecture. Creating a

DFHCCINX to save passwords does mean the overall system security is

lowered. The default DFHCCINX, which does not save passwords, should

therefore be used wherever possible.

The sending of passwords between clients and the local CICS region is controlled

by the RemoteSysSecurity field in the DFHCCINX COMMAREA. The client can

send a password when this field is set to CICS_CCINX_SECURITYTYPE_VERIFY.

You can control whether CICS should save the password with the following values

in the RemoteSysSecurity:

CICS_CCINX_PSWD_CHECK_AND_DROP (0x00)

Indicates that when CICS has verified a user ID and a password that it has

received from the client or remote system, it should discard it. This means

that if the request is routed on to another system, the password cannot

accompany the request.

 This value is used either of it is set explicitly, or if

CICS_CCINX_SECURITYTYPE_VERIFY is not set (regardless of the

setting of other values of the CICS_CCINX_PSWD_ field).

CICS_CCINX_PSWD_CHECK_AND_KEEP (0x20)

Indicates that when CICS has successfully verified a user and a password

that it has received from the client or remote system, it should save it. This

means that both the user ID and the password can accompany the request

if it is routed on to another system. (The attribute OutboundUserIds in the

CD entry for the system to which the request is routed is used to

determine whether the password is actually sent.)

 EXEC CICS ADDRESS COMMAREA(Parameters);

 if ((Parameters->RequestType == CICS_CCINX_REQUESTTYPE_INSTALL) &&;amp;

 (Parameters->ConnectionType == CICS_CCINX_CTYPE_CICSTCP))

 {

 Parameters->ReturnCode = CICS_CCINX_RETURNCODE_REJECT;

 }

64 TXSeries for Multiplatforms: CICS Intercommunication Guide

This value is ignored unless CICS_CCINX_SECURITYTYPE_VERIFY is also

requested.

CICS_CCINX_PSWD_IGNORE_AND_DROP (0x10)

Indicates that when CICS has received a user ID and a password with a

request, it is not to verify the password but should handle the user ID as if

it were accompanied by a valid password. The password is discarded,

which means that if the request is later routed on to another system, the

password cannot accompany the request.

 This value is ignored unless CICS_CCINX_SECURITYTYPE_VERIFY is also

requested.

 When this option is chosen, password validation for the client is disabled,

including signon with the CESN transaction.

CICS_CCINX_PSWD_IGNORE_AND_KEEP (0x30)

Indicates that if CICS receives a user ID and a password with a request, it

is not to verify the password but should handle the user ID as if it were

accompanied by a valid password. The password should be saved so it is

available to be forwarded to another system in that same way as the

CICS_CCINX_PSWD_CHECK_AND_KEEP option is.

 This value is ignored unless CICS_CCINX_SECURITYTYPE_VERIFY is also

requested.

 When this option is chosen password validation for the client is disabled,

including signon with the CESN transaction.

If the passwords are kept, they can be sent from the local CICS region to a remote

CICS region. This is set in the OutboundUserIds attribute in the CD. Relevant

values of the OutboundUserIds attribute are:

sent_only_with_pswd

Send user ID with its password. If the password is not available, do not

send a user ID.

sent_maybe_with_pswd

Send user ID with its password. If the password is not available, send the

user ID already verified.

For examples of the use of these parameters, refer to “Setting up a CICS region to

flow passwords” on page 131.

Installing your version of DFHCCINX into the region

The location of DFHCCINX is specified in the DFHCCINX Program Definition

(PD) entry. The PathName attribute of this entry is set to DFHCCINX, which

means that CICS uses the first version of the file DFHCCINX that it finds in the

directories that are specified in the region’s PATH. To install your own version of

DFHCCINX either:

v Copy your version of DFHCCINX to a directory that is specified before

prodDir/bin in your region’s PATH. For example,

/var/cics_regions/regionname/bin. This means that CICS finds your version of

DFHCCINX before the supplied version in prodDir/bin.

v Alternatively, change the PD entry for DFHCCINX so that it specifies the

location of your version of DFHCCINX in the PathName attribute. This PD

entry is protected (Permanent=yes), so you must switch it to unprotected

(Permanent=no) while you update it. The example below shows the PD entry

for DFHCCINX being updated in both the permanent and running database of

Chapter 3. Configuring CICS for TCP/IP 65

CICS region cicsopen. The existing version is deleted from the running region.

Then, the new value of PathName is set along with Permanent=no. Finally, the

process is repeated to switch the PD entry back to Permanent=yes.

 cicsdelete -c pd -r cicsopen -R DFHCCINX

 cicsupdate -c pd -r cicsopen -B DFHCCINX PathName=cicsbin/DFHCCINX \

 Permanent=no

 cicsdelete -c pd -r cicsopen -R DFHCCINX

 cicsupdate -c pd -r cicsopen -B DFHCCINX Permanent=yes

When the PD entry points to the location of your version of DFHCCINX, either

restart your region, or use CEMT SET PROGRAM(DFHCCINX) NEW to bring the

new DFHCCINX into use.

For more information, see the following sections:

v “IBM CICS Universal Client products” on page 4

v “Summary of CICS attributes for TCP/IP resource definitions” on page 54

Also refer to the description of Communications Definitions in TXSeries for

Multiplatforms Administration Reference.

66 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 4. Configuring CICS for SNA

This chapter describes how to configure a CICS region to use the Systems Network

Architecture (SNA) protocol. TXSeries for Multiplatforms regions can use SNA to

communicate with any other system that supports this protocol, including CICS

Transaction Server for z/OS, CICS/ESA, CICS/MVS, CICS/400, CICS/VSE, and

CICS OS/2.

To enable SNA communications, you must first identify your CICS region in the

SNA network. The various names that identify a CICS region in the network are

discussed in “Naming CICS regions in an SNA intercommunication environment.”

Because the underlying SNA services are provided by a separate SNA product, you

must then configure the SNA product. For information about how to configure a

SNA product for CICS, see one of the following documents:

v TXSeries for Multiplatforms Using IBM Communications Server for AIX with CICS

v TXSeries for Multiplatforms Using IBM Communications Server for Windows Systems

with CICS

v TXSeries for Multiplatforms Using Microsoft SNA Server with CICS

v TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICS

v TXSeries for Multiplatforms Using SNAP-IX for Solaris with CICS

Each of these documents presents example configurations of TXSeries for

Multiplatforms regions that are communicating with mainframe CICS and other

TXSeries for Multiplatforms regions.

After your region is named and the SNA product is configured, you can configure

your CICS region to implement SNA communications in two ways:

v Through local SNA support, discussed in “Configuring CICS for local SNA

support” on page 70

v Through PPC Gateway server SNA support, discussed in “Configuring CICS for

PPC Gateway server SNA support” on page 89

To use either of these implementation scenarios, you must configure various CICS

resource definitions from the command line, by using the IBM TXSeries

Administration Tool on Windows systems, or by using the AIX System

Management Interface Tool (SMIT). Configuring resource definitions by using each

of these configuration methods is outlined within both implementation scenario

sections.

Autoinstallation of Communications Definitions (CD) entries

CICS can automatically install a Communications Definitions (CD) entry in

the local region for an IBM CICS Client that is connected over an SNA

network. CICS uses the same process to do this task as it does to install CD

entries automatically for clients that are connected over a TCP/IP network.

See “Configuring for autoinstallation of CD entries” on page 55 for more

information.

Naming CICS regions in an SNA intercommunication environment

A CICS region can be known by several names in a SNA network. The following

list identifies some of the most common:

© Copyright IBM Corp. 1999, 2005 67

Region name This one- through eight-character name is specified when you

create the region. It is the name that is used in administrative

commands. It is also known as the APPLID.

Local Logical Unit (LU) name

This one- through eight-character name is specified in the local

region’s Region Definitions (RD) LocalLUName attribute. It

identifies the local region to remote systems that are

communicating with it through local SNA support. It must be

unique within the SNA network. The first character of this name

must be an uppercase alphabetic character (A through Z), and the

subsequent characters must be either uppercase alphabetic or

numeric characters.

 For example, the following values are valid for the LocalLUName

attribute:

v A

v CICS1

v CICSAIX

v MYLU

The following values are not valid:

v 9: Begins with a number

v 1CICS: Begins with a number

v CICSaix: Contains lowercase alphabetic characters

v MY-LU: Contains the unsupported character ’-’

If this attribute is left blank (""), CICS sets it to the region name

and translates it to uppercase characters.

Gateway LU name

This one- through eight-character name is specified in the local

region’s Gateway Definitions (GD) GatewayLUName attribute. It

identifies the local region to remote systems that are

communicating with the region through a PPC Gateway server. It

must be unique within the SNA network. The first character of the

this name must be an uppercase alphabetic character (A through

Z), and the subsequent characters must be either uppercase

alphabetic or numeric characters.

 For example, the following values are valid for the

GatewayLUName attribute:

v A

v CICS1

v CICSAIX

v MYLU

The following values are not valid:

v 9: Begins with a number

v 1CICS: Begins with a number

v CICSaix: Contains lowercase alphabetic characters

v MY-LU: Contains the unsupported character ’-’

If this attribute is left blank (""), CICS sets it to the value that is in

the Region Definitions (RD) LocalLUName attribute. If the Region

Definitions (RD) LocalLUName attribute is blank, CICS sets it to

the region name and translates it to uppercase characters.

Local system identifier

This one- through four-character name is specified in the Region

68 TXSeries for Multiplatforms: CICS Intercommunication Guide

Definitions (RD) LocalSysId attribute. It is referred to as the

SYSID. Transactions that are running on the local system can

obtain this name or use it to perform functions on the local region.

By convention, a remote system can also use this same value as a

Communications Definitions (CD) entry to identify the local region.

Because this name can be used as a Communications Definitions

(CD) entry in a remote system, ensure that it is different from the

names of all CD entries that are used by your CICS region’s local

transactions.

Local network name

This one- through eight-character value for the Region Definitions

(RD) LocalNetworkName attribute defines the network to which

the region belongs. Although the local network name is not a name

for the region, it can be combined with the value for the

LocalLUName attribute to uniquely identify the region. The

resulting name is referred to as the region’s network-qualified or fully

qualified LU name. For example, if a region that has CICSA as its

value for the LocalLUName attribute belongs to a network called

NETWORK1 (that is, the value for the region’s Region Definitions

(RD) LocalNetworkName attribute is NETWORK1), the region’s

fully qualified name is NETWORK1.CICSA. Typically, this name is

used to refer to the region in the SNA communications product.

 When assigning the values of the LocalLUName and GatewayLUName attributes

to the region, ensure that these LU names are unique within the SNA network. The

LU namesthat are used within the region also cannot conflict with one another.

Some networks use naming conventions that help prevent name clashes. Consult

your network administrator for help in choosing LU names.

Figure 31 shows a CICS region that is using both local SNA support and a PPC

Gateway server.

 In Figure 31, remote systems that contact the region by way of local SNA support

identify the CICS region by its Region Definitions (RD) LocalLUName attribute

Figure 31. An example network

Chapter 4. Configuring CICS for SNA 69

value CICSWINT. A remote system that contacts the region by way of a PPC

Gateway server identifies the CICS region by its Gateway Definitions (GD)

GatewayLUName attribute value CICSNTGW.

Note: If a GatewayLUName value is not specified, CICS uses the LocalLUName

attribute value as the region identifier for remote systems. However, the

same LocalLUName attribute value cannot be shared between local SNA

support and a PPC Gateway server or among multiple PPC Gateway

servers. Be sure to create a unique Gateway Definitions (GD) entry for each

system that is connecting through a PPC Gateway server.

Each LU name that is used in your region must also be configured in the SNA

product. Refer to that product’s documentation for more information. If the system

to which your region connects uses VTAM®, the name must be configured as a

local LU name in VTAM.

Configuring CICS for local SNA support

Local SNA support lets TXSeries for Multiplatforms regions communicate with

every other member of the CICS family. Synchronization levels 0 and 1 are

supported. If you require synchronization level 2, you must use PPC Gateway

server SNA support, as described in “Configuring CICS for PPC Gateway server

SNA support” on page 89. (For descriptions of synchronization levels, see

“Ensuring data integrity with synchronization support” on page 16.)

Local SNA support requires that an appropriate SNA product is installed and

configured on the same machine as is the local TXSeries for Multiplatforms region.

Such products are shown in Table 16.

 Table 16. Communications products for various platforms to enable local SNA support

Platform Communications product

Windows IBM Communications Server or Microsoft SNA Server

AIX IBM Communications Server

Solaris SNAP-IX

HP-UX SNAplus2

To use local SNA support, you must configure the following:

v A Listener Definitions (LD) entry, which describes how a CICS region connects

to a network. An SNA LD entry indicates that a CICS region uses local SNA.

The Listener Definition causes a Listener process to be started at region startup.

v Two Region Definitions (RD) attributes, LocalLUName and LocalNetworkName,

which identify the LU name of the local CICS region and the network to which

it belongs, respectively. Optionally, it is recommended that a short name for the

local region be specified by using the LocalSysId attribute.

v A Communications Definitions (CD) entry for each remote system with which

the local region is to communicate.

Note: You possibly need to configure the Transaction Definitions (TD)

TPNSNAProfile attribute if both of the following conditions apply:

v The local CICS region is a CICS for AIX region.

v Remote systems will request transactions that reside in the local region.

70 TXSeries for Multiplatforms: CICS Intercommunication Guide

See the TXSeries for Multiplatforms Administration Reference for more

information.

Figure 32 shows the key configuration attributes. It shows a CICS region that has a

local LU name of CICSWINT connected through local SNA to a remote system that

has a local LU name of CICSOS2.

 The CICS region has a Region Definitions (RD) entry that has the LocalSysId

attribute identifying the short name for the local region, the LocalNetworkName

attribute defining the name of the network to which the local region belongs, and

the LocalLUName attribute defining the LU name of the local region. It has a

Listener Definitions (LD) entry that has the Protocol attribute set to SNA to define

local SNA support. It also has a Communications Definitions (CD) entry called

COS2, which defines the remote CICS OS/2 system to the local region. The

Communications Definitions (CD) ConnectionType attribute identifies the

connection as local_sna, the RemoteLUName attribute defines the LU name of the

remote region, and the RemoteNetworkName attribute defines the name of the

network to which the remote region belongs. Leaving the GatewayName attribute

blank (″″) indicates that no PPC Gateway server is involved in the

communications. Leaving the SNAConnectName attribute blank (″″) indicates that

no alias exists for the partner LU name in the remote system.

Figure 32. An example network using local SNA support

Chapter 4. Configuring CICS for SNA 71

Note: The values of the attributes GatewayName and SNAConnectName are

ignored when the region’s Communications Definitions (CD)

ConnectionType attribute identifies the connection as local_sna.

Figure 32 on page 71 shows just a few of the resource definition attributes that can

be configured for SNA communications. For more complete lists of attributes that

are commonly used in communications, see Table 17, Table 18 on page 73, Table 19

on page 74, and Table 20 on page 74. They list and define the resource definition

attributes that are used for local SNA communications that are covered in this

chapter. Command-line attribute names are given, along with their equivalent

names in the IBM TXSeries Administration Tool and SMIT. The TXSeries for

Multiplatforms Administration Reference and the CICS Administration Guide provide

complete information about all CICS commands and definitions.

Note: The terminology in this chapter uses the attribute names of the CICS

resource definitions that are referenced when CICS commands are used to

configure a region. If you are using a CICS on Windows platform, you can

use the IBM TXSeries Administration Tool instead of the CICS commands to

configure the resources. Likewise, if you are using CICS for AIX, you can

use SMIT to configure the resources.

 Table 17. Comparison of CICS Communications Definitions (CD) for local SNA connections

Communications Definitions

(CD) attributes

Equivalent IBM

TXSeries

Administration Tool

resource definition

attributes

Equivalent SMIT resource

definition attributes

Use in local SNA

connections

<Key> SYSID Communication Identifier Specifies the name of the

Communications

Definitions (CD) entry.

ConnectionType Connection type Connection type Specifies the type of the

connection.

DefaultSNAModeName Default SNA mode

name

Default modename for a

SNA connection

Specifies the SNA

modegroup that is to be

used for intersystem

requests when an SNA

modename is not specified

in either the PROFILE

option of the EXEC CICS

ALLOCATE command or in

the SNAModeName

attribute of the Transaction

Definitions (TD) entry.

LinkUserId UserID for inbound

requests

UserId for inbound

requests

Specifies a locally defined

user ID to associate with

inbound requests.

ListenerName The value is taken

from the Listener

Name attribute value.

Listener Definition (LD)

entry name

Specifies the name of the

Listener Definition.

OutboundUserIds Sent user ID Send user IDs on outbound

requests?

Specifies whether a user ID

with or without a password

is sent with outbound

requests.

72 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 17. Comparison of CICS Communications Definitions (CD) for local SNA connections (continued)

Communications Definitions

(CD) attributes

Equivalent IBM

TXSeries

Administration Tool

resource definition

attributes

Equivalent SMIT resource

definition attributes

Use in local SNA

connections

RemoteCodePageTR Code page for

transaction routing

Code page for transaction

routing

Specifies the code page for

transaction-routing data

that is flowing between the

local and remote regions.

RemoteLUName Remote LU name Name of remote system Specifies the LU name of

the remote system.

RemoteNetworkName Remote network

name

SNA network name for the

remote system

Specifies the network name

of the remote system.

RemoteSysSecurity Inbound request

security

Security level for inbound

requests

Specifies how CICS is to

process security

information received with

inbound requests.

RSLKeyMask Resource level

security key masks

Resource Security Level

(RSL) Key Mask

Contains the list of resource

link security keys that CICS

uses to control access to

resources from transactions.

SNAConnectName SNA LU alias SNA profile describing the

remote system

Specifies the name of the

remote system’s partner LU

alias.

TSLKeyMask Transaction level

security key masks

Transaction Security Level

(TSL) Key Mask

Contains the list of

transaction link security

keys that CICS uses to

control access to

transactions.

 Table 18. Comparison of CICS Listener Definitions (LD) for local SNA connections

Listener Definitions (LD)

attributes

Equivalent IBM

TXSeries

Administration

Tool resource

definition

attributes

Equivalent SMIT

resource definition

attributes

Use in local SNA

connections

<Key> Listener name Listener Identifier Specifies the name of

the Listener

Definitions (LD)

entry. At least one

LD entry is required

with Protocol=SNA.

Protocol Protocol Protocol type Specifies the

communications

protocol.

Chapter 4. Configuring CICS for SNA 73

Table 19. Comparison of CICS Region Definitions (RD) for local SNA connections

Region Definitions (RD)

attributes

Equivalent IBM

TXSeries

Administration

Tool resource

definition

attributes

Equivalent SMIT

resource definition

attributes

Use in local SNA

connections

LocalLUName Local LU name Local LU name Specifies the local LU

name of the region.

LocalNetworkName Local network

name

Network name to

which local region is

attached

Specifies the name of

the local SNA

network.

LocalSysId Local SYSID Region system

identifier (short

name)

Specifies the short

name of the CICS

region (as used in the

SYSID option of

several CICS

commands).

 Table 20. Comparison of CICS Transaction Definitions (TD) for local SNA connections

Transaction Definitions

(TD) attributes

Equivalent IBM

TXSeries

Administration

Tool resource

definition

attributes

Equivalent SMIT

resource definition

attributes

Use in local SNA

connections

SNAModeName SNA mode name SNA modename for

this transaction

Specifies the

modename on an

allocate request to a

remote system that is

connected by SNA.

TPNSNAProfile Not applicable SNA TPN profile for

APPC listener

program

(AIX SNA only)

Specifies the name of

an AIX SNA TPN

profile that is

configured in an

SNA communications

product, for example,

CICSTPN.

For information about how to configure these attributes, see the following sections.

Each section presents an example local SNA system configuration:

v “Configuring CICS for local SNA from the command line” on page 75 configures

a local CICS region that is running on a Windows system to communicate with a

remote CICS OS/2 region.

v “Configuring CICS for local SNA support by using the IBM TXSeries

Administration Tool (CICS on Windows platforms only)” on page 77 configures

a local CICS region that is running on a Windows system to communicate with a

remote CICS OS/2 region.

v “Configuring CICS for local SNA support by using SMIT (CICS for AIX only)”

on page 82 configures a local CICS for AIX region to communicate with a

remote CICS OS/2 region.

74 TXSeries for Multiplatforms: CICS Intercommunication Guide

Many attribute values must match associated values that are used in related

communications products, such as IBM Communications Server for Windows or

IBM Communications Server for AIX. See the communications product’s

administration documentation for more information.

Configuring CICS for local SNA from the command line

This section uses the CICS commands cicsadd and cicsupdate to add or update

intercommunication resources. For more information about the use of these

commands, see the TXSeries for Multiplatforms Administration Reference.

To configure CICS for local SNA, perform the following procedure (assume that

default values are accepted for any attributes that are not discussed):

1. Configure a Listener Definitions (LD) entry by issuing the cicsadd command, as

shown in the following example:

cicsadd -r cicswint -P -c ld LOCALSNA Protocol=SNA

In this example, a Listener Definitions (LD) entry called LOCALSNA with the

attribute Protocol=SNA is added to the permanent database of the region

cicswint. (If you add an LD entry to the region while it is running, local SNA

support is not enabled until the region is reinitialized by either an autostart or

a cold start. In this example, because the entry is added only to the permanent

database, the region must be cold-started.)

2. Update the LocalLUName, LocalNetworkName, and LocalSysId Region

Definitions (RD) attributes by issuing the cicsupdate command, as shown in

the following example:

cicsupdate -r cicswint -P -c rd LocalLUName="CICSWINT" \

 LocalNetworkName="MYSNANET" \

 LocalSysId="WINT"

In this example, the Region Definitions (RD) attribute LocalLUName is set to

CICSWINT, the LocalNetworkName attribute is set to MYSNANET, and the

LocalSysId attribute is set to WINT. These values are added to the permanent

database of region cicswint. (If you update RD attributes in a region while it is

running, the changes are not enabled until the region is reinitialized by either

an autostart or a cold start. In this example, because the attributes are updated

only in the permanent database, the region must be cold-started.)

3. Configure a Communications Definitions (CD) entry for each remote system

with which the local system is to communicate by issuing the cicsadd

command, as shown in the following example:

cicsadd -r cicswint -P -c cd COS2 \

 ConnectionType=local_sna \

 RemoteLUName="CICSOS2" \

 RemoteNetworkName="MYSNANET" \

 RemoteCodePageTR="ISO8859-1" \

 LinkUserId="LINKCOS2"

In this example, a Communications Definitions (CD) entry called COS2 is added

to the cicswint region’s permanent database. (If you add a CD entry to a region

while it is running, the changes are not enabled until the region is reinitialized

by either an autostart or a cold start. In this example, because the entry is

added only to the permanent database, the region must be cold-started.)

The attributes listed in this example configure the region as follows:

v The ConnectionType attribute value local_sna specifies that local SNA is to

be used.

Chapter 4. Configuring CICS for SNA 75

v The RemoteLUName attribute value CICSOS2 specifies the LU name of the

remote system.

v The RemoteNetworkName attribute value MYSNANET defines the SNA

network to which the remote system is connected.

v The RemoteCodePageTR attribute value (in this case, ISO8859–1) determines

which character set flows across the network during transaction routing. The

correct code page depends on the national language of your local region and

the remote system type. See “Data conversion for transaction routing” on

page 164 for information about how to choose this value.

v The LinkUserId attribute value LINKCOS2 identifies a locally defined user ID

that can be associated with inbound requests. Its value is related to the value

of the RemoteSysSecurity attribute, which, in this case, is left at the default

value of local.

The following attributes can also be specified:

v The SNAConnectName attribute specifies the name of the partner LU alias

that is defined in the SNA product. It is required only if the partner LU alias

is different from the partner LU name. (The partner LU is the SNA

communication product’s term for the remote region’s LU name. The partner

LU alias is an associated name for the partner LU; it is configured in the SNA

communications product.)

v The DefaultSNAModeName attribute specifies the SNA modegroup that is

to be used for intersystem requests when an SNA modename is not specified

either in the PROFILE option of the EXEC CICS ALLOCATE command, or in

the SNAModeName attribute of the Transaction Definitions (TD) entry. (A

modegroup, or modename, is defined in the SNA communications product. It

defines the number of sessions that are associated with a connection, and the

characteristics of those sessions.) See one of the following documents for

more information, depending on your SNA communications product:

– TXSeries for Multiplatforms Using IBM Communications Server for AIX with

CICS

– TXSeries for Multiplatforms Using IBM Communications Server for Windows

Systems with CICS

– TXSeries for Multiplatforms Using Microsoft SNA Server with CICS

– TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICS

– TXSeries for Multiplatforms Using SNAP-IX for Solaris with CICS

If the DefaultSNAModeName attribute is set to "" (its default value), and the

transaction has not provided a modename, the modename that is configured

for the SNA product is used. Refer to “Default modenames” on page 110 for

more information about the use of this attribute.

v The OutboundUserIds attribute determines the security information that is

sent with outbound requests. “Setting up a CICS region to flow user IDs” on

page 130 and “Setting up a CICS region to flow passwords” on page 131

describe how this option works.

v The RemoteSysSecurity attribute specifies the type of security that is

required:

– Using the default value of local causes CICS to run all incoming

intersystem requests from the remote system under the user ID value that

you specify in the LinkUserId field. The User Definitions (UD) entry for

this user ID determines which resources these intersystem requests can

access. This type of security is called link security and is described in

“CICS link security” on page 126.

– Choosing the verify or trusted values causes CICS to use the security

information (such as the user ID and password) that is sent with the

76 TXSeries for Multiplatforms: CICS Intercommunication Guide

intersystem request. CICS also uses the user ID that you specify in the

LinkUserId field to restrict the resources that inbound intersystem

requests can access. This type of security is called user security and is

described in “CICS user security” on page 127.
v See Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions of

the TSLKeyMask and RSLKeyMask attributes.

Configuring CICS for local SNA support by using the IBM

TXSeries Administration Tool (CICS on Windows platforms

only)

To configure CICS for local SNA by using the IBM TXSeries Administration Tool,

you must configure a Listener Definitions (LD) entry, update the Local network

name, Local SYSID, and Local LU name Region Definitions (RD) attributes, and

configure a Communications Definitions (CD) entry for each remote system with

which your system is to communicate. Perform the following procedures to set

these definitions (assume that default values are accepted for any attributes that

are not discussed):

First, configure a Listener Definitions (LD) entry by doing the following:

1. In the IBM TXSeries Administration Tool Administration window, click the

region name.

2. Click Subsystem>Resources>Listener. The Listeners window opens.

3. Click Listeners>New. The Listener Definition window opens.

4. In the Listener name field, type a name for the Listener Definitions (LD) entry.

This name can be up to eight characters in length and must be different from

the names of all other LD entries that are in your region. It does not have to be

unique within the network and does not relate to any other names in the

network.

5. Enter a description if desired.

6. Click the SNA option from the Protocol menu. An example configuration

window is shown in Figure 33 on page 78.

Chapter 4. Configuring CICS for SNA 77

7. Click the Permanent button to add the Listener Definitions (LD) entry to the

permanent database, or click the Both button to add the entry to the permanent

and runtime databases.

Next, update the Local network name, Local SYSID, and Local LU name Region

Definitions (RD) attributes by doing the following:

1. In the IBM TXSeries Administration Tool Administration window, click the

region name.

2. Click Subsystem>Properties. The Properties window opens.

3. Enter a description if desired.

4. Type the region’s network name in the Local network name field.

5. Type the region’s short name in the Local SYSID field.

6. Type the region’s local LU name in the Local LU name field. An example

configuration window is shown in Figure 34 on page 79.

Figure 33. Listener Definition window

78 TXSeries for Multiplatforms: CICS Intercommunication Guide

7. Click OK to add the updated Region Definitions (RD) attributes to the

permanent database. (If you update RD attributes in a region while it is

running, the changes are not enabled until the region is reinitialized by either

an autostart or a cold start. In this example, because the attributes are being

updated only in the permanent database, the region would have to be

cold-started.)

Finally, configure a Communications Definitions (CD) entry for each remote system

with which your system is to communicate by doing the following:

1. Click the region name in the IBM TXSeries Administration Tool Administration

window.

2. Click Subsystem>Resources>Communication. The Communications window

opens.

3. Click Communications>New. The Communication Definition window opens.

The attributes for a Communications Definitions (CD) entry are grouped on

four tabs:

v General: Contains attributes that are required by all CD entries.

v SNA: Contains attributes that describe how the remote system communicates

over an SNA network.

v TCP/IP: Contains attributes that describe how the remote system is

connected to a TCP/IP network. Attributes on this page are not applicable to

a local SNA CD entry.

v Security: Contains attributes that define how security is managed.

Figure 34. Region Definition Properties window

Chapter 4. Configuring CICS for SNA 79

4. On the General tab:

a. In the SYSID field, type a four-character name for the Communications

Definitions (CD) entry. This name must be different from the names of all

other CD entries that are in your region. However, it does not have to be

unique within the network and does not relate to any other names in the

network.

b. Type a description if desired.

c. Select the CICS Local SNA option from the Connection type menu.

d. Accept the default value, or type the appropriate value in the Code page

for transaction routing field. This value determines which character set

flows across the network during transaction routing. The correct code page

depends on the national language of your local region and the remote

system type. See Chapter 7, “Data conversion,” on page 147 for information

about how to choose this value. An example configuration window is

shown in Figure 35.

5. Click the SNA tab. On this tab:

a. Type the LU name of the remote system in the Remote LU name field.

b. Optionally, in the SNA LU alias field, type the LU alias that is configured

in your local SNA product for the remote system. (In this example, this field

remains empty.)

c. Type the SNA network to which the remote system is connected in the

Remote network name field.

d. In the Default SNA mode name field, type the name of the SNA

modegroup that is to be used for intersystem requests when an SNA

modename is not specified in either the PROFILE option of the EXEC CICS

Figure 35. Communication Definition window: General tab

80 TXSeries for Multiplatforms: CICS Intercommunication Guide

ALLOCATE command or in the SNAModeName attribute of the

Transaction Definitions (TD) entry. Refer to “Default modenames” on page

110 for more information about the use of this attribute. An example

configuration window is shown in Figure 36.

6. Click the Security tab. These attributes describe the security checks that are

applied to all intersystem requests that use this CD entry. On this tab:

a. In the Inbound request security area, click the type of security that you

require:

v Accepting the default Local option causes CICS to run all incoming

intersystem requests from the remote system under the user ID value that

you specify in the UserID for inbound requests field. The User

Definitions (UD) entry for this user ID determines which resources these

intersystem requests can access. This type of security is called link

security, and is described in “CICS link security” on page 126.

v Choosing the Verify or Trusted options causes CICS to use the security

information (such as the user ID and password) that is sent with the

intersystem request. CICS also uses the user ID that you specify in the

UserID for inbound requests field to restrict the resources that inbound

intersystem requests can access. This type of security is called user security

and is described in “CICS user security” on page 127.
b. Security information that is sent with outbound requests is determined by

the value that is selected in the Send user ID field. “Setting up a CICS

region to flow user IDs” on page 130 and “Setting up a CICS region to flow

passwords” on page 131 describe how this option works.

c. See Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions

Figure 36. Communication Definition window: SNA tab

Chapter 4. Configuring CICS for SNA 81

of the Transaction level security key masks and Resource level security

key masks fields. An example configuration window is shown in Figure 37.

7. Click the Permanent button to add the Communications Definitions (CD) entry

to the permanent database, or click the Both button to add the entry to the

permanent and runtime databases.

8. Repeat this process for any other Communications Definitions (CD) entries.

Configuring CICS for local SNA support by using SMIT (CICS

for AIX only)

To configure CICS for local SNA by using SMIT, perform the following procedure

(assume that default values are accepted for any attributes that are not discussed):

1. Ensure that you are logged into AIX with enough privileges to change the

region database. (For example, log into AIX as the root user.)

2. Optionally, set the environment variable CICSREGION to the name of your

CICS region. For example:

export CICSREGION=cicsaix

Note: In this procedure, the local region is called cicsaix to reflect a CICS for

AIX system. Also, this example assumes that you are using the Korn

shell; if you are using a different shell, change the export command

accordingly.

3. Enter smitty cicsregion to start SMIT.

4. If you have not set the CICSREGION environment variable as described in step

2, select the option Change Working CICS Region.

Figure 37. Communication Definition window: Security tab

82 TXSeries for Multiplatforms: CICS Intercommunication Guide

5. Select your CICS region from the list that is displayed, and press the Enter key.

The COMMAND STATUS screen verifies your selection.

6. Press the F3 key.

7. Configure a Listener Definitions (LD) entry by performing the following

procedure:

a. Select options:

� Define Resources for a CICS Region

 � Manage Resource(s)

 � Listeners

 � Add New

The Add Listener panel is displayed.

b. Enter a value for the Model Listener Identifier attribute. Use the name of

an LD entry that you have defined previously, or press the Enter key to use

the default value (″″).

c. Enter the name of the LD entry in the Listener Identifier field.

d. Add a description in the Resource description field if desired.

e. Select the SNA option from the Protocol type field. Figure 38 shows an

example Add Listener SMIT panel. (Only the panel that shows updated

attributes is shown.)

f. Press the Enter key to create the LD entry. (If you add an LD entry to a

region while it is running, the changes are not enabled until the region is

reinitialized by either an autostart or a cold start. In this example, because

the entry is being added only to the permanent database, the region would

have to be cold-started.) The COMMAND STATUS screen verifies successful

creation of the definition.

g. Press the F3 key three times to return to the Manage Resource(s) menu.
8. Update the Region system identifier (short name), Network name to which

local region is attached, and Local LU name Region Definitions (RD)

attributes, by performing the following procedure:

a. From the Manage Resource(s) menu, select the options:

 Add Listener

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

* Listener Identifier [LOCALSNA]

* Model Listener Identifier ""

* Region name [cicsaix] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate resource at cold start? yes +

 Resource description [Listener Definition]

* Number of updates 0

 Protect resource from modification? no +

 Protocol type SNA +

 TCP adapter address []

 TCP service name []

 local SNA Server Protocol Type TCP +

[MORE. . . 10]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 38. Add Listener SMIT panel

Chapter 4. Configuring CICS for SNA 83

� Region

 � Show/Change

The Show/Change Region panel is displayed.

b. Enter a description in the Resource description field if desired.

c. Enter a four-character name for the CICS region, known as the SYSID, in the

Region system identifier (short name) field.

d. Enter the network name in the Network name to which local region is

attached field.

e. Enter the region’s local LU name in the Local LU name field.

Figure 39 on page 85 and Figure 40 on page 86 show example

Show/Change Region SMIT panels. (Only those panels showing updated

attributes are shown.)

84 TXSeries for Multiplatforms: CICS Intercommunication Guide

Show/Change Region

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

* Region name cicsaix

 Resource description [Region Definition]

* Number of updates 1

 Protect resource from modification? no +

 Startup type cold +

 Startup groups []

 Programs to execute at startup []

 Programs to execute at phase 1 of shutdown []

 Programs to execute at phase 2 of shutdown []

 Name of the default user identifier [CICSUSER]

 Type of RSL checking for Files external +

 Type of RSL checking for TDQs external +

 Type of RSL checking for TSQs external +

 Type of RSL checking for Journals external +

 Type of RSL checking for Programs external +

 Type of RSL checking for Transactions external +

 Do you want to use an External Security Manager? no +

 Name of ESM Module []

 Min protect level used when accepting RPCs none +

 Min protect level for logical TDQs none +

 Min protect level for physical TDQs none +

 Min protect level for non-recoverable TDQs none +

 Min protect level for recoverable TSQs none +

 Min protect level for non-recoverable TSQs none +

 Min protect level for locally queued PROTECT ATIs none +

 Min protect level for locally queued ATIs none +

 CICS Release Number 0430

 Region system identifier (short name) [CAIX]

 Network name to which local region is attached [MYSNANET]

 Common Work Area Size [512] #

 Minimum number of Application Servers to maintain [1] #

 Maximum number of Application Servers to maintain [5] #

 Maximum number of running transactions per class ([1,1,1,1,1,1,1,1,1,1]

 10 entries)

 Purge threshold for transaction requests above Cla [0,0,0,0,0,0,0,0,0,0]

 ssMaxTasks

 Time before Application Servers terminate (secs) [300] #

 Level of protection against user corruption none +

 Number of threads for RPC requests [0] #

 Format date for FORMATTIME ddmmyy +

 Hash sizes CD,FD,PD,RD,TSD,WD,TD,TDD,XAD,UD,MD,JD, [5,50,50,1,50,50,50,20,>

 LD,GD,OD

 Region Pool Storage Size (bytes) [2097152] #

 Task-private Storage Size (bytes) [1048576] #

 Task Shared Pool Storage Size (bytes) [1048576] #

 Threshold for Region Pool short on storage (%age) [90] #

[MORE. . .62]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 39. Show/Change Region SMIT panel (Part 1)

Chapter 4. Configuring CICS for SNA 85

f. Press Enter to update the Region Definitions (RD) attributes. (If you update

RD attributes in a region while it is running, the changes are not enabled

until the region is reinitialized by either an autostart or a cold start. In this

example, because the attributes are being updated only in the permanent

database, the region would have to be cold-started.) The COMMAND

STATUS screen confirms successful completion of the process.

g. Press the F3 key three times to return to the Manage Resource(s) menu.
9. Configure a Communications Definitions (CD) entry for each remote system

with which your system is to communicate, by performing the following

procedure:

a. Select options:

 � Communications

 � Add New

The Add Communication panel is displayed.

 Show/Change Region

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...46] [Entry Fields]

 Threshold for TSH Pool short on storage (%age) [90] #

 Number of Task Shared Pool Address Hash Buckets [512] #

 Number of LOADed data Address Hash Buckets [512] #

 System dump on shutdown, SNAP dumps, ASRx abends? no +

 Should CICS system be dumped for ASRA abends? yes +

 Should CICS system be dumped for ASRB abends? yes +

 Directory in which dump output is written [dumps]

 Directory in which Core Dump output is written [dir1]

 Modules to trace all +

 Module list for partial trace [0]

 External trace facility required? no +

 File or path (A) for system trace [trace.a]

 File or path (B) for system trace [trace.b]

 Maximum system trace file size [3276800] #

 System trace buffer size [163840] #

 User trace directory [/tmp]

 User Trace file or path for guest logins [cicspubl]

 Interval between region consistency checks (mins) [10] #

 Level of checking to perform on region minimal +

 Retransmission interval for queued ATIs (mins) [10] #

 Rescheduling interval for blocked ATIs (mins) [5] #

 ATI purge interval (hours) [8] #

 Purge delay period for PROTECT requests (hours) [8] #

 Purge delay period for no PROTECT requests (hours) [8] #

 Should stats be recorded at every interval? yes +

 File or path for statistics [statsfile]

 Should map names be suffixed? yes +

 Number of records logged between checkpoints [1000] #

 Expiry limit for unaccessed TSQs (days) [20] #

 Maximum number of C or IBM COBOL programs that can [0] #

 be cached

 Local LU name [CICSAIX]

 Region Pool base register [2684354560] #

 Task Shared Pool base register [2952790016] #

 Server side transactions only ? no +

 Allow use of the application debugging tool no +

 HTML Browser for help text []

[MORE. . .18]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 40. Show/Change Region SMIT panel (Part 2)

86 TXSeries for Multiplatforms: CICS Intercommunication Guide

b. Enter a value for the Model Communication Identifier attribute. Use the

name of a CD entry that you have defined previously, or press the Enter

key to use the default value (″″).

c. Enter the name of the CD entry in the Communication Identifier field.

d. Add a description in the Resource description field if desired.

e. Select local_sna in the Connection type field.

f. Enter the LU name of the remote system in the Name of remote system

field.

g. Enter the name of the network to which the remote system is attached in

the SNA network name for the remote system field.

h. In the Default modename for a SNA connection field, enter the name of

the SNA modegroup that is to be used for intersystem requests when an

SNA modename is not specified either in the PROFILE option of the EXEC

CICS ALLOCATE command, or in the SNAModeName attribute of the

Transaction Definitions (TD) entry. If the Default modename for a SNA

connection attribute is set to "" (its default value), and the transaction has

not provided a modename, the modename that is configured in the AIX

SNA communications product’s side information profile for the local LU

name is used. Refer to “Default modenames” on page 110 for more

information about the use of this attribute.

i. Accept the default value or enter the appropriate value in the Code page for

transaction routing field. This value determines which character set flows

across the network during transaction routing. The correct code page

depends on the national language of your local region and the remote

system type. See “Data conversion for transaction routing” on page 164 for

information about how to choose this value.

j. Accept the default value or select the appropriate value for the Send userids

on outbound requests? attribute to determine the type of security

information (if any) that is sent with outbound requests. “Setting up a CICS

region to flow user IDs” on page 130 and “Setting up a CICS region to flow

passwords” on page 131 describe how this attribute works.

k. In the Security level for inbound requests field, select the type of security

that you require:

v Accepting the default local option causes CICS to run all incoming

intersystem requests from the remote system under the user ID value that

you specify in the UserID for inbound requests field. The User

Definitions (UD) entry for this user ID determines which resources these

intersystem requests can access. This type of security is called link security

and is described in “CICS link security” on page 126.

v Choosing the verify or trusted options causes CICS to use the security

information (such as the user ID and password) that is sent with the

intersystem request. CICS also uses the user ID that you specify in the

UserID for inbound requests field to restrict the resources that inbound

intersystem requests can access. This type of security is called user security

and is described in “CICS user security” on page 127.
l. See Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions of

the Transaction Security Level (TSL) Key Mask and Resource Security

Level (RSL) Key Mask attributes. Figure 41 on page 88 shows an example

Add Communication SMIT panel.

Chapter 4. Configuring CICS for SNA 87

m. Press Enter to create the CD entry. (If you add a CD entry to a region while

it is running, the changes are not enabled until the region is reinitialized by

either an autostart or a cold start. In this example, because the entry is

being added only to the permanent database, the region would have to be

cold-started.) The COMMAND STATUS screen verifies the definition

creation.

n. Press the F3 key three times to return to the Manage Resource(s) menu.

o. Repeat this process for any other Communications Definitions (CD) entries.

SNA Receive Timeout feature (For CICS on AIX only)

A timeout process now exists for use by SNA receive processes. A CICS application

server that is waiting on a SNA receive from a remote CICS region can deallocate

the conversation and force an abend in the CICS Application Server (cicsas)

process. This abend triggers a controlled shutdown of the application server and

the automatic startup of a new one. The newly started application server is then

available to run any of the scheduled transactions that are in the queue. Abend

message AB61 describes the expiration of the SNA timeout period:

AB61

EXPLANATION: Local transaction aborted due to SNA timeout waiting on receive.

SYSTEM_ACTION: CICS abnormally terminates the application server.

USER_RESPONSE: Either reissue the transaction or increase the receive timeout

value and reissue the transaction.

 Add Communication

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Communication Identifier [COS2]

* Model Communication Identifier ""

* Region name [cicsaix] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate the resource at cold start? yes +

 Resource description [Connection to CICSOS2]

* Number of updates 0

 Protect resource from modification? no +

 Connection type local_sna +

 Name of remote system [CICSOS2]

 SNA network name for the remote system [MYSNANET]

 SNA profile describing the remote system []

 Default modename for a SNA connection [CICSISC0]

 Gateway Definition (GD) entry name []

 Listener Definition (LD) entry name []

 TCP address for the remote system []

 TCP port number for the remote system [1435] #

 Timeout on allocate (in seconds) [60] #

 Code page for transaction routing [ISO8859-1]

 Set connection in service? yes +

 Send userids on outbound requests? sent +

 Security level for inbound requests local +

 UserId for inbound requests [LINKCOS2]

 Transaction Security Level (TSL) Key Mask [none]

 Resource Security Level (RSL) Key Mask [none]

 Transmission encryption level none +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 41. Add Communication SMIT panel

88 TXSeries for Multiplatforms: CICS Intercommunication Guide

The message that is associated with this abend is ERZ59999E. It states that the

time-out period has expired. In this example, ’TRAN’ is the local transaction name,

’n’ is the specified timeout value, and ’SYS1’ is the system definition to which the

transaction was communicating:

ERZ59999E

"Transaction ’TRAN’ has exceeded the allowed timeout=’n’ seconds on SNA

session to SysId=’SYS1’"

EXPLANATION: The remote region with this SysID has not replied to a request

sent over SNA within the specified receive timeout value.

SYSTEM_ACTION: The local transaction will be abended with AB61 after the

SNA conversation has been deallocated with the remote region.

USER_RESPONSE: Retry the same transaction later or increase the timeout

value and retry.

Possible MSN values: 0097

When a region is configured for SNA Receive Timeout, conversations that are

established to a remote host for Distributed Program Link (DPL), Distributed

Transaction Processing (DTP), Transaction Routing, and CRTE hosted transactions

are subject to it.

Configuration is through the environment variable

CICS_SNA_RECEIVE_TIMEOUT. The contents of the string in this environment

variable trigger and control the timing-out of SNA conversations to the specified

systems in the string. To set this environment variable, add the following line to

the environment file that is in the /var/cics_regions/ region_name directory:

CICS_SNA_RECEIVE_TIMEOUT="SYS1,N1,SYS2,N2,SYS3,N3,SYS5,N5,. . .SYSn,Nn"

where SYS1 to SYSn are the Communications Definitions in the CD stanza of the

CICS region that are subject to the forced timeout. Each of these is a remote system

identifier with a maximum size of four alphanumeric characters. N1 through Nn are

the actual timeout values in seconds. Each is the timeout value for the preceding

system identifier, and is an integer value greater than, or equal to, 0.

The environment variable string cannot exceed 1024 characters in length, and must

strictly follow the above format with a comma ″,″ separating each timeout value

from its preceding system identifier. After it is configured, the region must be cold

started to allow the new timeout values to be associated with the system

definitions in the CD stanza.

Configuring CICS for PPC Gateway server SNA support

PPC Gateway server SNA support lets TXSeries for Multiplatforms regions

communicate with SNA systems with synchronization level 2 support. (For

descriptions of synchronization levels, see “Ensuring data integrity with

synchronization support” on page 16.) The CICS region is connected to a TCP/IP

network through the PPC Gateway server, which provides a link to the SNA

network.

Note: For information about how to create a PPC Gateway server, refer to

Chapter 8, “Creating and using a PPC Gateway server in a CICS

environment,” on page 175.

PPC Gateway server SNA support requires that an appropriate SNA product be

installed and configured on the same machine as is the PPC Gateway server. Such

products are shown in Table 21 on page 90.

Chapter 4. Configuring CICS for SNA 89

Table 21. Communications products for various platforms to enable PPC Gateway server

SNA support

Platform Communications product

Windows IBM Communications Server or

Microsoft SNA Server

AIX IBM Communications Server

Solaris SNAP-IX

HP-UX SNAplus2

The PPC Gateway server can be on the same machine as is the CICS region, or on

a different machine.

Note: CICS does not support the use of a PPC Gateway server on Solaris.

However, a CICS for Solaris region can use a PPC Gateway server that is

running on a non-Solaris platform.

A CICS region can use more than one PPC Gateway server. This type of

configuration provides the following performance benefits:

v Network links from many remote machines are spread across more than one

gateway machine, and, as a result, across multiple SNA products.

v If one PPC Gateway server fails, another is available as a backup.

v The processing load is spread across more than one PPC Gateway server.

A PPC Gateway server can also be shared by several CICS regions. This can be an

economical alternative if your CICS regions do not make many SNA

intercommunication requests. However, such a configuration can overload a PPC

Gateway server and make problem determination difficult.

To enable your CICS region to use a PPC Gateway server, you must configure the

following:

v A Gateway Definitions (GD) entry for each PPC Gateway server that the region

uses. A GD entry is a one- through four-character name, whose attributes

describe:

– The name of the PPC Gateway server (specified in the GatewayCDSName

attribute).

– The SNA LU name that the PPC Gateway server is to use for the region

(specified in the GatewayLUName attribute).

Note: If a GatewayLUName value is not specified, CICS uses the LocalLUName

attribute value as the region identifier for remote systems. However, the

same LocalLUName attribute value cannot be shared between local SNA

support and a PPC Gateway server or among multiple PPC Gateway

servers. Be sure to create a unique Gateway Definitions (GD) entry for

each system that is connecting through a PPC Gateway server.

v A Communications Definitions (CD) entry for each remote system with which

the region is to communicate.

Note: Although no Region Definitions (RD) attributes must be configured to

enable PPC Gateway server SNA communications, it is recommended that

you specify a short name for the local region by using the LocalSysId

attribute.

90 TXSeries for Multiplatforms: CICS Intercommunication Guide

You also possibly need to configure the Transaction Definitions (TD)

TPNSNAProfile attribute if both the following conditions apply:

v The local CICS region is a CICS for AIX region.

v Remote systems will request transactions that reside in the local region.

See the TXSeries for Multiplatforms Administration Reference for more

information.

A Listener Definitions (LD) entry is not required because the PPC Gateway

server sends requests to the region by using CICSIPC Remote Procedure

Calls (RPCs). RPCs flow through the RPC Listener process, which is always

present in a CICS region.

Figure 42 on page 92 shows the key configuration attributes. It shows a CICS

region with a Gateway LU name of CICSNTGW connected through a PPC Gateway

server to a remote system that is named CICSESA.

Chapter 4. Configuring CICS for SNA 91

The CICS region has a Region Definitions (RD) entry with the LocalSysId attribute

identifying the short name for the local region. It has a Gateway Definitions (GD)

entry with the GatewayLUName attribute set to CICSNTGW, which is the LU name

that the PPC Gateway server uses to communicate with the local region. It also has

a Communications Definitions (CD) entry called CESA, which defines the remote

CICS/ESA system to the local region. The Communications Definitions (CD)

ConnectionType attribute identifies the connection as a ppc_gateway, the

RemoteLUName attribute defines the LU name of the remote region, and the

RemoteNetworkName attribute defines the name of the network to which the

remote region belongs. The GatewayName attribute is set to GWY, which is the

name of the Gateway Definitions (GD) entry for the connection, the

SNAConnectName attribute is left blank (″″), which indicates that no alias exists

for the partner LU name in the remote system, and the AllocateTimeout attribute

is set to 60, which indicates the wait time in seconds for an intersystem request to

be started in the PPC Gateway server.

ESA

CICS
application

CICS/ESA

LUName=CICSESA

VTAM

CICS
Application

SNA
Product

PPC
Executive

PPC Gateway
Server

CICS forWindows NT region cicswint

Region Definitions (RD):

Gateway Definitions (GD) GWY:

Communications Definitions (CD) CESA:

LocalSysId=WINT

GatewayLUName=CICSNTGW

ConnectionType=ppc_gateway
RemoteLUName=CICSESA
RemoteNetworkName=MYSNANET
GatewayName=GWY
SNAConnectName=""
AllocateTimeout=60

SNA Network

Figure 42. An example network using PPC Gateway server SNA support

92 TXSeries for Multiplatforms: CICS Intercommunication Guide

Figure 42 on page 92 shows a few of the resource definition attributes that can be

configured for SNA communications. For more complete lists of attributes

commonly used in communications, see Table 22, Table 23 on page 94, Table 24 on

page 95, and Table 25 on page 95. They list and define the resource definition

attributes that are used for PPC Gateway server SNA communications that are

covered in this chapter. Command-line attribute names are given, along with their

equivalent names in the IBM TXSeries Administration Tool and SMIT. The TXSeries

for Multiplatforms Administration Reference and the CICS Administration Guide

provide complete information about all CICS commands and definitions.

Note: The terminology in this chapter uses the attribute names of the CICS

resource definitions that are referenced when CICS commands are used to

configure a region. If you are using CICS on a Windows platform, you can

use the IBM TXSeries Administration Tool rather instead of CICS commands

to configure the resources. Likewise, if you are using CICS for AIX, you can

use SMIT to configure the resources.

 Table 22. Comparison of CICS Communications Definitions (CD) for PPC Gateway server SNA connections

Communications Definitions

(CD) attributes

Equivalent IBM

TXSeries

Administration Tool

resource definition

attributes

Equivalent SMIT resource

definition attributes

Use in PPC Gateway

server connections

<Key> SYSID Communication Identifier Specifies the name of the

Communications

Definitions (CD) entry.

AllocateTimeout Timeout on allocate Timeout on allocate (in

seconds)

Specifies the wait time in

seconds for an intersystem

request to be started in the

PPC Gateway server.

ConnectionType Connection type Connection type Specifies the type of

connection.

DefaultSNAModeName Default SNA mode

name

Default modename for a

SNA connection

Specifies the SNA

modegroup that is to be

used for intersystem

requests when an SNA

modename is not specified

in either the PROFILE

option of the EXEC CICS

ALLOCATE command or in

the SNAModeName

attribute of the Transaction

Definitions (TD).

GatewayName Gateway Gateway Definition (GD)

entry name

Specifies the name of a

locally defined Gateway

Definitions (GD) entry for

the PPC Gateway server.

LinkUserId UserID for inbound

requests

UserId for inbound

requests

Specifies a locally defined

user ID to associate with

inbound requests.

OutboundUserIds Sent user ID Send user IDs on outbound

requests?

Specifies whether a user ID

with or without a password

is sent with outbound

requests.

Chapter 4. Configuring CICS for SNA 93

Table 22. Comparison of CICS Communications Definitions (CD) for PPC Gateway server SNA

connections (continued)

Communications Definitions

(CD) attributes

Equivalent IBM

TXSeries

Administration Tool

resource definition

attributes

Equivalent SMIT resource

definition attributes

Use in PPC Gateway

server connections

RemoteCodePageTR Code page for

transaction routing

Code page for transaction

routing

Specifies the code page for

transaction-routing data

that is flowing between the

local and remote regions.

RemoteLUName Remote LU name Name of remote system Specifies the LU name of

the remote system.

RemoteNetworkName Remote network

name

SNA network name for the

remote system

Specifies the network name

of the remote system.

RemoteSysSecurity Inbound request

security

Security level for inbound

requests

Specifies how CICS is to

process security

information that is received

with inbound requests.

RSLKeyMask Resource level

security key masks

Resource Security Level

(RSL) Key Mask

Contains the list of resource

link security keys that CICS

uses to control access to

resources from transactions.

SNAConnectName SNA LU alias SNA profile describing the

remote system

Specifies the name of the

remote system’s partner LU

alias.

TSLKeyMask Transaction level

security key masks

Transaction Security Level

(TSL) Key Mask

Contains the list of

transaction link security

keys that CICS uses to

control access to

transactions.

 Table 23. Comparison of CICS Gateway Definitions (GD) for PPC Gateway server SNA connections

Gateway Definitions (GD)

attributes

Equivalent IBM

TXSeries

Administration Tool

resource definition

attributes

Equivalent SMIT resource

definition attributes

Use in PPC Gateway

server connections

<Key> Gateway name Gateway Identifier Specifies the name of the

Gateway Definitions (GD)

entry. At least one entry

must be defined that

specifies the PPC Gateway

server that the CICS region

is to use for the connection.

GatewayLUName Gateway LU name SNA LU name of the

gateway

Specifies the SNA LU name

that the PPC Gateway

server uses to communicate

with the local region.

94 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 24. Comparison of CICS Region Definitions (RD) for PPC Gateway server SNA connections

Region Definitions (RD)

attribute

Equivalent IBM

TXSeries

Administration Tool

resource definition

attribute

Equivalent SMIT resource

definition attribute

Use in PPC Gateway

server connections

LocalSysId Local SYSID Region system identifier

(short name)

Specifies the short name of

the CICS region (as used in

the SYSID option of several

CICS commands).

 Table 25. Comparison of CICS Transaction Definitions (TD) for PPC Gateway server SNA connections

Transaction Definitions (TD)

attributes

Equivalent IBM

TXSeries

Administration Tool

resource definition

attributes

Equivalent SMIT resource

definition attributes

Use in PPC Gateway

server connections

SNAModeName SNA mode name SNA modename for this

transaction

Specifies the modename on

an allocate request to a

remote system that is

connected by SNA.

TPNSNAProfile Not applicable SNA TPN profile for APPC

listener program

(AIX SNA only) Specifies

the name of an AIX SNA

TPN profile that is

configured in an SNA

communications product,

for example, CICSTPN.

For information about how to configure these attributes, see the following sections.

Each section presents an example PPC Gateway server SNA configuration:

v “Configuring CICS for PPC Gateway server SNA support from the command

line” configures a local CICS for Windows region to communicate with a remote

CICS/ESA region.

v “Configuring CICS for PPC Gateway server SNA support by using the IBM

TXSeries Administration Tool (CICS on Windows platforms only)” on page 98

configures a local CICS for Windows region to communicate with a remote

CICS/ESA region.

v “Configuring CICS for PPC Gateway server SNA support by using SMIT (CICS

for AIX only)” on page 103 configures a local CICS for AIX region to

communicate with a remote CICS/ESA region.

Many attribute values must match associated values that are used in related

communications products, such as IBM Communications Server for Windows or

IBM Communications Server for AIX. See the communications product’s

administration documentation for more information.

Configuring CICS for PPC Gateway server SNA support from

the command line

This section uses the CICS commands cicsadd and cicsupdate to add or update

intercommunication resources. For more information about the use of these

commands, see the TXSeries for Multiplatforms Administration Reference.

Chapter 4. Configuring CICS for SNA 95

To configure CICS for PPC Gateway server SNA, perform the following procedure

(assume that default values are accepted for any attributes that are not discussed):

1. Configure a Gateway Definitions (GD) entry by issuing the cicsadd command,

as shown in the following example:

cicsadd -r cicswint -P -c gd GWY GatewayCDSName="cicsgwy" \

 GatewayLUName="CICSNTGW"

In this example, a Gateway Definitions (GD) entry called GWY is added to the

permanent database of region cicswint. (If you add a GD to a region while it is

running, PPC Gateway server support is not enabled until the region is

reinitialized by either an autostart or a cold start. In this example, bcause the

entry is being added only to the permanent database, the region would have to

be cold-started.)

The GatewayCDSName attribute is set to cicsgwy. If the value for the

GatewayCDSName attribute does not begin with a slash character (/), CICS

inserts the string /.:/cics/ppc/gateway in front of the supplied name. Therefore,

the GD entry that GWY describes is a PPC Gateway server named:

/.:/cics/ppc/gateway/cicsgwy.

Because the GatewayLUName attribute is set to CICSNTGW, CICS notifies the

PPC Gateway server to use the LU name CICSNTGW to communicate with the

local region.

2. Update the LocalSysId Region Definitions (RD) attribute by issuing the

cicsupdate command, as shown in the following example:

cicsupdate -r cicswint -P -c rd LocalSysId="WINT"

In this example, the Region Definitions (RD) attribute LocalSysId is set to WINT.

This value is added to the permanent database of region cicswint. (If you

update an RD attribute in a region while it is running, the change is not

enabled until the region is reinitialized by either an autostart or a cold start. In

this example, because the attribute is being updated only in the permanent

database, the region would have to be cold-started.)

3. Configure a Communications Definitions (CD) entry for each remote system

with which the local system is to communicate by issuing the cicsadd

command, as shown in the following example:

cicsadd -r cicswint -P -c cd CESA \

 ConnectionType=ppc_gateway \

 RemoteLUName="CICSESA" \

 RemoteNetworkName="MYSNANET" \

 GatewayName="GWY" \

 AllocateTimeout=60 \

 RemoteCodePageTR="IBM-037" \

 RemoteSysSecurity=trusted \

 LinkUserId="LINKCESA"

In this example, a Communications Definitions (CD) entry called CESA is added

to the cicswint region’s permanent database. (If you add a CD entry to a region

while it is running, the changes are not enabled until the region is reinitialized

by either an autostart or a cold start. In this example, because the entry is being

added only to the permanent database, the region would have to be

cold-started.)

The attributes that are listed in this example configure the region as follows:

v The ConnectionType attribute value ppc_gateway specifies that PPC Gateway

server SNA is to be used.

v The RemoteLUName attribute value CICSESA specifies the LU name of the

remote system.

96 TXSeries for Multiplatforms: CICS Intercommunication Guide

v The RemoteNetworkName attribute value MYSNANET defines the SNA

network to which the remote system is connected.

v The GatewayName attribute value of GWY specifies the PPC Gateway server

that is to be used. (It is set to the name of the Gateway Definitions (GD)

entry defined for the PPC Gateway server.)

v The AllocateTimeout attribute value of 60 defines, in seconds, how long

CICS waits for the PPC Gateway server to accept an intersystem request.

v The RemoteCodePageTR attribute value (in this case, IBM-037) determines

which character set flows across the network during transaction routing. The

correct code page depends on the national language of your local region and

the remote system type. See “Data conversion for transaction routing” on

page 164 for information about how to choose this value.

v The RemoteSysSecurity attribute value of trusted specifies that CICS use

the security information (such as user ID) that is sent with an intersystem

request.

v The LinkUserId attribute value LINKCESA identifies a locally defined user ID

that can be associated with inbound requests. Its value is related to the value

of the RemoteSysSecurity attribute, which, in this case, is set to trusted.

The following attributes can also be specified:

v The SNAConnectName attribute specifies the name of the partner LU alias

that is defined in the SNA product. It is required only if the partner LU alias

is different from the partner LU name. (The partner LU is the SNA

communications product’s term for the remote region’s LU name. The partner

LU alias is an associated name for the partner LU; it is configured in the SNA

communications product.)

v The DefaultSNAModeName attribute specifies the SNA modegroup that is

to be used for intersystem requests when an SNA modename is not specified

in either the PROFILE option of the EXEC CICS ALLOCATE command or in

the SNAModeName attribute of the Transaction Definitions (TD) entry. (A

modegroup, or modename, is defined in the SNA communications product. It

defines the number of sessions that are associated with a connection and the

characteristics of those sessions.) See one of the following documents for

more information, depending on your SNA communications product:

– TXSeries for Multiplatforms Using IBM Communications Server for AIX with

CICS

– TXSeries for Multiplatforms Using IBM Communications Server for Windows

Systems with CICS

– TXSeries for Multiplatforms Using Microsoft SNA Server with CICS

– TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICS

– TXSeries for Multiplatforms Using SNAP-IX for Solaris with CICS

If the DefaultSNAModeName attribute is set to "" (its default value), and the

transaction has not provided a modename, the modename that is configured

for the SNA product is used. Refer to “Default modenames” on page 110 for

more information about the use of this attribute.

v The OutboundUserIds attribute determines the security information that is

sent with outbound requests. “Setting up a CICS region to flow user IDs” on

page 130 and “Setting up a CICS region to flow passwords” on page 131

describe how this option works.

v The RemoteSysSecurity attribute specifies the type of security that is

required:

– Using the default value of local causes CICS to run all incoming

intersystem requests from the remote system under the user ID value that

you specify in the LinkUserId field. The User Definitions (UD) entry for

Chapter 4. Configuring CICS for SNA 97

this user ID determines which resources these intersystem requests can

access. This type of security is called link security and is described in

“CICS link security” on page 126.

– Choosing the verify or trusted values causes CICS to use the security

information (such as the user ID and password) that is sent with the

intersystem request. CICS also uses the user ID that you specify in the

LinkUserId field to restrict the resources that inbound intersystem

requests can access. This type of security is called user security and is

described in “CICS user security” on page 127.
v See Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions of

the TSLKeyMask and RSLKeyMask attributes.

Configuring CICS for PPC Gateway server SNA support by

using the IBM TXSeries Administration Tool (CICS on

Windows platforms only)

To configure CICS for PPC Gateway server SNA by using the IBM TXSeries

Administration Tool, you must configure a Gateway Definitions (GD) entry and a

Communications Definitions (CD) entry for each remote system with which your

system is to communicate. It is also recommended that you update the Local

SYSID Region Definitions (RD) attribute. Perform the following procedures to set

these definitions (assume that default values are accepted for any attributes that

are not discussed):

First, configure a Gateway Definitions (GD) entry by doing the following:

1. Click the region name in the IBM TXSeries Administration Tool Administration

window.

2. Click Subsystem>Resources>Gateway. The Gateways window opens.

3. Click Gateways>New. The Gateway Definition window opens.

4. In the Gateway name field, type a name for the Gateway Definitions (GD)

entry. This name can be up to four characters in length and must be different

from the names of all other GD entries that are in your region. It does not have

to be unique within the network and it does not relate to any other names in

the network.

5. Type a description if desired.

6. Type the Gateway LU name in the Gateway LU name field.

7. Type the CDS name in the CDS name field. Specify either the short name for

the PPC Gateway server (for example, cicsgwy) or the full path name of the

PPC Gateway server (for example, /.:/cics/ppc/gateway/cicsgwy). If a name is

provided without an initial slash (/), CICS inserts the string

/.:/cics/ppc/gateway in front of the supplied name.

8. Click the Permanent button to add the Gateway Definitions (GD) entry to the

permanent database, or click the Both button to add the entry to the permanent

and runtime databases.

9. Repeat this process for any other Gateway Definitions (GD) entries.

Next, update the Local SYSID Region Definitions (RD) attribute by doing the

following:

1. Click the region name in the IBM TXSeries Administration Tool Administration

window.

2. Click Subsystem>Properties. The Properties window opens.

98 TXSeries for Multiplatforms: CICS Intercommunication Guide

3. Type a description if desired.

4. Type the region’s short name in the Local SYSID field. An example

configuration window is shown in Figure 43.

5. Click OK to add the updated Region Definitions (RD) attributes to the

permanent database. (If you update RD attributes in a region while it is

running, the changes are not enabled until the region is reinitialized by either

an autostart or a cold start. In this example, because the attributes are updated

only in the permanent database, the region must be cold-started.)

Finally, configure a Communications Definitions (CD) entry for each remote system

with which your system is to communicate by doing the following:

1. In the IBM TXSeries Administration Tool Administration window, click the

region name.

2. Click Subsystem>Resources>Communication. The Communications window

opens.

3. Click Communications>New. The Communication Definition window opens.

The attributes for a Communications Definitions (CD) entry are grouped on

four tabs:

v General: Contains attributes that are required by all CD entries.

v SNA: Contains attributes that describe how the remote system communicates

over an SNA network.

Figure 43. Region Definition Properties window

Chapter 4. Configuring CICS for SNA 99

v TCP/IP: Contains attributes that describe how the remote system is

connected to a TCP/IP network. Attributes on this page are not applicable to

a local SNA CD entry.

v Security: Contains attributes that define how security is managed.
4. On the General tab:

a. In the SYSID field, type a four-character name for the Communications

Definitions (CD) entry. This name must be different from the names of all

other CD entries that are in your region. However, it does not have to be

unique within the network and does not relate to any other names in the

network.

b. Type a description if desired.

c. Select the PPC Gateway option from the Connection type menu.

d. Accept the default value, or type the appropriate value in the Code page

for transaction routing field. This value determines which character set

flows across the network during transaction routing. The correct code page

depends on the national language of your local region and the remote

system type. See Chapter 7, “Data conversion,” on page 147 for information

about how to choose this value. An example configuration window is

shown in Figure 44.

5. Click the SNA tab. On this tab:

a. In the Remote LU name field, type the LU name of the remote system.

b. Optionally, in the SNA LU alias field, type the LU alias that is configured

for the remote system in the SNA product that is used by the PPC Gateway

server. (In this example, this field is left empty.)

Figure 44. Communication Definition window: General tab

100 TXSeries for Multiplatforms: CICS Intercommunication Guide

c. In the Remote network name field, type the SNA network to which the

remote system is connected.

d. In the Default SNA mode name field, type the name of the SNA

modegroup that is to be used for intersystem requests when an SNA

modename is not specified either in the PROFILE option of the EXEC CICS

ALLOCATE command, or in the SNAModeName attribute of the

Transaction Definitions (TD) entry. Refer to “Default modenames” on page

110 for more information about the use of this attribute.

e. Select the name of the GD entry that was created in step 4 on page 98 for

the Gateway field value.

f. Accept the default value of 60 seconds or type a value in the Timeout on

allocate field to indicate the length of time CICS waits for the PPC Gateway

server to accept an intersystem request. This specification prevents the CICS

transaction that is issuing the intersystem request from becoming suspended

if the PPC Gateway server becomes overloaded or fails while accepting an

intersystem request. An example configuration window is shown in

Figure 45.

6. Click the Security tab. These attributes describe the security checks that are

applied to all intersystem requests that use this CD entry. On this tab:

a. In the Inbound request security area, click the type of security that you

require:

v Accepting the default Local option causes CICS to run all incoming

intersystem requests from the remote system under the user ID value that

you specify in the UserID for inbound requests field. The User

Definitions (UD) entry for this user ID determines which resources these

Figure 45. Communication Definition window: SNA tab

Chapter 4. Configuring CICS for SNA 101

intersystem requests can access. This type of security is called link security

and is described in “CICS link security” on page 126.

v Choosing the Verify or Trusted options causes CICS to use the security

information (such as the user ID and password) that is sent with the

intersystem request. CICS also uses the user ID that you specify in the

UserID for inbound requests field to restrict the resources that inbound

intersystem requests can access. This type of security is called user security

and is described in “CICS user security” on page 127.
b. Security information that is sent with outbound requests is determined by

the value that is selected in the Send user ID field. “Setting up a CICS

region to flow user IDs” on page 130 and “Setting up a CICS region to flow

passwords” on page 131 describe how this option works.

c. See Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions

of the Transaction level security key masks and Resource level security

key masks fields. An example configuration window is shown in Figure 46.

7. Click the Permanent button to add the Communications Definitions (CD) entry

to the permanent database, or click the Both button to add the entry to the

permanent and runtime databases.

8. Repeat this process for any other Communications Definitions (CD) entries.

Figure 46. Communication Definition window: Security tab

102 TXSeries for Multiplatforms: CICS Intercommunication Guide

Configuring CICS for PPC Gateway server SNA support by

using SMIT (CICS for AIX only)

To configure CICS for PPC Gateway server by using SMIT, perform the following

procedure. (Assume that default values are accepted for any attributes that are not

discussed):

 1. Ensure that you are logged into AIX with enough privileges to change the

region database. (For example, log into AIX as the root user.)

 2. Optionally, set the environment variable CICSREGION to the name of your

CICS region. For example:

export CICSREGION=cicsaix

Note: In this procedure, we call the local region cicsaix to reflect a CICS for

AIX system. Also, this example assumes that you are using the Korn

shell; if you are using a different shell, change the export command

accordingly.

 3. Enter smitty cicsregion to start SMIT.

 4. If you have not set the CICSREGION environment variable as described in

step 2, select the option Change Working CICS Region.

 5. Select your CICS region from the list that is displayed and press the Enter key.

The COMMAND STATUS screen verifies your selection.

 6. Press the F3 key.

 7. Configure a Gateway Definitions (GD) entry by performing the following

procedure:

a. Select options:

 � Define Resources for a CICS Region

 � Manage Resource(s)

 � Gateways

 � Add New

The Add Gateway panel is displayed.

b. Enter a value for the Model Gateway Identifier attribute. Use the name of

a GD entry that you have defined previously, or press the Enter key to use

the default value (″″).

c. Enter the name of the GD entry in the Gateway Identifier field.

d. Enter a description in the Resource description field if desired.

e. In the CDS path name of the gateway field, enter the name of the PPC

Gateway server that the region is to use.

Note: This attribute accepts either the full path name of the PPC Gateway

server or a partial name. If a partial name is supplied, CICS

appends it to the path /.:/cics/ppc/gateway/.

f. In the SNA LU name of the gateway field, enter the SNA LU name that

the gateway uses to communicate with the local region. In the example in

Figure 47 on page 104, the gateway uses the name CICSOPGW.

Chapter 4. Configuring CICS for SNA 103

8. Press the Enter key to create the GD entry. (If you add a GD entry to a region

while it is running, the changes are not enabled until the region is reinitialized

by either an autostart or a cold start. In this example, because the entry is

added only to the permanent database, the region must be cold-started.) The

COMMAND STATUS screen verifies successful creation of the definition.

 9. Press the F3 key three times to return to the Manage Resource(s) menu.

10. Update the Region system identifier (short name) Region Definitions (RD)

attribute by performing the following procedure:

a. From the Manage Resource(s) menu, select the options:

 � Region

 � Show/Change

The Show/Change Region panel is displayed.

b. Enter a description in the Resource description field if desired.

c. Enter a four-character name for the CICS region, known as the SYSID, in

the Region system identifier (short name) field.

Figure 48 on page 105 shows an example Show/Change Region SMIT

panel. (Only the panel that shows the updated attribute is shown.)

 Add Gateway

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Gateway Identifier [GWY]

* Model Gateway Identifier ""

* Region name [cicsaix] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate resource at cold start? yes +

 Resource description [Gateway Definition]

* Number of updates 0

 Protect resource from modification? no +

 CDS path name of the gateway [cicsgwy]

 SNA LU name of the gateway [CICSOPGW]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 47. Add Gateway SMIT panel

104 TXSeries for Multiplatforms: CICS Intercommunication Guide

d. Press Enter to update the Region Definitions (RD) attribute. (If you update

an RD attribute in a region while it is running, the change is not enabled

until the region is reinitialized by either an autostart or a cold start. In this

example, because the attribute is updated only in the permanent database,

the region must be cold-started.) The COMMAND STATUS screen

confirms successful completion of the process.

e. Press the F3 key three times to return to the Manage Resource(s) menu.

 Show/Change Region

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

* Region name cicsaix

 Resource description [Region Definition]

* Number of updates 1

 Protect resource from modification? no +

 Startup type cold +

 Startup groups []

 Programs to execute at startup []

 Programs to execute at phase 1 of shutdown []

 Programs to execute at phase 2 of shutdown []

 Name of the default user identifier [CICSUSER]

 Type of RSL checking for Files external +

 Type of RSL checking for TDQs external +

 Type of RSL checking for TSQs external +

 Type of RSL checking for Journals external +

 Type of RSL checking for Programs external +

 Type of RSL checking for Transactions external +

 Do you want to use an External Security Manager? no +

 Name of ESM Module []

 Min protect level used when accepting RPCs none +

 Min protect level for logical TDQs none +

 Min protect level for physical TDQs none +

 Min protect level for non-recoverable TDQs none +

 Min protect level for recoverable TSQs none +

 Min protect level for non-recoverable TSQs none +

 Min protect level for locally queued PROTECT ATIs none +

 Min protect level for locally queued ATIs none +

 CICS Release Number 0430

 Region system identifier (short name) [CAIX]

 Network name to which local region is attached []

 Common Work Area Size [512] #

 Minimum number of Application Servers to maintain [1] #

 Maximum number of Application Servers to maintain [5] #

 Maximum number of running transactions per class ([1,1,1,1,1,1,1,1,1,1]

 10 entries)

 Purge threshold for transaction requests above Cla [0,0,0,0,0,0,0,0,0,0]

 ssMaxTasks

 Time before Application Servers terminate (secs) [300] #

 Level of protection against user corruption none +

 Number of threads for RPC requests [0] #

 Format date for FORMATTIME ddmmyy +

 Hash sizes CD,FD,PD,RD,TSD,WD,TD,TDD,XAD,UD,MD,JD, [5,50,50,1,50,50,50,20,>

 LD,GD,OD

 Region Pool Storage Size (bytes) [2097152] #

 Task-private Storage Size (bytes) [1048576] #

 Task Shared Pool Storage Size (bytes) [1048576] #

 Threshold for Region Pool short on storage (%age) [90] #

[MORE. . .62]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 48. Show/Change Region SMIT panel

Chapter 4. Configuring CICS for SNA 105

11. Configure a Communications Definitions (CD) entry for each remote system

with which your system is to communicate, by performing the following

procedure:

a. Select options:

 � Communications

 � Add New

The Add Communication panel is displayed.

b. Enter a value for the Model Communication Identifier attribute. Use the

name of a CD entry that you have defined previously, or press the Enter

key to use the default value (″″).

c. Enter the name of the CD entry in the Communication Identifier field.

d. Add a description in the Resource description field if desired.

e. Select the ppc_gateway option in the Connection type field.

f. Enter the LU name of the remote system in the Name of remote system

field.

g. Enter the name of the network to which the remote system is attached in

the SNA network name for the remote system field.

h. In the Default modename for a SNA connection field, enter the name of

the SNA modegroup that is to be used for intersystem requests when an

SNA modename is not specified in either the PROFILE option of the EXEC

CICS ALLOCATE command or in the SNAModeName attribute of the

Transaction Definitions (TD) entry. If the Default modename for a SNA

connection attribute is set to "" (its default value), and the transaction has

not provided a modename, the modename that is configured in the AIX

SNA communications product’s side information profile for the local LU

name is used. Refer to “Default modenames” on page 110 for more

information about the use of this attribute.

i. Accept the default value or enter the appropriate value in the Code page

for transaction routing field. This value determines which character set

flows across the network during transaction routing. The correct code page

depends on the national language of your local region and the remote

system type. See “Data conversion for transaction routing” on page 164 for

information on how to choose this value.

j. Accept the default value or select the appropriate value in the Send userids

on outbound requests? attribute to determine the type of security

information (if any) that is sent with outbound requests. “Setting up a CICS

region to flow user IDs” on page 130 and “Setting up a CICS region to flow

passwords” on page 131 describe how this attribute works.

k. In the Security level for inbound requests field, select the type of security

that you require:

v Accepting the default local option causes CICS to run all incoming

intersystem requests from the remote system under the user ID value

that you specify in the UserID for inbound requests field. The User

Definitions (UD) entry for this user ID determines which resources these

intersystem requests can access. This type of security is called link

security and is described in “CICS link security” on page 126.

v Choosing the verify or trusted options causes CICS to use the security

information (such as the user ID and password) that is sent with the

intersystem request. CICS also uses the user ID that you specify in the

UserID for inbound requests field to restrict the resources that inbound

intersystem requests can access. This type of security is called user

security and is described in “CICS user security” on page 127.

106 TXSeries for Multiplatforms: CICS Intercommunication Guide

l. See Chapter 6, “Configuring intersystem security,” on page 123 for more

information about how CICS security is configured, including descriptions

of the Transaction Security Level (TSL) Key Mask and Resource Security

Level (RSL) Key Mask attributes. Figure 49 shows an example Add

Communication SMIT panel.

m. Press Enter to create the CD entry. (If you add a CD entry to a region

while it is running, the changes are not enabled until the region is

reinitialized by either an autostart or a cold start. In this example, because

the entry is added only to the permanent database, the region must be

cold-started.) The COMMAND STATUS screen verifies the definition

creation.

n. Press the F3 key three times to return to the Manage Resource(s) menu.

o. Repeat this process for any other Communications Definitions (CD) entries.

 Add Communication

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* Communication Identifier [CESA]

* Model Communication Identifier ""

* Region name [cicsopen] +

 Add to database only OR Add and Install Add +

 Group to which resource belongs []

 Activate the resource at cold start? yes +

 Resource description [Connection to CICSESA]

* Number of updates 0

 Protect resource from modification? no +

 Connection type ppc_gateway +

 Name of remote system [CICSESA]

 SNA network name for the remote system [MYSNANET]

 SNA profile describing the remote system []

 Default modename for a SNA connection [CICSISC0]

 Gateway Definition (GD) entry name [GWY]

 Listener Definition (LD) entry name []

 TCP address for the remote system []

 TCP port number for the remote system [1435] #

 Timeout on allocate (in seconds) [60] #

 Code page for transaction routing [IBM-037]

 Set connection in service? yes +

 Send userids on outbound requests? sent +

 Security level for inbound requests trusted +

 UserId for inbound requests [LINKCESA]

 Transaction Security Level (TSL) Key Mask [none]

 Resource Security Level (RSL) Key Mask [none]

 Transmission encryption level none +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 49. Add Communication SMIT panel

Chapter 4. Configuring CICS for SNA 107

108 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 5. Configuring resources for intercommunication

This chapter describes how to configure resources on your CICS system so that

they can be shared with other systems. The following are described:

v “Configuring transactions for intersystem communication”

v “Configuring intrapartition TDQs for intercommunication” on page 111

v “Configuring Program Definitions (PD) for DPL” on page 112

v “Defining remote resources for function shipping” on page 113

v “Defining resources for transaction routing” on page 116

v “Defining remote transactions for asynchronous processing” on page 120

Configuring transactions for intersystem communication

This section describes:

v “Transactions over an SNA connection (CICS on Open Systems only)”

v “Back-end DTP transactions over TCP/IP and an SNA connection”

v “Configuring for the indoubt condition”

Other sections that are relevant to configuring transactions for intercommunication

are:

v “Defining remote transactions for transaction routing” on page 119

v “Defining remote transactions for asynchronous processing” on page 120

Transactions over an SNA connection (CICS on Open Systems

only)

If you are using Communications Server for AIX, to make transactions available for

function shipping, transaction routing, and distributed transaction processing

(DTP) requests over an SNA connection, you need to set the Transaction

Definitions (TD) TPNSNAProfile attribute to the name of an AIX SNA TPN

Profile.

On HP-UX SNAplus2 or SNAP-IX for Solaris, you do not need to specify a

TPNSNAProfile in the TD entry. Leave the attribute blank.

Back-end DTP transactions over TCP/IP and an SNA

connection

CICS cannot distinguish between an inbound intersystem request for a DTP

back-end transaction and an inbound intersystem request for a transaction-routed

transaction. Therefore, it uses the IsBackEndDTP attribute of the Transaction

Definitions (TD) to decide how to process the request. If you are using a back-end

DTP transaction, set the transaction’s TD attribute IsBackEndDTP=yes; otherwise,

your back-end (remotely linked-to) program fails to start.

Note: In some conditions, setting IsBackEndDTP=yes for transactions that are not

run as back-end DTP transactions can result in a failure to start the

transaction. Therefore, do not set this attribute to yes unless it is required.

Configuring for the indoubt condition

Intercommunication with synchronization level 2 uses a two-phase commit. A

two-phase commit is a protocol for the coordination of changes to recoverable

resources when more than one resource manager is used by a single transaction. In

© Copyright IBM Corp. 1999, 2005 109

the first phase, all resource managers are asked to prepare their work; in the

second phase, they are all requested to either commit or back out (roll back).

While CICS is processing a two-phase commit for a transaction, a connection or

system error might occur. Some errors cause the transaction to wait until either

you correct the error, or it is corrected by CICS itself. These waiting transactions

are said to be in an Indoubt condition.

Because you might not want the transaction to wait for the error to be corrected,

do the following:

1. Use the Transaction Definitions (TD) InDoubt attribute to specify how the

condition is to be handled. When a transaction is waiting in the first phase of

the two-phase commit process, and a CEMT SET TASK FORCEPURGE is

issued against the transaction, CICS uses this attribute to determine whether to

commit or back out any changes that were made by the transaction before the

wait occurred. The InDoubt attribute can be set to the following values:

v wait_commit (commit changes)

v wait_backout (back out changes)
2. Use CEMT INQUIRE TASK INDOUBT to determine whether the transaction is

in the InDoubt condition.

3. Use CEMT SET TASK FORCEPURGE to resolve the indoubt condition in

accordance with the TD InDoubt attribute setting.

Default modenames

All intersystem requests over SNA require a modename. You can specify a

modename in several ways.

The modename can be specified explicitly for each intersystem request by using

either:

v The Profile option of the EXEC CICS ALLOCATE command (DTP only)

v The SNAModeName attribute in the Transaction Definitions (TD) entry

Alternatively, if you do not use the PROFILE or the SNAModeName attribute, you

can specify a default modename in the DefaultSNAModeName attribute on the

Communications Definitions (CD) entry.

If you do not specify a modename in the PROFILE, or the SNAModeName

attribute in the TD entry, or the DefaultSNAModeName attribute in the CD entry,

the CICS_SNA_DEFAULT_MODE environment variable can be used to set a

regionwide default mode name. It is read during region startup, and a message is

logged to the console.nnnnnn file so that you can check whether CICS has picked

up the value correctly. For further information about all the environment variables

that CICS uses, refer to the TXSeries for Multiplatforms Administration Reference.

If none of the above is selected, the selection of modename depends on the

configuration of the particular SNA product that you are using.

Whichever modename is used must be correctly configured in the SNA product.

When using a PPC Gateway

The modename that is used is the value that is set with the Gateway Server

Definitions (GSD) SNADefaultModeName attribute. See “Creating a PPC

Gateway server” on page 184 for more information.

110 TXSeries for Multiplatforms: CICS Intercommunication Guide

SNA tuning

For assistance in tuning your SNA environment, refer to:

v “Defining remote transactions for transaction routing” on page 119

v “Defining remote transactions for asynchronous processing” on page 120

v “Designing distributed processes” on page 283

v TXSeries for Multiplatforms Administration Reference

v Performance documentation for your SNA product.

When using HP-UX SNAplus2

Use the environment variable CICS_SNA_THREAD_POOL_SIZE to change

the number of threads that are available to handle incoming intersystem

requests. This environment variable has a range of 1 through 100. It defaults

to 6 if it is not specified. When high numbers of SNA back-end transactions

are expected on CICS for HP-UX, CICS_SNA_THREAD_POOL_SIZE should

be increased. This is configured in your region’s environment file.

Note: This environment variable is relevant only when you are using local

SNA support.

Configuring intrapartition TDQs for intercommunication

Intrapartition transient data queues (TDQs) can be configured with a trigger level

value, such that when the number of records that are written to the queue reach

that value, a transaction is automatically initiated. This is an example of automatic

transaction initiation (ATI).

The purpose of that transaction is typically to process the records on the queue.

The transaction can run locally on the region that owns the transient data queue,

or it can use intercommunication functions.

The following Transient Data Definitions (TDD) attributes are used:

TriggeredTransId

This attribute identifies the transaction that is to be automatically initiated

when the trigger level is reached. The purpose of transactions that are

initiated in this way is to read records from the destination. This

transaction must reside in the same region as is the TDQ that triggers it.

However, it might do one of the following:

v Run in the background

v Write to a local or remote terminal

v Acquire a conversation to another system and take part in a DTP

conversation with a back-end program

This is determined by the TDD FacilityType and FacilityId attributes.

TriggerLevel

This attribute defines the number of records that are to be accumulated

before a task is automatically initiated to process them.

FacilityType

This attribute defines the type of principle facility that is allocated for a

triggered task. Specify file for the triggered transaction to run as a

Chapter 5. Configuring resources for intercommunication 111

background task, terminal for the transaction to run against a terminal,

and system for the task to use a DTP conversation.

FacilityId

This attribute defines the triggered transaction’s principal facility identifier.

The principal facility that is associated with a transaction started by ATI can be:

v A local terminal

v A terminal that is owned by a remote region

v A DTP conversation to a remote region

Terminals as principal facilities

A local terminal is owned by the region that owns the transient data queue and the

transaction.

For an ATI triggered transaction to use a local terminal, specify the FacilityType as

terminal, and specify the terminal identifier in the FacilityId attribute. This

terminal identifier (TERMID) must be the name of the Terminal Definitions (WD)

entry.

Remote terminals as principal facilities

If FacilityType=terminal, you can define a terminal that is remote from the region

that owns the transient data queue and the associated transaction.

Use the FacilityId attribute to specify the name of the Terminal Definitions (WD)

entry for the remote terminal. You must define the terminal itself as a remote

terminal, and you must connect the terminal-owning region to the local region

through an intersystem connection. This intersystem connection is defined in a

Communications Definitions (CD) entry.

ATI with a remote terminal is a form of CICS transaction routing, and the normal

transaction routing rules apply. Refer to Chapter 12, “Transaction routing,” on page

263.

Remote systems as principal facilities

If FacilityType=system, set the FacillityId attribute to the name of a

Communications Definitions (CD) entry. In this case, the triggered transaction is

started with a conversation that is allocated to the requested system as its principal

facility. The conversation is in “allocated” state and the transaction should issue an

EXEC CICS CONNECT PROCESS to connect to a back-end transaction.

For more information about transient data queues, see CICS Administration Guide.

For more information about TDDs, see TXSeries for Multiplatforms Administration

Reference.

Refer to “Conversation initiation and the front-end transaction” on page 286

Configuring Program Definitions (PD) for DPL

All CICS applications can link to a program that is running in a remote system,

either by using the SYSID option in the EXEC CICS LINK command, or by

creating a Program Definitions (PD) entry that defines the program as remote. The

TXSeries for Multiplatforms Administration Reference describes all the attributes of a

PD entry. This section describes those attributes that are relevant for remote

programs.

112 TXSeries for Multiplatforms: CICS Intercommunication Guide

The key, or name, of the PD entry

Specifies the local name of the remote program. This is the name that is

used in a local EXEC CICS LINK command that invokes the program. In

the example, the name is LOCLPGM.

RemoteSysId attribute

Specifies the name of the Communications Definitions (CD) entry for the

connection to the remote system. In the example below, the name of the

CD entry is CONR.

RemoteName attribute

Specifies the name of the program in the remote CICS system in which it is

located. In the example, the name of the remote program is REMTPGM.

Note: A PD is not required for programs that are dynamically linked.

Example of a PD for DPL

This command adds a PD entry, called LOCLPGM, in a region named cicsopen:

% cicsadd -r cicsopen \

 -c pd LOCLPGM \

 RemoteSysId="CONR" \

 RemoteName="REMTPGM"

When the EXEC CICS LINK PROGRAM(LOCLPGM) command is executed locally,

a link request is shipped on connection CONR to a remote CICS system in which

program REMTPGM is executed, by using the remote mirror transaction.

Defining remote resources for function shipping

The TXSeries for Multiplatforms Administration Reference gives a full description of all

CICS resource definitions. The following information contains guidance about

parameters that are important in the definition of remote data resources that are to

be accessed by function shipping. Those data resources are:

v Remote files

v Remote transient data queues

v Remote temporary storage queues

Defining remote files

A remote file is a file that resides on another region. CICS uses function shipping

for file control requests that are made against a remote file.

CICS application programs can name a remote region explicitly on file control

requests by means of the SYSID option. If this is done, you need not define the

remote file in the local region.

More generally, however, applications are designed to access files without being

aware of their location, and in this case you must define the remote file in the local

File Definitions (FD) entry.

Note: The definition of the file in the system that is named in the SYSID parameter

can itself be a remote definition.

FD entries for remote files

Defining a file entry as remote provides CICS with enough information to ship file

control requests to a specified remote region. You do this by specifying, in the

RemoteSysId attribute of the FD, the SYSID of the Communications Definitions

Chapter 5. Configuring resources for intercommunication 113

(CD) entry for the connection to the remote region. See the cicsadd command

example that is shown in “Example of a file definition for function shipping” for

further information about this.

You must define a link to this region. The identifier that is specified for the remote

region must not be the identifier of the local region.

File names

You specify the name by which the file is known on the local region in the

FD. Application programs in the local region use this name in file control

requests. In the example, the name is LOCLFILE.

 You specify the name by which the file is known on the remote CICS

region in the RemoteName attribute in the FD. CICS uses this name when

shipping file control requests to the remote region. In the example, the

name is REMTFILE.

 If the name of the file is the same on both the local and the remote region,

you do not need to specify the RemoteName. However, consider carefully

the desirability of using the local file name to provide a local alias for the

remote file name. This technique is, of course, essential if files of the same

name reside on both regions and you do not want your local system to

access the remote file of the same name.

Record lengths

You can specify the record length, in bytes, of a remote file by using the

KeyLength attribute in the FD entry. This value must be the same as that

which is specified in the description of the file in the remote system in

which it is locally defined. In the example, the record length is 6.

 If your installation uses COBOL, specify the record length for any file that

has fixed-length records.

 In all other cases, the record length is either a mandatory option on file

control commands or can be deduced automatically by the

command-language translator.

 You can specify the maximum record size, in bytes, of a remote file by

using the RecordSize attribute in the FD entry. This value must be the

same as that which is specified in the description of the file in the remote

system in which it is locally defined. In the following example, the record

length is 86.

Example of a file definition for function shipping

This command adds an FD entry, called LOCLFILE, in the region named cicsopen:

% cicsadd -r cicsopen -c fd LOCLFILE RemoteSysId="CESA" \

 RemoteName="REMTFILE" \

 KeyLen=6 RecordSize=86

This entry enables the function shipping request for file LOCLFILE over connection

CESA to a remote CICS system, where it accesses a file REMTFILE, which has a

key length of 6 and a record length of 86.

Defining remote transient data queues

A remote transient data queue is one that resides on another region. CICS uses

function shipping for transient data requests that are made against a remote queue.

114 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICS application programs can use the SYSID option to name a remote region

explicitly on transient data requests. If this is done, you do not need to define the

remote transient data queue on the local region.

More generally, however, applications are designed to access transient data queues

without being aware of their location, and in this case you must define the remote

queue in the local Transient Data Definitions (TDD).

TDD entries for remote transient data queues

A remote entry in the TDD provides CICS with enough information to ship

transient data requests to a specified remote region. The name of the TDD entry is

the name of the queue that is used by local transaction, (see the cicsadd command

example shown in “Example of a TDD for function shipping”). In the example, the

local name of the transient data queue is LTDQ.

Remote name

Use the TDD RemoteName attribute to specify the name of the transient

data queue in the remote CICS system in which it is defined. In the

example, this name is RTDQ.

Remote system

Use the TDD RemoteSysId attribute to specify the name of the

Communications Definitions (CD) entry that defines the connection to the

remote system in which the transient data queue resides. In the example,

this name is CESA.

Example of a TDD for function shipping

This command adds a TDD entry, called LTDQ, to a CICS group, called GROUP, in

the region named cicsopen:

% cicsadd -r cicsopen -c tdd LTDQ RemoteSysId="CESA" \

 RemoteName="RTDQ"

This entry enables the function shipping of an access request for transient data

queue LTDQ over connection CESA to a remote CICS system, where it accesses

transient data queue RTDQ.

Defining remote temporary storage queues

CICS application programs use temporary storage queues to store data for later

retrieval. A remote temporary storage queue is one that resides on another region.

CICS uses function shipping for temporary storage requests that are made against

a remote queue.

CICS application programs can use the SYSID option to name a remote region

explicitly on temporary storage requests. If this is done, you need not define the

remote temporary storage queue on the local region.

More generally, however, applications are designed to access temporary storage

queues without being aware of their location, and in this case you must define the

remote queue in the local Temporary Storage Definitions (TSD).

TSD entries for remote temporary storage queues

A remote entry in the TSD provides CICS with enough information to ship

temporary storage requests to a specified remote region. The name of the TSD

entry is the name of the queue that used by the local application (see the cicsadd

command example shown in “Example of a TSD for function shipping” on page

116). In the example, the local name of the temporary storage queue is LOCLTSQ.

Chapter 5. Configuring resources for intercommunication 115

Remote system

Use the TSD RemoteSysId attribute to specify the name of the

Communications Definitions (CD) entry for the connection to the remote

system in which the real temporary storage queues reside. In the example,

this connection name is CESA.

Remote queue name

Use the TSD RemoteName attribute to specify the name of the temporary

storage prefix that is used by the remote system in which the queues are

located. In the example, this prefix is REMTTSQ.

Example of a TSD for function shipping

This command adds a TSD entry, called LOCLTSQ, to a CICS group, called

GROUP, in the region named cicsopen:

cicsadd -r cicsopen -c tsd LOCLTSQ RemoteSysId="CESA" \

 RemoteName="REMTTSQ"

This entry enables the function shipping request for temporary storage queue

LOCLTSQ over connection CESA to a remote CICS system, where it accesses

temporary storage queue REMTTSQ.

Defining resources for transaction routing

Transaction routing enables a terminal that is owned by one CICS system (the

terminal-owning region) to be connected to a transaction that is owned by another

CICS system (the application-owning region). The following definitions are

required:

v In the terminal-owning region:

– If the terminal is not autoinstalled, it must be defined as a local resource on

the terminal-owning region, by using a Terminal Definitions (WD) entry.

– The transaction must be defined as a remote resource on the terminal-owning

region if it is to be initiated from a local terminal or by automatic transaction

initiation (ATI).

– For dynamic transaction routing, the terminal-owning region requires the

following information to be defined in the Transaction Definitions (TD):

- The local name of the transaction

- An indication that this is a dynamic transaction (Dynamic=yes)

In dynamic transaction routing, values that are defined in the TD can be

changed by the dynamic transaction routing user exit. Therefore, information

such as the name of the connection to the region that owns the transaction

and the name of the transaction in the region that owns it are not mandatory.

For more information, see “Dynamic transaction routing” on page 267.
v In the application-owning region:

– If the terminal definition is not shipped from the terminal-owning region, it

must be defined on the application-owning region.

– The transaction must be defined as a local resource on the application-owning

region.

These rules also apply to intermediate systems when indirect routing is used. (See

“Indirect links for transaction routing” on page 266.)

Note: The information that follows briefly describes only those resource definition

attributes that are required for transaction routing. Refer to the TXSeries for

Multiplatforms Administration Reference for complete details.

116 TXSeries for Multiplatforms: CICS Intercommunication Guide

Shipping terminal definitions

To avoid the need for a remote definition in the application-owning region, a

terminal can be defined as shippable in its local definition in the terminal-owning

region. To do this, set the IsShippable attribute to yes for the Terminal Definitions

(WD) for that terminal.

Note: This parameter defaults to yes and needs to be coded only when the intent

is to prohibit terminal shipping.

For terminals that are autoinstalled, you must set the IsShippable attribute to yes.

In effect, this gives automatic installation of remote terminals.

When a remote transaction is invoked from a shippable terminal (refer to the

IsShippable attribute in the Terminal Definitions in the TXSeries for Multiplatforms

Administration Reference), the request that is transmitted to the application-owning

region is flagged to show that a shippable terminal definition is available. If the

application-owning region already has a definition of the terminal (which might

have been shipped previously), it ignores the flag. Otherwise, it asks for the

definition to be shipped. A shipped terminal definition is retained until one of the

following events occurs:

v The autoinstalled terminal definition on the terminal-owning region is deleted,

or the user logs off a terminal that is not autoinstalled.

v The WD entry for the logged-on terminal on the terminal-owning region is

changed or deleted.

v The system that shipped the terminal definition (the terminal-owning region) is

restarted.

v The system that received the shipped terminal definition (the application-owning

region) is restarted.

Note: The WD IsShippable attribute defaults to yes. Change this attribute to no

when you do not want a terminal definition to be shipped. Do not change

the attribute to no for terminals that are autoinstalled.

Fully qualified terminal identifiers

A unique identifier is used for every terminal that is involved in transaction

routing. The identifier is formed from the APPLID of the terminal-owning region

and the terminal identifier that is specified in the terminal definition on that

region.

For example, if the APPLID of the terminal-owning region is PRODSYS, and the

terminal identifier is L77A, the fully-qualified terminal identifier is

PRODSYS.L77A.

Note: When referring to a remote region, the APPLID for that region is known in

CICS as the Communications Definitions (CD) RemoteLUName.

The following rules apply to all forms of remote terminal definitions:

v You must associate the terminal definition with a region whose NETNAME is

the RemoteLUName (or APPLID) of the terminal-owning region.

v You must always specify the real terminal identifier, either directly or by means

of an alias.

Chapter 5. Configuring resources for intercommunication 117

Defining terminals to the application-owning region

If you are not going to ship the terminal definition from the terminal-owning

region to the application-owning region, you must define the terminal on the

application-owning region. The following attributes are required:

Terminal identifier

The name by which the terminal is known (see “Fully qualified terminal

identifiers” on page 117). Application programs use this name in terminal

control requests. In the following example, in which the

application-owning region is CICS, the terminal identifier is REMT. This is

the key of the WD entry for this terminal as defined on the

application-owning region.

Remote name of terminal

The name by which the terminal is known on the terminal-owning region

is defined by using the WD RemoteName attribute. In the following

example, the name is LOCL. In a TXSeries for Multiplatforms

terminal-owning region, this is the key of the WD entry for this terminal in

the TOR.

 The name by which a terminal is known in the application-owning region

is usually the same as the name that is in the terminal-owning region. You

can, however, choose to call the remote terminal by a different name (an

alias) in the application-owning region.

 If the terminal name is to be the same on both the terminal-owning region

and the application-owning region, you do not need to specify the

RemoteName.

Remote Region Name

Specify the name of the Communications Definitions (CD) entry for the

connection to the terminal-owning region in the WD RemoteSysId

attribute. This is used to route transaction output from the

application-owning region back to the terminal in the terminal-owning

region. In the example shown below, this name is CESA.

User Area Size

You set the TCTUALen in the WD entry to specify the length of the

terminal user area. The value should be the same as that which is specified

in the terminal’s definition in its owning region. In the example, this value

is 100.

NetName

The NETNAME of the terminal. This must match the NETNAME as

defined for the local terminal in the remote system.

Example of a WD entry for a remote terminal

This command adds a WD entry, called REMT, in the region named cicsopen:

cicsadd -r cicsopen -c wd REMT RemoteSysId="CESA" RemoteName="LOCL" \

 TCTUALen=100 NetName="TERM0001"

This entry is installed in an application-owning region that receives transaction

routing requests from a remote terminal LOCL. The entry enables routing of data

from the application-owning region across connection CESA back to the

terminal-owning region.

Using the alias for a terminal in the application-owning region

When an ISC session is being used to provide the transaction routing services

between the terminal-owning-region region (TOR) and the application-owning-

118 TXSeries for Multiplatforms: CICS Intercommunication Guide

region (AOR), the name by which a terminal is known in the AOR is designated as

the alias for the fully qualified terminal name used in the TOR.

Usually, the alias that is on the AOR is the same as the TERMID that is on the

TOR. However, if two or more TORs use similar sets of terminal identifiers

(TERMIDs) for transaction routing, a naming conflict can occur. When the name on

a shipped terminal definition conflicts with the name of a surrogate terminal that

is already installed in the AOR, CICS assigns a randomly-generated alias to the

duplicate TERMID to resolve the naming conflict. In this case, the value of the

original TERMID is stored in the RemoteName field.

For example, the TOR named Region1 has a terminal with the TERMID T001. When

this terminal is shipped, it has the fully qualified name of Region1.T001, the alias of

T001, and the RemoteName is set equal to NULL on the AOR. If the AOR then

receives a terminal request from Region2 that is also using the TERMID T001, the

AOR uses the fully qualified name of Region2.T001. It assigns a randomly

generated alias, for example, XXXX, in place of the duplicate TERMID, and the

value of the RemoteName field is set to the name of the original TERMID, T001.

You must take care to ensure that the correct TERMID is used when a user on the

AOR issues the CECI START TRAN (tranName) TERMID (T001) command. The

results of the transaction are returned to the terminal with the fully qualified name

of Region1.T001.

If the actual intention is to return the results of the transaction to the terminal that

has the fully qualified name of Region2.T001, the alias XXXX needs to be identified

as the TERMID. The user can get the correct TERMID by using the CICS-supplied

transaction CEMT INQUIRE TERMINAL or CEMT INQUIRE NETNAME.

Similarly, if an application on the AOR is using the command EXEC CICS START

TRAN (tranName) TERMID (termId) and the possibility exists for duplicate

TERMIDs, the application must get the required alias that is to be used as the

TERMID, by issuing an EXEC CICS INQUIRE NETNAME command or an

ASSIGN FACILITY command.

Defining remote transactions for transaction routing

A remote transaction for CICS transaction routing is a transaction, which is owned

by another region (the application-owning region), that can be run from the local

region by using a terminal that is owned by the local region (the terminal-owning

region).

You define a remote transaction in the same way as that in which you define a

local transaction, except that some of the operands are not required.

For details of all the attributes that define transactions, see the TXSeries for

Multiplatforms Administration Reference.

TD attributes for remote transactions

To support transaction routing, you must define the remote transaction to the local

region by using a Transaction Definitions (TD) entry. The name of the TD entry is

the local name for the transaction. In the example in “Example of a TD entry for a

remote transaction” on page 120, the local name of the transaction is LTRN.

Connection to the remote system

Set the RemoteSysId attribute in the TD to specify the name of the

Chapter 5. Configuring resources for intercommunication 119

Communications Definitions (CD) entry of the connection to the remote

region in which the transaction resides. In the example, the name of the

connection is CESA.

Remote transaction name

Specify the name by which the transaction is known in the remote region,

by using the RemoteName attribute in the TD. In the example, this name

is RTRN. If the transaction name is to be the same as both the local and

remote region, you do not need to specify a remote transaction name.

 CICS translates transaction names from local names to remote names when

a request to run a transaction is transmitted from one region to another.

Transaction work area (TWA)

You can set the TWASize attribute in the TD to zero because the relay

transaction does not require a TWA.

Transaction security

You can define the transaction level security key for this transaction with

the TSLKey TD attribute. Specify transaction security for routed

transactions that are user-initiated. You do not need to specify resource

security checking on the local transaction because the relay transaction

does not access resources. However, the actual TDs in the remote system

need resource security checking to be set up, if required.

Example of a TD entry for a remote transaction

This command adds a TD entry, called LTRN in the region named cicsopen:

% cicsadd -r cicsopen -c td LTRN RemoteSysId="CESA" \

 RemoteName="RTRN"

This entry causes a request for transaction LTRN to be routed over connection

CESA to a remote CICS system, in which transaction RTRN is executed.

Defining remote transactions for asynchronous processing

The only remote resource definitions that are needed for asynchronous processing

are those for transactions that are named in the TRANSID option of EXEC CICS

START commands. An application can use the EXEC CICS RETRIEVE command to

obtain the name of a remote temporary storage queue that the transaction

subsequently names in a function shipping request.

A remote transaction for CICS asynchronous processing is a transaction that is

owned by another region and that runs from the local region only by means of

EXEC CICS START commands.

CICS application programs can use the SYSID option to name a remote region

explicitly on EXEC CICS START commands. If this is done, you need not define

the remote transaction on the local region.

More generally, however, applications are designed to start transactions without

being aware of their location, and in this case you must define the remote

transaction in the local Transaction Definitions (TD).

Note: If the transaction is owned by another region and can be run by CICS

transaction routing and by EXEC CICS START commands, you must define

the transaction for transaction routing.

120 TXSeries for Multiplatforms: CICS Intercommunication Guide

Remote transactions that are started only by EXEC CICS START commands require

only basic information in the local Transaction Definitions (TD). This information

consists of:

v RemoteSysId

v RemoteName

v LocalQ

v RSLCheck

You can specify local queuing for remote transactions that are initiated by EXEC

CICS START requests.

Chapter 5. Configuring resources for intercommunication 121

122 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 6. Configuring intersystem security

This chapter describes:

v How to ensure that systems that attempt to attach to the local region are

authorized to do so

v How to provide permission to specific remote systems and users to have access

to local resources

Overview of intersystem security

The security requirements for a region that communicates with other systems are

an extension of the security requirements for a single, stand-alone region. CICS

security uses the concepts of user sign-on to give a user authority to access

sensitive transactions and resources. These facilities are extended for

intercommunication functions to include the remote users and remote systems.

It is assumed that you are familiar with setting up security for a single region. You

need to understand:

v How to define users to CICS by generating User Definitions (UD) entries

v What it means to authenticate a user on your local system

v How transaction security can be used to restrict a user’s ability to run CICS

transactions

v How resource security can be used to restrict a user’s access to resources

managed by the region

For more information about these topics, see the CICS Administration Guide.

CICS assumes that it is the responsibility of every system to verify the authenticity

of all requests that it receives. These inbound requests can be received from

individual users or remote systems. The remote system can be another CICS

system or a non-CICS system.

Implementing intersystem security

Some initial effort is required to determine how to set up intercommunication in

accordance with the policies of your local system, and the privileges that the users

of your region require. However, after the security checking is set up, CICS

security checking operates automatically without the need of remote users or

application programs to take specific security actions.

The security checks that TXSeries for Multiplatforms supports are based on

Systems Network Architecture (SNA) LU 6.2 security services. Therefore, they are

available for controlling access from SNA-connected systems. Where appropriate,

these services have also been extended to systems that are connected by TCP/IP.

When you configure your CICS system, you define all the remote systems from

which you want to accept intercommunication requests in Communications

Definitions (CD) entries. Define the security levels that you are prepared to give to

those remote systems with the RemoteSysSecurity, LinkUserid, RSLKeyMask,

and TSLKeyMask attributes in the CD entry. However, before accepting requests,

your system must first verify that the remote system is actually the system that it

© Copyright IBM Corp. 1999, 2005 123

claims to be. This verification process is known as authentication. The mechanisms

that are available to do this depend upon the type of network connection.

Summary of CICS intersystem security

The security checks that CICS performs do the following:

v Restrict the access of remote systems to the CICS region

v Restrict the access of requests to CICS resources

v Restrict the access of particular users

The following sections describe how to set up these security checks:

v “Identifying the remote system”

v “Authenticating systems across CICS family TCP/IP connections”

v “Authenticating systems across CICS PPC TCP/IP connections”

v “Authenticating systems across SNA connections” on page 125

v “Authenticating systems across PPC Gateway server connections” on page 126

v “CICS link security” on page 126

v “CICS user security” on page 127

“Authenticating systems across SNA connections” on page 125, “CICS link

security” on page 126, and “CICS user security” on page 127 tell you how to set

points at which you can apply security checks in the processing of an incoming

request. Review the description of security for local regions in CICS Administration

Guide before you attempt to set up security for intercommunications.

Communications Definitions (CD) are described in the TXSeries for Multiplatforms

Administration Reference.

Identifying the remote system

The first security problem that your CICS system has to resolve is to determine

correctly the identity of the remote system that is attempting to initiate an

intercommunication request. You must ensure that an alien remote system cannot

impersonate another.

The ways that are available to CICS to identify a remote system depend upon the

network protocol that is used in the connection.

Authenticating systems across CICS family TCP/IP connections

When an intersystem request is received on a CICS family TCP/IP connection,

your region cannot verify the identity of the remote system. No mechanism is

available that enables you to detect when an unauthorized system has deliberately

impersonated another.

CICS can extract the Internet Protocol (IP) address and port number of the remote

system, but this is easy for an alien system to imitate.

If you have defined a Listener Definitions (LD) entry to allow CICS family TCP/IP

connections, and unless your TCP/IP network is private and secure, define the

security attributes in the CD entry on the assumption that the identity of the

remote system has not been verified.

Authenticating systems across CICS PPC TCP/IP connections

Because CICS PPC TCP/IP can be configured to connect the regions on same

machine only, no authentication service is required.

124 TXSeries for Multiplatforms: CICS Intercommunication Guide

Authenticating systems across SNA connections

When a remote system uses an SNA connection to communicate with your CICS

system, it must first establish a session with your system. That session is created by

an exchange of flows called a BIND. You can associate a password with the BIND.

This process is known as bind-time security, or LU-LU verification. It enables each

system to verify the identity of the other.

These passwords are not sent between the two systems. Each system demonstrates

its knowledge of the password by being able to correctly encrypt random numbers

that are supplied by the partner, using the password as a key. The bind is

successful only when both systems can establish that they have the same

password.

Figure 50 shows the SNA flows that are exchanged to support bind-time security. If

either system discovers that the encrypted value received is not the value that is

expected, it flows an SNA UNBIND request to the remote system, and a session is

not established.

Bind passwords are set up in the SNA product that is managing your SNA

connectivity. Refer to your SNA product documentation for a description of how to

set the bind password for a connection.

Notes:

1. Bind-time security is optional in the SNA LU 6.2 architecture. Because it is

optional, the remote systems to which you are connecting might not support

BIND passwords.

2. To maintain maximum confidence in the identity of each connected system, it is

recommended that different bind passwords be used between each pair of

systems that you are configuring. However, when the number of systems

grows, this might become unmanageable. Therefore, unique bind passwords are

not a requirement of the SNA LU 6.2 architecture and so are not enforced.

It is important that you are familiar with the descriptions of bind security that are

given in the documentation for the SNA product that you are using. Refer to the

SNA books that are listed in “Bibliography” on page 355.

CICSA

Send a random number
(RD1)
request.

Check PW[RD1] is
correct and encrypt
RD2 using the bind
password to give
PW[RD2]. Send PW[RD2]
in an FMH-12.

Bind(RD1)

RSP(BIND,PW[RD1],RD2)

FMH-12(PW[RD2])

CICSB

Encrypt RD1 using the
bind password as a key
and send the result,
PW[RD1], along with
another random number.
(RD2)

Check PW[RD2] is correct.

Figure 50. The bind password exchange

Chapter 6. Configuring intersystem security 125

Authenticating systems across PPC Gateway server connections

If you are using the PPC Gateway server to support SNA connections to remote

systems, CICS issues a CICSIPC Remote Procedure Call (RPC) to contact the PPC

Gateway server (which can be configured on the same machine). Similarly, the PPC

Gateway server uses an RPC to schedule an inbound intersystem request from an

SNA remote LU. Since the PPC Gateway and the CICS region are in same machine,

there is no need for authenticated RPCs.

CICS link security

You can define security levels to the transactions and resources in your CICS

system that apply to all intercommunication requests that are received from a

particular system. This form of security is known as link security.

To use link security, you must have a security manager. CICS has its own security

manager, but if your operating system supports an external security manager that

TXSeries for Multiplatforms supports, you can use that instead of, or in

conjunction with, the CICS internal security manager. An external security manager

is a user-supplied program that allows you to define your system’s own security

mechanism for preventing unauthorized user access to resources from application

programs and the unauthorized initiation of CICS transactions.

The sections that follow help you implement CICS internal security, which uses

Transaction Security Level (TSL) and Resource Security Level (RSL) keys to restrict

access. For information about using external security managers, refer to the CICS

Administration Guide.

The security keys that are defined for link security apply to all requests that are

received from a particular remote system. This means that the list of security keys

must include all the keys that are needed by every user from the remote system. If

the needs of the users from a remote system vary, this list of security keys might

give more access to some users than is needed. If this is not acceptable, consider

using the security that is described in “CICS user security” on page 127, which

allows you to set up security keys based not only on the system that sent the

request, but also on the user who is associated with that request also.

If link security is enough, it can be set up as follows:

1. Set the Communications Definitions (CD) RemoteSysSecurity attribute to local

for the connection to the system for which you want link security implemented.

2. Specify a link user ID for the connection with the CD LinkUserId attribute.

This user ID is associated with any request that is received from the remote

system that is at the other end of the connection.

3. Create a User Definitions (UD) entry for the connection’s link user ID. Use the

UD TSLKeyList and the RSLKeyList attributes to specify the transactions and

resources that can be accessed by inbound requests.

An alternative implementation of link security follows:

1. Set the CD RemoteSysSecurity attribute to local for the connection to the

system for which you want link security implemented.

2. Do not specify a link user ID for the connection with the CD LinkUserId

attribute.

3. Use the CD TSLKeyMask and RSLKeyMask attributes to define the TSL and

RSL keys to use for the connection.

126 TXSeries for Multiplatforms: CICS Intercommunication Guide

These two methods differ as follows:

v When a link user ID is specified for the connection, the user is logged on as the

connection’s link user ID, and the keys that are defined for the link user ID are

used. This is the preferred method.

v When a link user ID is not specified for the connection, the user is logged on as

the region’s default user ID, and the connection’s TSLKeyMask and

RSLKeyMask keys are used. Any keys that are defined for the region’s default

user ID are ignored.

In either case, you must have TSL and RSL keys assigned to the resources and

transactions for which you want link security applied. For further information, see

the discussion of the RSLKey and TSLKey settings in “Using CRTE and CESN to

sign on from a remote system” on page 142.

CICS user security

CICS user security provides a more granular security checking than link security

does because it allows you to base the TSL and RSL keys that apply to inbound

requests not only on the remote system but also on the user who originated the

request. It is done by setting up the remote system to flow the user ID of the user

with the intersystem request. When the request is received from the remote system,

your region provides access to any transaction or resource that matches the

security keys that are defined for both the flowed user ID and the connections link

user ID. These keys are defined with the User Definitions (UD) TSLKeyList and

RSLKeyList attributes.

Note: A link user ID is specified with the Communications Definitions (CD)

LinkUserId attribute. If a link user ID is not specified, (that is, if the setting

is LinkUserId=""), the keys that are defined with the CD TSLKeyMask and

RSLKeyMask attributes are used in conjunction with the flowed user ID

instead.

Combining the keys for the link with the keys for the user ensures that remote

users who have the same user ID as do local users (or remote users from other

systems) can be set up with different access privileges.

Two ways are possible to set up user security:

Method one:

1. Ask the administrator of the remote system to generate the following:

a. A list of the user IDs of the remote users from the remote system who will

be accessing your region and the security keys that each of them will need.

Then, generate a list of security keys that consists of all the security keys

that these users require. (You can define them in two ways. Descriptions

follow.) These keys are known as the link keys for the system.

Refer to Table 26 on page 128. In this table, user TOM from SYS2 needs

access to resources that have an RSL key of 2 assigned to them, and user

DICK from SYS2 needs access to resources that have an RSL key of 3

assigned to them. This means SYS2 has link keys of 2 and 3, as shown in

the “Composite link keys” column:

Chapter 6. Configuring intersystem security 127

Table 26. Security keys assigned to example systems

Remote

systems

SAM

RSLKeys

FRED

RSLKeys

TOM

RSLKeys

DICK

RSLKeys

HARRY

RSLKeys

Composite

link keys

Keys for SYS2 2 3 2|3

Keys for SYS3 6 6 3 4 5|6|7|8 3|4|5|6|7|8

Keys for SYS4 8 9 10 8|9|10

Keys for SYS5 4 4|6 4|6

b. A list of those user IDs that appear in both the remote system and your

local system, irrespective of whether they will be used to access your region

from the remote system. For each of these user IDs, check the level of

security if they access your region from the remote system. To do this,

compare the keys that are common to the local User Definitions (UD) entry

for the user ID with the link keys, as calculated in step 1a on page 127.

Then, look at the transactions and resources to which these specifications

give them access. If the results are unacceptable, either the keys that are

assigned to your local transactions and resources must be changed, or the

user ID in one of the systems must be renamed. Refer to Table 27.

 Table 27. Security keys assigned to example users

Systems

SAM

RSLKeys

FRED

RSLKeys

TOM

RSLKeys

DICK

RSLKeys

HARRY

RSLKeys

Keys for SYS1 (local users) 4|6 4|6

Keys for SYS2 (remote) 2 3

Keys for SYS3 (remote) 6 6 3 4 5|6|7|8

Keys for SYS4 (remote) 8 9 10

Keys for SYS5 (remote) 4 4|6

In this example, user IDs SAM and FRED appear on the local system (SYS1)

and one of the remote systems (SYS3). Both users who are on the local

system are assigned RSLKey values of 4 and 6. SAM and FRED from SYS3

require access to resources that are identified by an RSLKey of 6. However,

because SAM and FRED are already defined on the local system as having

access to resources that are identified by an RSLKey of 4 and 6, and

because the link for SYS3 requires RSLKeys of 3|4|5|6|7|8, SAM and

FRED from SYS3 will be given access to resources that are identified by an

RSLKey of 4 in addition to 6. Remember that the keys are not flowed, only

the user IDs. If you do not want SAM and FRED to have access to resources

with RSLKeys 4 and 6 on your local system (ISC1), do not add these keys

to the RSLKeyLists for SAM and FRED in the UD entries on the local

system. Consider also the access that is automatically given to SAM or

FRED if they are added to SYS5 after security is defined for SYS1 and if the

administrators of SYS1 are not made aware of the change.

Note: You need to go through this exercise each time that a new user ID is

added to any of the remote systems to which you have granted

trusted access.
2. Set up the remote system to flow user IDs. This is described in:

a. “Setting up a CICS region to flow user IDs” on page 130.

b. “Receiving user IDs from SNA-connected systems” on page 133.

128 TXSeries for Multiplatforms: CICS Intercommunication Guide

3. Set the CD RemoteSysSecurity attribute to trusted or verify for the connection

to the remote system. Refer to “Setting the RemoteSysSecurity attribute to

trusted or verify” on page 130 for an explanation of the differences between

trusted and verify.

4. Define User Definitions (UD) for each of the user IDs that were identified in

step 1a on page 127.

5. Define a UD entry for the name of the remote system. This is important

because some CICS tasks (which are initiated by the remote system) can run

with the remote system name as the user ID. It is recommended that this user

ID is used only for this purpose (that is, it is not used as a normal user ID). The

default attribute values are enough for this UD entry.

6. Define a UD for the link user ID. This user ID represents the remote system

and requires the keys as calculated in the “Composite Keys” column for that

system.

7. Set the CD LinkUserId attribute to the user ID that is defined in step 5.

Method two:

1. Ask the administrator of the remote system to generate the lists of user IDs, as

described in steps 1a and 1b in the previous list.

2. Set up the remote system to flow user IDs. Refer to step 2 in the previous list

for references to information that tells you how to do this.

3. Set the CD RemoteSysSecurity attribute to trusted or verify for the connection

to the system for which you want user security implemented.

4. Define User Definitions (UD) for each of the user IDs that are identified in step

1a of the previous list.

5. Define a UD entry for the name of the remote system. This is important

because some CICS tasks (which are initiated by the remote system) can run

with the remote system name as the user ID. It is recommended that this user

ID is used only for this purpose (that is, that it is not used as a normal user ID).

The default attribute values will be enough for this UD entry.

6. Do not specify a link user ID for the connection with the CD LinkUserId

attribute.

7. Use the CD TSLKeyMask and RSLKeyMask attributes to define the TSL and

RSL keys to use for the connection.

The differences between these two methods:

v When a link user ID is specified for the connection, the user is logged on as the

flowed user ID, and the keys that are defined for both the link user ID and the

flowed user ID are used. This is the preferred method.

v When a link user ID is not specified for the connection, the user is logged on as

the flowed user ID, and the TSLKeyMask and RSLKeyMask keys that are

defined for both the connection and the flowed user ID are used.

In either case, you must have TSL and RSL keys assigned to the resources and

transactions for which you want user security applied, as described in the

discussions of the RSLKey and TSLKey attributes in “Using CRTE and CESN to

sign on from a remote system” on page 142.

This description provides a simple approach to using the resource definitions to set

up user security. “Using CRTE and CESN to sign on from a remote system” on

page 142 provides further examples and descriptions of how CICS security

resources definitions can be used.

Chapter 6. Configuring intersystem security 129

Setting the RemoteSysSecurity attribute to trusted or verify

The RemoteSysSecurity attribute can be set to either trusted or verify.

Use the value trusted as follows:

v When the remote system does not send passwords with user IDs. This applies to

CICS Transaction Server for z/OS systems. TXSeries for Multiplatforms systems

might send passwords, but their default behavior is not to send them.

v When the remote SNA system does send passwords, but the SNA product that

you are using verifies the password and does not pass it to CICS. Refer to

“Receiving user IDs from SNA-connected systems” on page 133 for further

details about this.

Use the value verify as follows:

v To ensure that user IDs are always accompanied by a password

v When you are using an SNA product that does pass the password to CICS

Use verify when using CICS family TCP/IP connections to CICS OS/2.

Setting up a CICS region to flow user IDs

A region flows users IDs to a remote system if the OutboundUserIds attribute of

the local CD entry for the remote system is set to sent,

sent_maybe_with_password, or sent_only_with_password. If the remote system to

which you are sending cannot receive inbound user IDs, set the OutboundUserIds

attribute to not_sent.

Table 28 shows which user ID is flowed when a local task issues an intersystem

request to a remote system.

 Table 28. Which user ID is flowed when local task issues a request

Characteristics of the local task User identifier sent by CICS to the remote

region

Task with associated terminal; user signed

on

Terminal user identifier.

Task with associated terminal; no user

signed on

The region’s DefaultUserId.

Task with no associated terminal started by

interval control EXEC CICS START

User identifier for the task that issued the

EXEC CICS START command.

Task with no associated terminal, triggered

by a transient data queue

User Identifier whose TDQ write triggered

the task.

CICS system task Local Sysid of the region.

Program started by Distributed Program

Link (DPL)

The user ID is the one associated with the

task. This depends on the CD

RemoteSysSecurity and LinkUserId settings

for the connection that started the task. For

example:

RemoteSysSecurity=local: either link user

ID or default user ID.

RemoteSysSecurity=trusted orverify: either

flowed user ID or default user ID.

130 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 28. Which user ID is flowed when local task issues a request (continued)

Characteristics of the local task User identifier sent by CICS to the remote

region

Back-end Program started by Distributed

Transaction Processing (DTP).

The user ID is the one that is associated

with the task. This depends on the CD

RemoteSysSecurity and LinkUserId settings

for the connection that started the task. For

example:

RemoteSysSecurity=local: either link user

ID or default user ID.

RemoteSysSecurity=trusted or verify: either

flowed user ID or default user ID.

By default, CICS never flows passwords with these user IDs. This is because all

local user IDs that are running transactions in a region have had their passwords

checked. Therefore, set up remote systems in the SNA definitions to accept user

IDs that are flowed by a region as already_verified See “Receiving user IDs from

SNA-connected systems” on page 133 for more information.

If you want your CICS region to send passwords, see “Setting up a CICS region to

flow passwords.”

Setting up a CICS region to flow passwords

It can sometimes be necessary for the local CICS region to send a password and

user ID to a remote system. This can occur if the CICS region is acting as a client

gateway to a CICS for MVS/ESA host, and you want to control all security with

RACF on the host. It can also be needed when you need to implement user

security, but your SNA product (such as the Microsoft Microsoft SNA Server for

Windows) does not support sending already_verified user IDs.

To configure CICS to send passwords:

1. Create a DFHCCINX user exit that will cause CICS to save passwords received

from clients.

2. Configure the CD entry for the connection to the remote system to enable the

local region to send the password.

Notes:

1. Whenever CICS saves the password in storage, it encrypts the password.

However, if SNA is used to flow passwords, they are sent over the SNA

network in plain text as required by the SNA architecture.

2. Only the Universal Client software can be used when the user ID and

password are to flow to another system.

The DFHCCINX parameters that determine whether to save the password are:

v CICS_CCINX_PSWD_CHECK_AND_DROP (the default)

v CICS_CCINX_PSWD_CHECK_AND_KEEP

v CICS_CCINX_PSWD_IGNORE_AND_DROP

v CICS_CCINX_PSWD_IGNORE_AND_KEEP

If you want to use any of these settings, you must also set RemoteSysSecurity to

CICS_CCINX_SECURITYTYPE_VERIFY.

Chapter 6. Configuring intersystem security 131

The CD parameters that determine whether to send the password to the remote

systems are:

 OutboundUserIds=sent_only_with_pswd

 OutboundUserIds=sent_maybe_with_pswd

These are described in “Writing your own version of DFHCCINX” on page 62. The

following sections describe some scenarios.

To send passwords after local verification

This is needed if the local SNA product does not support sending already_verified

user IDs; for example, when using Microsoft Microsoft SNA Server. The password

is verified in the local region, then flowed to the remote region.

 DFHCCINX:

 RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|

 CICS_CCINX_PSWD_CHECK_AND_KEEP)

 CD:

 OutboundUserIds=sent_only_with_pswd

To send passwords without local verification

Sending passwords without local verification might be needed when you are using

the CICS region as a client gateway. The local CICS region does not verify the

password before sending it to the remote system.

 DFHCCINX:

 RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|

 CICS_CCINX_PSWD_IGNORE_AND_KEEP)

 CD:

 OutboundUserIds=sent_only_with_pswd

If the local CICS region does not receive a password from the client, no user ID is

sent to the remote system.

Alternatively, the CD can be configured as follows:

 CD:

 OutboundUserIds=sent_maybe_with_pswd

Then if the local CICS region does not receive a password from the client, the user

ID is sent to the remote system as already_verified).

Do not send passwords

If you do not want the local CICS region to send passwords to a remote system:

 DFHCCINX:

 RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|

 CICS_CCINX_PSWD_CHECK_AND_DROP)

 CD:

 OutboundUserIds=sent, or

 OutboundUserIds=not_sent

This is the normal default operation, where the local CICS region verifies the

passwords but does not save them, and therefore they cannot be sent to a remote

system. This is the most secure setup.

No password checks

If you are operating in a secure environment, you might want to disable all

security. Passwords are not verified in the local CICS region and are not be sent to

the remote system.

132 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHCCINX:

 RemoteSysSecurity=(CICS_CCINX_SECURITYTYPE_VERIFY|

 CICS_CCINX_PSWD_IGNORE_AND_DROP)

 CD:

 OutboundUserIds=not_sent

Receiving user IDs from SNA-connected systems

The SNA LU 6.2 architecture has optional support for flowing user IDs and

passwords between SNA-connected systems. This is called conversation-level security

(or sometimes attach security, or conversation security). Conversation-level security is

provided in the 212, 213, 217, 218, 219, 220, 221, and 222 SNA LU 6.2 option sets.

Because this security is optional, each system needs a definition of the level of

security that it can, or wants to, accept from a particular remote system. You can

set up a different conversation security acceptance level on each end of a connection

between two systems.

The possible levels of security acceptance are:

v Conversation-level security not supported or required.

This option means that user IDs and passwords must not be sent to this system.

If they are sent, it is considered an SNA protocol violation.

v Conversation-level security supported.

This option means that user IDs can be sent to this system, but in order for them

to be accepted, they must be accompanied by a valid password. Select this level

if you want to receive user IDs from a system that does not have its own

security manager and so cannot verify its own users (as with CICS OS/2).

v Already verified supported.

This option means that user IDs can be sent to this system and these user IDs do

not need to be accompanied by a password because the remote system is trusted

to have verified the user ID against a password before the intersystem request

was sent. CICS Transaction Server for z/OS, CICS/ESA, CICS/MVS, CICS/VSE,

and TXSeries for Multiplatforms always send verified user IDs, and a remote

SNA system that wants to receive user IDs from these systems must accept

already verified user IDs.

v Persistent verification supported.

This option allows the verification that is associated with a user ID and

password pair to persist over a number of intersystem requests. Both the user ID

and password are sent on the first request. However, if they are valid, only the

user ID is required on subsequent requests. The user ID can be sent without a

password for a user-defined period of time, or until the initiating system sends a

sign-off request.

v Both already verified and persistent verification supported.

This option allows both already-verified requests and requests that use persistent

verification.

The security acceptance levels that are available to you depend on the support that

your local SNA product provides.

Chapter 6. Configuring intersystem security 133

When using Communications Server for AIX

For example, Communications Server for AIX supports three values for the

Security acceptance field in LU 6.2 partner LU definition. These are none (for no

conversation-level security), conversation (for conversation-level security) and

already_verified (for already verified support).

 CICS Transaction Server for z/OS 4.1, which provides its own SNA services,

supports all five levels of security acceptance. These are specified in the

ATTACHSEC option of the CICS Transaction Server for z/OS CONNECTION

definition. Table 29 shows how they compare.

 Table 29. Comparing security options between platforms

Security

acceptance level

No

conversation-
level security

Conversation-
level security

Already verified

support

Persistent

verification

Already verified

and persistent

verification

Communications

Server for AIX

None Conversation already_verified See Note 1 See Note 1

Communications

Server for

Windows

See Note 1 Deselect

Conversation

Security Support

Select

Conversation

Security

Support

See Note 1 See Note 1

Microsoft SNA

Server

Deselect

Conversation

Security

Select

Conversation

Security

Select Accepts

Already

Verified user

Names

See Note 2 See Note 2

HP-UX SNAplus2 None Conversation conv-security-
ver

See Note 1 See Note 1

SNAP-IX for

Solaris

None Conversation conv-security-
ver

See Note 1 See Note 1

Notes:

1. Not supported with this SNA product.

2. Microsoft Microsoft SNA Server uses the values in the transaction definition

created by cicssnatpns.

These security levels define the security options that a system supports, rather than

the level of security that is expected on each intersystem request. For example, an

intersystem request that has no user ID associated with it can be received from a

remote system on which you have requested “already verified”.

The SNA LU 6.2 architecture specifies that the level of security that is required for

an intersystem request is dependent on the transaction name that is requested. This

is because it is recognized that some transactions are more sensitive than others

are.

CICS uses transaction security level (TSL) and resource security level (RSL) keys to

provide security checking at the transaction and resource level.

134 TXSeries for Multiplatforms: CICS Intercommunication Guide

When using Communications Server for AIX

Communications Server for AIX also allows you to define a SecurityRequired

level in the TPN profile that you define for your CICS transactions.

Because CICS provides security support, the SecurityRequired attribute is not

required and can be set to none without security exposure.

 The security acceptance level that you define locally is sent to the remote SNA

system as one of the parameters of the session bind request and response. Systems

such as CICS Transaction Server for z/OS, CICS/ESA, CICS/MVS and CICS/VSE,

which have fully integrated SNA support and so have access to the bind, can

examine the security acceptance level received and decide from that whether to

send user IDs. Systems such as CICS OS/2 and TXSeries for Multiplatforms, which

use a separate SNA product, require that you set them up to send user IDs. (See

“Setting up a CICS region to flow user IDs” on page 130.)

It is important that the security acceptance level that is defined in the remote

system matches the setup that is defined in the region. Table 30 shows examples of

the security parameters that are defined to flow user IDs between a region and

CICS Transaction Server for z/OS.

 Table 30. Defining security parameters

Types of definitions CICS Transaction Server for z/OS

Security setup on the remote

system

CONNECTION

ATTACHSEC=IDENTIFY

 .

Because the local region and CICS Transaction Server

for z/OS do not need to send passwords with user

IDs, each remote system must be set up to accept

already-verified user IDs.

Communications Server for AIX LU

6.2 partner LU profile for the

remote system

 .

Security accepted=

already_verified

 .

Because the local region and CICS Transaction Server

for z/OS do not need to send passwords with user

IDs, each remote system must be set up to accept

already-verified user IDs.

Local HP-UX SNAplus2 LU 6.2

Remote APPC LU definition

 .

con-security-ver

conversation security

 .

Local SNAP-IX Remote APPC LU

definition

 .

con-security-ver

conversation security

 .

IBM Communications Server for

Windows

 .

Select

conversation security

 .

Chapter 6. Configuring intersystem security 135

Table 30. Defining security parameters (continued)

Types of definitions CICS Transaction Server for z/OS

Microsoft Microsoft SNA Server .

Select

Accepts Already Verified

User Names

 .

CD entry on the local region for the

remote system

 .

RemoteSysSecurity=trusted

OutboundUserIds=sent

LinkUserId=<>

 .

The CICS Administration Guide has information about security for local regions.

Link security and user security compared

Link security and user security are defined with the following resource definition

attributes. The actual TSL and RSL keys that are assigned to remote users are

based on a combination of how these attributes are defined. The following list

describes the attributes individually. “How the resource definition security

attributes are used” on page 137 describes how these attributes are used in

conjunction with each other.

The RSLKey attribute

The resources that are represented by the following resource definitions

can be assigned a resource security level (RSL) key by use of the RSLKey

attribute. This key is used to determine who has access to the resource.

v File Definitions (FD): Allows a user to access the file

v Journal Definitions (JD): Allows a user to write to the journal

v Program Definitions (PD): Allows a user to run the program

v Transaction Definitions (TD): Allows a user to issue EXEC CICS START

for the transaction

v Transient Data Definitions (TDD): Allows a user to access the queue

v Temporary Storage Definitions (TSD): Allows a user to access the queue

The TD TSLKey attribute

Transactions can be assigned a transaction security level (TSL) key by use

of the TSLKey attribute. This key is used to determine who can execute

the transaction.

The User Definitions (UD) TSLKeyList and RSLKeyList attributes

These attributes contain the list of TSL and RSL keys that are defined for a

user. These keys allow the user access to the resources and transactions

that have the same TSL and RSL keys defined for them.

The Communications Definitions (CD) RemoteSysSecurity attribute

This attribute specifies whether to use link security or user security.

The CD LinkUserId attribute

This attribute specifies a link user ID for the connection. The UD

TSLKeyList and RSLKeyList attributes that are defined for the

connection’s link user ID are used to determine which resources requests

from this connection can access.

136 TXSeries for Multiplatforms: CICS Intercommunication Guide

The CD TSLKeyMask and RSLKeyMask attributes

These attributes contain the list of TSL and RSL keys that control access to

transactions and resources for the connection. These attributes are used

when a link user ID is not defined for the connection.

The Region Definitions (RD) DefaultUserId attribute

This attribute specifies a default user for the region. This default user is

used when a user ID is required but one is not available. UD TSLKeyList

and RSLKeyList attributes that are defined for the region’s default user are

used to determine which resources this user ID can access.

The Communications Definitions (CD) OutboundUserIds attribute

This attribute specifies whether a user ID is to be sent on the outbound

request.

How the resource definition security attributes are used

The following maps show how the level of security is determined. They show:

v Which user ID is used when the remote user logs in

v Which security keys are used

Map 1. Start

1. Is RemoteSysSecurity=local for this connection

YES Go to “Map 2. RemoteSysSecurity=local (Link Security).”

NO Skip to the next question.
2. If RemoteSysSecurity=trusted for this connection

v Is a user ID flowed from the remote system with this request?

YES Go to “Map 4. RemoteSysSecurity=trusted and a user ID is Flowed

(User Security)” on page 138.

NO Go to “Map 3. RemoteSysSecurity=trusted and a user ID is not

Flowed (User Security)” on page 138.
3. If RemoteSysSecurity=verify for this connection

v Is a user ID flowed from the remote system with this request?

YES Go to “Map 6. RemoteSysSecurity=verify and a user ID is Flowed

(User Security)” on page 138.

NO Go to “Map 5. RemoteSysSecurity=verify and a user ID is not

Flowed (User Security)” on page 138.

Map 2. RemoteSysSecurity=local (Link Security)

1. Is a link user defined for this connection?

YES Skip to the next question.

NO CICS logs the user in as the region’s default user, and uses the keys

that are defined in the CD attribute TSLKeyMask and RSLKeyMask.

CICS ignores TSL and RSL keys that might be defined for the default

user.
2. Is a UD entry defined for the connection’s link user?

YES CICS logs the user in as the connection’s link user and uses the TSL

and RSL keys that are defined in the UD entry for the connection’s link

user.

NO CICS logs the user in as the connection’s link user and grants public

access.

Chapter 6. Configuring intersystem security 137

Map 3. RemoteSysSecurity=trusted and a user ID is not Flowed

(User Security)

1. Because no user ID is supplied, the default user ID is used.

2. Is a UD entry defined for the region’s default user?

YES Skip to the next question.

NO CICS logs the user in as the region’s default user and grants public

access.
3. Is a link user defined for this connection?

YES Skip to the next question.

NO CICS logs the user in as the region’s default user and uses the TSL and

RSL keys that are defined both for the default user and for the

connection’s TSLKeyMask and RSLKeyMask.
4. Is a UD entry defined for the connection’s link user?

YES CICS logs the user in as the region’s default user and uses the TSL and

RSL keys that are defined both for the default user and for the

connection’s link user.

NO CICS logs the user in as the region’s default user and grants public

access. CICS ignores TSL and RSL keys that might be defined for the

default user.

Map 4. RemoteSysSecurity=trusted and a user ID is Flowed (User

Security)

1. Is a UD entry defined for the selected user ID?

YES Skip to the next question.

NO CICS logs in as the selected user ID and grants public access.
2. Is a link user defined for this connection?

YES Skip to the next question.

NO CICS logs in as the flowed user ID and uses the TSL and RSL keys that

are defined both for the flowed user ID and for the connection’s

TSLKeyMask and RSLKeyMask.
3. Is a UD entry defined for the connection’s link user?

YES CICS logs in as the flowed user ID and uses the TSL and RSL keys that

are defined both for the flowed user ID and for the connection’s link

user.

NO CICS logs in as the flowed user ID and grants public access. Ignore TSL

and RSL keys that might be defined for the flowed user ID.

Map 5. RemoteSysSecurity=verify and a user ID is not Flowed

(User Security)

1. CICS logs the user in as the region’s default user and uses the TSL and RSL

keys that are defined both for the default user and for the connection’s

TSLKeyMask and RSLKeyMask.

Map 6. RemoteSysSecurity=verify and a user ID is Flowed (User

Security)

1. Is a password supplied?

YES If the password is correct, the flowed user ID is selected. If the

password is not correct, use the default user ID.

138 TXSeries for Multiplatforms: CICS Intercommunication Guide

NO The default user ID is selected.
2. Is a UD entry defined for the selected user ID?

YES Skip to the next question.

NO CICS logs in as the selected user ID and grants public access.
3. Is a link user defined for this connection?

YES Skip to the next question.

NO CICS logs in as the selected user ID and uses the TSL and RSL keys

that are defined both for the user ID and for the connection’s

TSLKeyMask and RSLKeyMask.
4. Is a UD entry defined for the connection’s link user?

YES CICS logs in as the selected user ID and use the TSL and RSL keys that

are defined both for the flowed user ID and for the connection’s link

user.

NO CICS logs in as the selected user ID and grants public access. Ignore

TSL and RSL keys that might be defined for the flowed user ID.

Examples of link and user security

Table 31 on page 140 contains resource definitions for the example system, SYS1.

Assume that defaults are used where attributes are not shown in these example

definitions. For example, TSLKeyMask=none and RSLKeyMask=none for SYS2,

SYS3, and SYS5.

For more information, see “Authenticating systems across SNA connections” on

page 125 and “CICS link security” on page 126.

The remote systems that are involved are represented by the following CD that

reside on SYS1:

SYS2 This system has the following users on it:

SAM Who needs access to TRN6, PROG6, and FILE6 on SYS1.

FRED Who needs access to TRN6, PROG6, and FILE6 on SYS1.

TOM Who needs access to TRN3, PROG3, and FILE4. FILE5, FILE7 and

FILE8 on SYS1.

LINK3

Who does not require access to any of the resources on SYS1.

SYS3 This system has the following users on it:

DICK Who needs access to TRN4, PROG4, and FILE4 on SYS1.

HARRY

Who needs access to TRN4 and TRAN6, PROG4 and PROG6, and

FILE4 and FILE6 on SYS1.

LINK2

Who does not require access to any of the resources on SYS1.

SYS4 This system is using link security. All users from this system are given the

same level of security. These users need access to TRN4 and TRAN6,

PROG4 and PROG6, and FILE4 and FILE6 on SYS1.

Chapter 6. Configuring intersystem security 139

SYS5 This system is using link security. All users from this system are given the

same level of security. These users need access to TRN6, PROG6, and

FILE6 on SYS1.

The following table shows definitions on REGIONA, which is the local CICS

system:

 Table 31. Example resource definitions for link security

Resource

definition

category Attributes and values

CD v SYS2: RemoteSysSecurity=trusted LinkUserId="LINK2" (user IDs are

flowed from this system)

v SYS3: RemoteSysSecurity=trusted LinkUserId="LINK3" (user IDs are not

flowed from this system)

v SYS4: RemoteSysSecurity=local LinkUserId="" TSLKeyMask=4|6

RSLKeyMask=4|6

v SYS5: RemoteSysSecurity=local LinkUserId="LINK5"

RD REGIONA DefaultUserId=CICSUSER

UD v CICSUSER: TSLKeyList=4|6 RSLKeyList=4|6

v LINK2: TSLKeyList=all RSLKeyList=all

v LINK3: TSLKeyList=all RSLKeyList=all

v LINK5: TSLKeyList=6 RSLKeyList=6

v SAM: TSLKeyList=6 RSLKeyList=6

v FRED: TSLKeyList=6 RSLKeyList=6

v TOM: TSLKeyList=3 RSLKeyList=3|4|5|7|8

v HARRY: TSLKeyList=4|5|7 RSLKeyList=4|5|7

PD v PROG4: RSLKey=4

v PROG6: RSLKey=6

TD v TRN3: TSLKey=3 RSLKey=3

v TRN4: TSLKey=4 RSLKey=4

v TRN6: TSLKey=6 RSLKey=6

FD v FILE3: RSLKey=3

v FILE4: RSLKey=4

v FILE5: RSLKey=5

v FILE6: RSLKey=6

v FILE7: RSLKey=7

v FILE8: RSLKey=8

In these examples:

v Users from SYS2 are given access to those resources that are specified by the

TSLKeyList and RSLKeyList attributes as defined in UD entries on SYS1 for the

individual users. The reason for this is that RemoteSysSecurity=trusted, user

IDs are flowed from SYS2, and the TSLKeyList and RSLKeyList attributes for

LINK2 (the link user ID for SYS2) specifies all. LINK3 is a user on SYS2.

Although it is not intended that this user should have access to any resource on

SYS1, LINK3 is given access to all resources.

v LINK2 from SYS3 is given access only to those resources that are assigned to the

link user ID and that are also defined for the default user ID. This is true of all

users from SYS3 because user IDs are not flowed. Note that this is an unusual

way of setting up security. It is better to use link security. The reason for this is

that HARRY is defined locally and, if user IDs started to flow from the remote

system, HARRY would be given access to keys 5 and 7 in addition to 4, and

HARRY would lose access to 6.

140 TXSeries for Multiplatforms: CICS Intercommunication Guide

v Users from SYS4 are given access to those resources that are specified in the CD

TSLKeyMask and RSLKeyMask attributes. This is because

RemoteSysSecurity=local and a link user is not specified.

v Users from SYS5 are given access to those resources that are specified in the UD

for LINK5. This is because RemoteSysSecurity=local and a link user is specified.

Security and function shipping

This section gives additional information about security for function shipping.

Security requirements for the mirror transaction

When CICS receives a function-shipped request, the started transaction is the

mirror transaction. The CICS-supplied definitions of the mirror transactions (CPMI,

CVMI, and CSM*) all specify Resource Security Level (RSL) checking, but the

Transaction Security Level (TSL) key is set to 1, which gives public access to these

mirror transactions. The mirror transactions can therefore be run by any remote

region and user that have permission to access your region, but the transactions

can access only those resources for which the link and remote user have authority.

You can modify the appropriate mirror Transaction Definitions (TD) to achieve the

level of security you that require, or create new mirror transactions with different

levels of security, based on the supplied TD. Each mirror transaction must specify

DFHMIRS as the ProgName attribute.

Note: Also read “Migration considerations for function shipping” on page 345,

“CICS link security” on page 126, and “CICS user security” on page 127.

Outbound security checking for function-shipping requests

If you include a remote resource in your resource definitions, you can arrange for

CICS to perform security checking locally, just as if the resource is local. This check

occurs before the function-shipping request is sent to the remote system and occurs

independently of any checks that the remote system makes.

In addition, if you specify the RSLCheck attribute as internal or external in the

Transaction Definitions (TD) entry for a transaction, CICS raises the NOTAUTH

condition locally if the transaction attempts to issue an EXEC CICS command with

the SYSID option specified. This is because the SYSID option bypasses the local

security checking for resources.

Note: The CICS-supplied transaction CECI is set up with RSLCheck=internal.

This means that it cannot be used to try out function-shipping requests

using the SYSID option until the TD definition for CECI is changed to

RSLCheck=none.

The NOTAUTH condition

If a transaction attempts to access a resource but does not satisfy the resource

security checks, CICS raises the NOTAUTH condition.

If a resource is being accessed as part of a function-shipping request and the CICS

mirror transaction does not have access to it, CICS returns the NOTAUTH

condition to the requesting transaction in the remote system, where the transaction

can handle the condition in the usual way.

Chapter 6. Configuring intersystem security 141

If the requesting transaction is in a release of CICS that does not support the

NOTAUTH condition, CICS raises an alternative condition instead.

EXEC CICS start requests from a remote system

When a transaction is started by an EXEC CICS START request that is issued from

a remote system, the request is handled as a function-shipping request. Therefore,

the security checks that are applied before the transaction is invoked are run

against the RSL keys that are defined for that transaction. These security checks, in

addition to the user ID that is established for the request, are done in accordance

with the normal inbound security rules, as described in “Link security and user

security compared” on page 136.

When the transaction is scheduled, it is handled as a local request; that is, no

consideration is given to the security of the link. The TSL keys are checked only

against the TSL keys that are defined for the user ID, and future accesses to

resources are granted to the transaction as if it were a local transaction. Refer to

the CICS Administration Guide for details of how TSL and RSL keys are used to

control access to local transactions and resources.

It is important to consider the security of remote EXEC CICS START requests when

planning intersystem security for your region. In particular, check whether the RSL

keys are at least as restrictive as are the TSL keys for your transactions. The only

time when this consideration does not apply is when the user ID that is used for

an incoming request can always be guaranteed to have no greater security than the

security that is associated with the link for that request. For example, this

condition applies when a region always uses link security with a link user ID

specified.

Using CRTE and CESN to sign on from a remote system

Users from remote systems can sign on to your local system by using the following

procedure:

1. Use CRTE.

Using CRTE, the remote users are logged in as the region’s default user ID. The

region’s default user ID is specified with the Region Definitions (RD)

DefaultUserId attribute.

The user is given access to transactions and resources as specified with the

TSLKeyList and RSLKeyList attributes that are in the User Definitions (UD)

entry for the region’s default user ID and that are also defined for the

connection’s link user ID. A link user ID is specified with the Communications

Definitions (CD) LinkUserId attribute.

Alternatively, if a link user ID is not specified, the TSLKeyMask and

RSLKeyMask from the CD are used in place of the link user ID’s keys.

2. Use CESN.

If the user requires access to transactions or resources that are not assigned to

the region’s default user ID, CESN can be used to change the user ID.

When CESN is used, the user assumes access to transactions and resources as

specified with the TSLKeyList and RSLKeyList attributes that are in the User

Definitions (UD) entry for the new user ID and that are also defined for the

connection’s link user ID.

3. Use CESF or CSSF.

When the user logs off, by using either CESF or CSSF, the logged-on user ID

then becomes the region’s default user ID, and the user is given access to

142 TXSeries for Multiplatforms: CICS Intercommunication Guide

transactions and resources as specified with the TSLKeyList and RSLKeyList

attributes that are in the User Definitions (UD) entry for the region’s default

user ID and that are also defined for the connection’s link user ID (same as

item 1).

Intersystem security checklist

Use this checklist to plan and implement intersystem security.

When link security or user security is used

It is good practice to ensure that the transaction RSL keys, which are specified with

the Transaction Definitions (TD) RSLKeys attribute, are equally or more restrictive

than are the TSL keys, which are specified with the TD TSLKeys attribute, for any

given transaction. Refer to “EXEC CICS start requests from a remote system” on

page 142 for an explanation of the importance of restricting the RSL keys for

intersystem security.

When link security is used

If you specify RemoteSysSecurity=local in the remote system’s Communications

Definitions (CD) entry, which means that all users from that system have the same

level of security, ensure that the link security has adequate restrictions.

v Consider this scenario: SAM on the local system, SYS1, has public access only. It

is not intended that SAM be given access to any resource or transaction that is

higher than public on SYS1. SAM uses the transaction-routing transaction, CRTE,

to log in to SYS2 and becomes the default user ID on SYS2. SAM, as the default

user ID on SYS2, can now function ship back to SYS1, which has implemented

link security with SYS2 (RemoteSysSecurity=local) and can therefore gain access

to all transactions and resources that SYS1 allows the users of SYS2 to have.

v To avoid this problem: Do not use link security, where

RemoteSysSecurity=local, for a connection between your system and a remote

system that is not secure enough to allow all users of that system access to your

resources.

When user security is used

If you specify RemoteSysSecurity=trusted or verify in the remote system’s CD

entry, you can allow a flexibly restrictive combination of keys because they can be

restricted, not only by the keys locally defined for the connection’s link user ID,

but for the user ID flowed from the remote system.

Using the connection’s link user ID, rather than the connection’s TSLKeyMask or

RSLKeyMask attributes, to specify the link keys for the connection is the advised

method. This allows you to associate a distinctive user ID with the link and

provides you with the ability to use that user ID for each connection that requires

the same link keys. However, consider the following:

Ensure that user IDs in the network do not conflict.

v Consider this scenario: SAM is a secure user on the local system, SYS1, and has

access to sensitive transactions. GEORGE from SYS2 requires the same security

levels on SYS1 as does SAM. The link user ID is set up to allow GEORGE access

to these sensitive transactions, as is GEORGE’s user ID on SYS1.

SAM on SYS2 is not secure and should not be given access to the same

transactions as those to which GEORGE has access, but, because SAM is defined

on SYS1 as having access to these transactions, SAM from SYS2 assumes the

Chapter 6. Configuring intersystem security 143

local SAM’s security levels when SAM from SYS2 logs in to SYS1, and can,

therefore, gain access to the sensitive transactions.

v To work round this problem: Discuss your security requirements with the

system administrator of the remote system.

Note: You and the system administrator on the remote system need to agree

about the user IDs that can and cannot be used on either system.

Be careful when selecting a name for the link user ID.

v Consider this scenario: User security is implemented between SYS1 and SYS2, so

it is expected that all remote requests from SYS2 to SYS1 must flow a user ID

that is defined on SYS1 or be given public access only. The link user ID for the

link between SYS1 and SYS2, RE9X32Y, has enough security levels to allow

GEORGE access to parts ordering, and to allow SAM access to parts query. The

user ID for SAM on SYS1 is restrictive enough so that SAM cannot order parts.

The link user ID on SYS1 for the connection between SYS1 and SYS3 is PATTY.

This user ID also has enough security levels to allow access to parts ordering.

PATTY is also a local CICS user on SYS2, but PATTY on SYS2 is not considered

to be a secure user of SYS1. However, because user ID PATTY is defined on

SYS1 as having access to parts ordering, PATTY from SYS2 will also be given

access to parts ordering on SYS1.

v To work round this problem: Because the link user ID needs to be given enough

security to allow access to all transactions and resources that the collective users

of the remote system require, it is important that you do not use a trivial or

common name for the link user ID. It is also important that you are in

agreement with the system administrator of the remote system as to what user

IDs can and cannot be used on either system.

Common configuration problems with intersystem security

This section lists symptoms of security problems that are the result of configuration

errors. The descriptions suggest possible solutions and point you to further

information as required.

Note: Before looking for your symptom in this list, ensure that you are not

experiencing any of the symptoms that are described in “Common

intercommunication errors” on page 216.

Remote user is logged in to wrong user ID

If a remote user is logged in to a user ID other than the intended user ID, and

perhaps given access to the wrong transactions or resources, check the following:

v If the user is using the transaction-routing transaction, CRTE, the flowed user ID

is ignored and the user is logged in as the region’s default user ID. This is

normal operation. The user can use CESN to log on to a locally defined user ID.

However, the user security level is still subject to the link keys that are defined

for the connection. For more information, see “Using CRTE and CESN to sign on

from a remote system” on page 142.

v Is the flowed user ID the same as a locally defined default user ID or link user

ID? It is advised that you do not use names for a region’s default user ID or a

connection’s link user ID that are in conflict with other user IDs in the network.

v Was a user ID flowed? If a user ID was not flowed and one was required, the

user is logged in as the default user. If you expected a user ID to be flowed and

one was not, go to “Flowed user IDs are not received from a remote system” on

page 145.

144 TXSeries for Multiplatforms: CICS Intercommunication Guide

v Was a password flowed? If you are using RemoteSysSecurity=verify, user IDs

that are received by CICS without a password are discarded, and the user is

logged on as the default user. If user IDs are received without passwords, set

RemoteSysSecurity=trusted.

v If you expected the link user ID to be used on this request, but it was not, check

whether RemoteSysSecurity=local and whether a UD entry exists for the link

user ID.

User IDs are not flowed to a remote system

If your local region is supposed to be flowing user IDs to a remote system, but is

not, check whether:

v The security acceptance field in the remote system is set correctly

v The OutboundUserIds=sent is set in the Communications Definitions (CD) entry

for the connection to the remote system that is expecting flowed user IDs from

your system

Flowed user IDs are not received from a remote system

If a remote system is flowing user IDs to your system, but your system is not

receiving them:

v Check whether RemoteSysSecurity=trusted or verify is set in the CD entry for

the connection to the remote system that is supposed to be flowing user IDs to

your system. Note that because Microsoft Microsoft SNA Server product does

not forward passwords to CICS, always use RemoteSysSecurity=trusted with

that product.

v If you are using Communications Server for AIX, check whether the security

acceptance field that is in your Communications Server for AIX connections

definitions is set to “already_verified” or to “conversational”.

v If you are using HP-UX SNAplus2, specify conversation-level security.

v If you are using SNAP-IX for Solaris, specify conversation-level security.

CD RSLKeyMask and TSLKeyMask attributes are ignored

This might be the normal operation because the only time that the connection’s

RSLKeyMask and TSLKeyMask keys are used is when a link user ID is not

specified for the connection. It is advisable to use the link user ID (LinkUserId) for

link keys.

Unexpected message ERZ045006W - no obvious effect on

security

CICS uses the region name as the user ID to run some CICS tasks. If the user ID

that is specified in this message corresponds to the name of a remote region, define

a UD entry with the region name as the UD key.

Access is unexpectedly restrictive (message ERZ045006W)

This symptom occurs when no User Definitions (UD) entry exists that corresponds

to the user ID that is being used for this inbound request. To fix this problem:

1. Determine, from the message, or from the information in “How the resource

definition security attributes are used” on page 137, the user ID that is being

used.

2. When you know the actual user ID that was used, determine whether this user

ID was the flowed user ID (if one was sent), the connection’s link user ID, or

the region’s default user ID.

Chapter 6. Configuring intersystem security 145

3. Check whether the correct user ID was used. If not, ensure that you have

configured your resources correctly. Use the maps that are given in “How the

resource definition security attributes are used” on page 137 to help you

determine how the resource definition attributes must be set to ensure that the

correct user ID is used.

If the correct user ID was used, ensure that a UD entry exists for that user ID.

Access unexpectedly rejected or granted on inbound request

Either the user logged in with the wrong user ID, or the keys that are defined for

the user ID are not correct. To fix this problem, do the following:

1. Use messages that are associated with the error to determine the actual user ID

that was used.

2. When you know the actual user ID that was used, determine whether this user

ID was the flowed user ID (if one was sent), the connection’s link user ID, or

the region’s default user ID.

3. Based on how your security is set up (or how you want your security to be set

up) determine whether the user ID that was actually used was the correct user

ID. If it was not the correct user ID, ensure that you have configured your

resources correctly. Use the maps that are given in “How the resource definition

security attributes are used” on page 137 to help you determine how the

resource definition attributes should be set to ensure that the correct user ID is

used. Refer also to “Intersystem security checklist” on page 143 for helpful

information about administration of user IDs across a network.

If the correct user ID was used, establish the access that was granted for this

user during this particular inbound request. The access granted is a

combination of link keys and user keys, or it can be link keys alone, depending

on how you have security configured for the connection. For example, the user

is given access to transactions and resources based on various combinations of:

v The keys that are defined for the connection’s link user ID

v The TSLKeyMask or RSLKeyMask keys that are defined for the connection

v The keys that are defined for the region’s default user ID

v The keys that are defined for the flowed user ID

v The TSL and RSL key that is assigned to each transaction and resource

If you establish that the problem occurs while attempting to access a transaction or

resource, you will need to derive TSL and RSL key lists by using the maps and

diagrams that are given in “Link security and user security compared” on page

136. Determine whether the keys that the user is allocated are those keys that are

needed to access the required transactions or resources.

When you have established the reason why the access is being wrongly allowed or

revoked, you might want to change the privileges of the user ID on this inbound

request, or change the access keys on the resources or transactions that are being

accessed. Your decision on how to cure this problem must take into account the

effect that any change will have on the network.

The discussion has assumed that you are familiar with:

v “Overview of intersystem security” on page 123

v “Authenticating systems across SNA connections” on page 125

v “CICS link security” on page 126

v “CICS user security” on page 127

v “Link security and user security compared” on page 136

v “Intersystem security checklist” on page 143

146 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 7. Data conversion

Different hardware platforms and operating systems use different standards to

represent data. Some use ASCII (American National Standard Code for Information

Interchange); some use EBCDIC (Extended Binary-coded Decimal InterChange).

Each can use different binary patterns to represent data. Some use a single

hexadecimal byte to represent their characters; others might use more. Each has its

own way of storing numeric data.

When TXSeries for Multiplatforms communicates with other systems and data

flows from one system to another, that data might need to be converted from one

format to another. This chapter describes the configuration that is necessary to

support this data conversion.

Introduction to data conversion

The encoding of a character set is referred to as a code page. A code page defines

the meaning of all code points. For example, some code pages define meaning to

all 256 code points for an eight-bit code, other code pages define meaning for the

128 code points for a seven-bit code. Data conversion is needed when you have to

convert data from one code page to another.

TXSeries for Multiplatforms uses the iconv call to convert the encoding of

characters from one code page to another. The iconv call needs a conversion table

for each combination of a “from code page” and a “to code page”. For example, if

you are converting from IBM-850 to ISO8859-1, you will need an IBM-850 to

ISO8859-1 conversion table on your operating system.

CICS on Windows Systems

The table in Appendix D, “Data conversion tables (CICS on Windows Systems

and CICS for Solaris only),” on page 347 shows how data can be converted

from one code page to another.

CICS on Open Systems

The names of the conversion tables represent the from-to conversions.

Although different operating systems can have their own naming

conventions, a conversion table source file is generally named as follows:

IBM-850_ISO8859-1 on IBM

amere}iso81 on HP 9000

This shows that the first part of the name represents the from-code page, and

the second part represents the to-code page.

Some operating systems allow you to generate your own conversion tables.

To find out more about this, refer to the information about genxlt and iconv

that is provided with your operating system.

© Copyright IBM Corp. 1999, 2005 147

SBCS, DBCS, and MBCS data conversion considerations

SBCS, DBCS, and MBCS represent different code page layouts, as described below:

SBCS: single byte character set

This describes an encoding in which each hexadecimal value has a simple

relationship with a character. Up to 256 characters can be defined. Not all

hexadecimal values necessarily have a meaning. The EBCDIC IBM-037

code page is one example of such a code page; the ASCII IBM-850 is

another.

DBCS: double byte character set

This describes an encoding in which some hexadecimal values are

recognized as being the first byte of a two-byte sequence that collectively

identifies a particular character. This kind of encoding allows far more

characters to be defined; in theory up to 65536. The IBM-932 code page

(Japanese) is one example of a DBCS code page in which:

 X'00' to X'7F' are single-byte codes

 X'81' to X'9F' are double-byte introducer

 X'A1' to X'DF' are single-byte codes

 X'E0' to X'FC' are double-byte introducer

 In this example, code points such as X'80' are undefined and have no

meaning. A code point such as X'81' is recognized as being the first byte of

a two-byte code. The second byte can be any of the 256 possible values.

Other DBCS code pages have different organizations; each one is

structured according to need.

MBCS: multibyte character set

This encoding describes a character set in which hexadecimal sequences of

arbitrary length are associated with particular characters. eucJP is an

example of a multibyte encoding. The principle is the same as that which

is described for DBCS, except that particular hex values are recognized as

being simple SBCS values or introducers for longer MBCS strings.

Sequences of different lengths can be identified within a single code page.

To summarize, MBCS can be viewed as a more generalized form of DBCS, in

which sequences of arbitrary length can be defined. SBCS is the simplest of all, in

which every sequence is only one byte long.

Note: MBCS is not supported by a standard, although wide characters are. A wide

character set is one in which the encoding supports multiple bytes (2, 3, or

4), but does so consistently; mixed length sequences do not exist in the set.

For instance, IBM’s wide characters are two bytes (DBCS) and

Hewlett-Packard’s are four bytes.

In TXSeries for Multiplatforms, no difference exists in coding the CICS-supplied

program that performs the standard conversions for SBCS, DBCS, or MBCS data.

With DBCS and MBCS data, you can convert data within the same language

(Japanese, Korean, Traditional Chinese, and Simplified Chinese) between the

following types of character sets:

v DBCS (ASCII) and DBCS (EBCDIC)

v DBCS (ASCII) and MBCS (EUC)

v DBCS (EBCDIC) and MBCS (EUC)

148 TXSeries for Multiplatforms: CICS Intercommunication Guide

Cross-language conversion is not possible. Conversions between SBCS and DBCS

or MBCS are also not possible.

In the conversions that are listed above, the length of the converted data might

differ from the original length because of the insertion and deletion of shift-out

(SO) characters and shift-in (SI) characters and the DBCS or MBCS code scheme

difference. An SO character is a code extension character that substitutes, for the

graphic characters of the standard character set, an alternative set of graphic

characters upon which an agreement exists or that has been designated by use of

code-extension procedures. An SI character is a code extension character that is

used to terminate a sequence that has been introduced by the SO character to

make effective the graphic characters of the standard character set.

CICS does not have the logic to handle any special treatment of data-length

changes. For example, 20-byte user data in a 20-byte input buffer might become

more than 20 bytes long after conversion, in which case the data might be

truncated. The application must compensate for expansion during data conversion.

For more information about how to use shift-out/shift-in (SO/SI) characters, refer

to the IBM 3270 Information Display Programmer’s Reference.

In transaction routing, 3270 data streams are always flowed across a network in

EBCDIC. Routed transaction BMS panels behave in the same way as do ordinary

EBCDIC 3270 screens, regardless of the CICS platform or the code page. Therefore,

no MBCS-unique considerations are needed for transaction routing.

Numeric data conversion considerations

Data conversion is not only concerned with the representation of character data.

The method of storing numbers can vary among different hardware platforms. This

means that conversion routines might be required in order to convert numerical

(binary) data that is received from a remote system into the local machine format.

As an example, Figure 51 on page 150 shows how some of the standard C

language data types are represented on the RS/6000, HP 9000 Series 800

computers, and Intel® computers.

The major difference between the two representations that are shown is the byte

ordering. The decimal value 550 is stored as 0x0226 on the RS/6000, HP 9000 Series

800 computers, and SPARC machines. These machines use the big-endian format for

numbers, where the most significant byte of the number is stored in the lower

machine address and the least significant byte is stored in the higher machine

address. IBM mainframes are also big-endian machines.

On the Intel computers, the bytes are reversed, so decimal 550 is stored as 0x2602.

This format is called little-endian.

Chapter 7. Data conversion 149

If numerical data is sent between two machines that use different byte ordering,

either the sender or receiver must swap the bytes around so that the data is

correctly interpreted by the receiving system. In most cases, CICS can be

configured to do this byte swapping automatically. However, you might need to

include byte-swapping functions in the user exit for function shipping (refer to

“Coding a nonstandard data conversion program” on page 161), and transaction

routing (refer to “Writing your own version of DFHTRUC” on page 166).

Figure 52 on page 151 and Figure 53 on page 151 show two example C functions

that can be used for halfword and fullword byte swapping. The first swaps the

bytes for a two-byte number such as a short int, and the second swaps the bytes

for a four-byte number such as an int. Any byte-swapping routine must be aware

of the number of bytes that are used to store a number. Therefore, refer to your

programming language documentation to check the sizes of the data types that

your programs use.

Representation of numbers on an IBM RISC System/6000, HP9000 Series 800

Computer, SNI Series, and SPARC machines

C Data type Value Size(bytes) Represented as:

unsigned short int 550 2 02 26

short int 550 2 02 26

short int -550 2 FD DA

unsigned long int 555550 4 00 08 7A 1E

long int 555550 4 00 08 7A 1E

long int -555550 4 FF F7 85 E2

unsigned int 550 4 00 00 02 26

int 550 4 00 00 02 26

int -550 4 FF FF FD DA

Representation of numbers on Digital Alpha machines

C Data type Value Size(bytes) Represented as:

unsigned short int 550 2 26 02

short int 550 2 26 02

short int -550 2 DA FD

unsigned long int 555550 8 1E 7A 08 00 00 00 00 00

long int 555550 8 1E 7A 08 00 00 00 00 00

long int -555550 8 E2 85 F7 FF FF FF FF FF

unsigned int 550 4 26 02 00 00

int 550 4 26 02 00 00

int -550 4 DA FD FF FF

Representation of numbers on Intel machines

C Data type Value Size(bytes) Represented as:

unsigned short int 550 2 26 02

short int 550 2 26 02

short int -550 2 DA FD

unsigned long int 555550 4 1E 7A 08 00

long int 555550 4 1E 7A 08 00

long int -555550 4 E2 85 F7 FF

unsigned int 550 4 26 02 00 00

int 550 4 26 02 00 00

int -550 4 DA FD FF FF

Figure 51. Representation of numbers

150 TXSeries for Multiplatforms: CICS Intercommunication Guide

The machine hardware and operating system can also affect the size of a data type.

Variations exist in the size of the long data type. It is four bytes on the RS/6000,

HP 9000 Series 800 computers, Intel computers, and SPARC machines. If you are

/*

*-

* Halfword (2 byte) Byte Swap

*-

*/

 void HalfWord_ByteSwap(void *Buffer)

 {

 register unsigned char SavedByte; /* temp variable */

 unsigned char *BufferPtr = Buffer; /* temp pointer */

 /*

 * Save the first byte into the temporary buffer,

 * move the second byte to the first byte position

 * and finally put the saved first byte into the

 * second byte position.

 */

 SavedByte = *BufferPtr;

 *BufferPtr = *(BufferPtr+1);

 *(BufferPtr+1) = SavedByte;

 return;

}

Figure 52. Sample C function for halfword swap

/*

 *---

 * Fullword (4 byte) Byte Swap

 *---

 */

void FullWord_ByteSwap(void *Buffer)

{

 register unsigned char SavedByte; /* temp variable */

 unsigned char *BufferPtr = Buffer; /* temp pointer */

 /*

 * Save the first byte into the temporary buffer,

 * move the fourth byte to the first byte position

 * and finally put the saved first byte into the

 * fourth byte positi on.

 */

 SavedByte = *BufferPtr;

 *BufferPtr = *(BufferPtr+3);

 *(BufferPtr+3) = SavedByte;

 /*

 * Save the second byte into the temporary buffer,

 * move the third byte to second byte position

 * and finally put the saved second byte into the

 * third byte position.

 */

 SavedByte = *(BufferPtr+1);

 *(BufferPtr+1) = *(BufferPtr+2);

 *(BufferPtr+2) = SavedByte;

 return;

}

Figure 53. Sample C function for fullword swap

Chapter 7. Data conversion 151

sending numerical data between different types of machine, choose data types that

are the same size on both machines to simplify the data conversion. The CICS

standard data types in prodDir/include/cicstype.h provide C language data types

that are the same size for all CICS workstation products.

Finally, if the data that your programs send is defined in a record structure, your

data conversion routines must handle the padding that can be automatically

inserted into the structure to maintain boundary alignment. For example, consider

the record structure that is shown in Figure 54, which is defined in the C language.

It contains a one-byte character (OneByteCharacter), a four-byte integer

(FullWordInteger), another one-byte character (AnotherCharacter) and finally a

two-byte integer (HalfWordInteger).

Although only eight bytes of storage have been defined, the structure actually

takes up 12 bytes. Three bytes are inserted after OneByteCharacter so

FullWordInteger starts on a fullword boundary and an additional byte is inserted

after AnotherCharacter, so HalfWordInteger starts on a halfword boundary.

Summary of data conversion for CICS intercommunication

functions

Data conversion is required when the code page that is used in a CICS transaction

is different from the code page that is used for the resource. The resource can be a

file or a temporary storage or transient data queue; or a program, a transaction, or

a terminal.

Data conversion has to be considered for:

v Function shipping, distributed program link, and asynchronous processing

v Transaction routing

v Distributed transaction processing

The data conversion requirements for the three intercommunication functions are

different. Also, these requests might appear as outbound or inbound to the

TXSeries for Multiplatforms region. That is, an application on a TXSeries for

Multiplatforms region might initiate a function-shipping request to a remote

system (an outbound request), or a remote system might initiate a

function-shipping request to a resource that is owned by the TXSeries for

Multiplatforms region (an inbound request). Key points are described in the

following sections:

Function shipping, distributed program link, and asynchronous processing

1. On the resource-owning system, define a data conversion template for

the resource as defined in “Standard data conversion for function

shipping, DPL and asynchronous processing” on page 159. Each

resource, such as a file or a temporary storage queue, must have a

template defined for it if its data is to be converted. These templates

indicate how each field in the resource is to be converted.

 struct

 {

 char OneByteCharacter;

 int FullWordInteger;

 char AnotherCharacter;

 short int HalfWordInteger;

 } ExampleRecord;

Figure 54. Example record structure

152 TXSeries for Multiplatforms: CICS Intercommunication Guide

2. Generate the conversion template by using cicscvt.

3. Place the template on the appropriate directory, for example:

varDir/cics_regions/region/database/FD/FILE.cnv

4. Set the TemplateDefined attribute in the resource definition entry for

the resource to yes. This attribute specifies that a template exists for the

resource. See the information about Schema File Definitions that is

given in the TXSeries for Multiplatforms Administration Reference for an

example description of the TemplateDefined attribute.

Transaction routing:

1. Set the RemoteCodePageTR attribute in the Communications

Definitions (CD) entry for the remote system to the code page that is to

be used to flow transaction routing data.

2. You can customize the transaction routing user exit, DFHTRUC. This

user exit converts the COMMAREA and the TCTUA that flow with the

transaction routing data. Refer to “Writing your own version of

DFHTRUC” on page 166 for further details.

Distributed transaction processing:

 v Because DTP programs use application specific data areas, CICS cannot

supply data conversion macros or user exits for DTP. The technique that

you use is determined by the design of your application.

A full description of the data conversion requirements for the three

intercommunication functions is given in:

 “Data conversion for function shipping, distributed program link and

asynchronous processing” on page 156

 “Data conversion for transaction routing” on page 164

 “Data conversion for distributed transaction processing (DTP)” on page 169

Code page support

Table 32 shows the different names for code pages on each of the operating

systems that TXSeries for Multiplatforms supports. So, for example, the code page

name for English (Latin-1) EBCDIC is IBM-037 on, Windows Systems, and Solaris,

and american_e on HP. You use these code page names when you are configuring

the transaction routing RemoteCodePageTR attribute in the Communications

Definitions (CD) entry. This task is discussed in “Data conversion for transaction

routing” on page 164.

You use the CICS Short Codes that are shown in the table when you are coding

DFHCNV macros for function shipping data conversion. See “Data conversion for

function shipping, distributed program link and asynchronous processing” on page

156 and “Standard data conversion for function shipping, DPL and asynchronous

processing” on page 159 for further information. The short code is the same, no

matter which type of CICS region you are using.

A CICS region displays its local code page and the corresponding short code in

one of the messages that are written to the console.nnnnnn file during region

start-up.

 Table 32. CICS Shortcodes and code pages that TXSeries for Multiplatforms supports

CICS short code

name

AIX and Windows

code page

HP–UX code page

name

Solaris code page

name

Description

37 IBM-037 american-e IBM-037 IBMLatin-1 EBCDIC

Chapter 7. Data conversion 153

Table 32. CICS Shortcodes and code pages that TXSeries for Multiplatforms supports (continued)

8859-1 ISO8859-1 iso8859_1 8859 Latin-1 ASCII (ISO)

819 ISO8859-1 iso8859_1 8859 Latin-1 ASCII

(IBM/ISO)

850 IBM-850 roman8 IBM-850 Latin-1 ASCII

437 IBM-437 iso8859_1 IBM-437 Latin-1 (PC) ASCII

930 IBM-930 cp930 IBM-930 Japanese EBCDIC

931 IBM-931 japanese_e IBM-931 Japanese EBCDIC

939 IBM-939 cp939 IBM-939 Japanese EBCDIC

932 IBM-932 sjis ja_JP.pck Japanese ASCII

EUCJP IBM-eucJP eucJP eucJP Japanese ASCII (ISO)

942 IBM-942 IBM-942 IBM-942 Japanese ASCII

EUCKR IBM-eucKR eucKR eucKR Korean ASCII (ISO)

934 IBM-934 IMB-934 IBM-934 Korean ASCII

944 IBM-944 IBM-944 IBM-944 Korean ASCII

949 IBM-949 korean15 IBM-949 Korean ASCII

933 IBM-933 korean_e IBM-933 Korean EBCDIC

EUCTW IBM-eucTW IBM-eucTW eucTW Traditional Chinese

938 IBM-938 IBM-938 IBM-938 Traditional Chinese

ASCII

948 IBM-948 IBM-948 IBM-948 Traditional Chinese

ASCII

937 IBM-937 chinese-t_e IBM-937 Traditional Chinese

EBCDIC

BIG5 Zh_TW.big5 big5 zh_TW.BIG5 Traditional Chinese

BIG5

946 IBM-946 IBM-946 IBM-946 Simplified Chinese

ASCII

1381 IBM-1381 hp15CN IBM-1381 Simplified Chinese

ASCII

935 IBM-935 chinese-s_e IBM-935 Simplified Chinese

EBCDIC

EUCN IBM-eucCN chinese-s_e eucCN Simplified Chinese

ASCII (ISO)

GB18030 GB18030 gb18030 GB18030 Simplified Chinese

GB18030

864 IBM-864 arabic8 IBM-864 Arabic ASCII

8859-6 ISO8859-6 iso8859_6 ISO8859-6 Arabic ASCII (ISO)

1089 ISO8859-6 iso8859_6 ISO8859-6 Arabic ASCII

(IBM/ISO)

420 IBM-420 arabic_e IBM-420 Arabic EBCDIC

855 IBM-855 IBM-855 IBM-855 Cyrillic ASCII

866 IBM-866 IBM-866 IBM-866 Cyrillic ASCII

8859-5 ISO8859-5 iso8859_5 ISO8859-5 Cyrillic ASCII (ISO)

154 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 32. CICS Shortcodes and code pages that TXSeries for Multiplatforms supports (continued)

915 ISO8859-5 iso8859_5 ISO8859-5 Cyrillic ASCII

(IBM/ISO)

1025 IBM-1025 IBM-1025 IBM-1025 Multilingual Cyrillic

EBCDIC

869 IBM-869 greek8 IBM-869 Greek ASCII

8859-7 ISO8859-7 iso8859_7 ISO8859-7 Greek ASCII (ISO)

813 ISO8859-7 iso8859_7 ISO8859-7 Greek ASCII

(IBM/ISO)

875 IBM-875 greek_e IBM-875 Greek EBCDIC

856 IBM-856 hebrew8 IBM-856 Hebrew ASCII

8859-8 ISO8859-8 iso8859_8 ISO8859-8 Hebrew ASCII (ISO)

916 ISO8859-8 iso8859_8 ISO8859-8 Hebrew ASCII

(IBM/ISO)

424 IBM-424 hebrew_e IBM-424 Hebrew EBCDIC

273 IBM-273 german_e IBM-273 Austria, Germany

EBCDIC

277 IBM-277 danish_e IBM-277 Denmark, Norway

EBCDIC

278 IBM-278 finnish_e IBM-278 Finland, Sweden

EBCDIC

280 IBM-280 italian_e IBM-280 Italy EBCDIC

284 IBM-284 spanish_e IBM-284 Spain, Latin Am.(Sp)

EBCDIC

285 IBM-285 english_e IBM-285 UK EBCDIC

297 IBM-297 french_e IBM-297 France EBCDIC

500 IBM-500 IBM-500 IBM-500 International latin-1

EBCDIC

871 IBM-871 icelandic_e IBM-871 Iceland EBCDIC

852 IBM-852 IBM-852 IBM-852 Latin-2 ASCII

8859-2 ISO8859-2 iso8859_2 ISO8859-2 Latin-2 ASCII (ISO)

912 ISO8859-2 iso8859_2 ISO8859-2 Latin-2 ASCII

(IBM/ISO)

870 IBM-870 IBM-870 IBM-870 Latin-2 EBCDIC

857 IBM-857 turkish8 IBM-857 Turkey ASCII

8859-9 ISO8859-9 iso8859_9 ISO8859-9 Turkey ASCII (ISO)

920 ISO8859-9 iso8859_9 ISO8859-9 Turkey ASCII

(IBM/ISO)

1026 IBM-1026 turkish_e IBM-1026 Turkey EBCDIC

UTF-8 UTF-8 (only) UTF-8 UTF-8 Unicode file code set

UCS-2 UCS-2 (only) UCS-2 UCS-2 Unicode processing

code set

Chapter 7. Data conversion 155

Data conversion for function shipping, distributed program link and

asynchronous processing

The following sections describe the factors that you must considered before you

configure data conversion for function shipping:

v “Introduction to data conversion” on page 147

This introduces the subject of data conversion.

v “Which system does the conversion”

This explains which of the interconnected systems is responsible for the data

conversion.

v “How code page information is exchanged” on page 157

This explains how the systems exchange information on the code pages that they

are using.

v “When TXSeries for Multiplatforms does not convert the data” on page 157

This explains how data conversion is configured when the TXSeries for

Multiplatforms region is not the one that is responsible for the data conversion.

v “Standard data conversion for function shipping, DPL and asynchronous

processing” on page 159

This explains how data conversion is configured when the standard

CICS-supplied data conversion programs can be used.

v “Non-standard data conversion (DFHUCNV) for function shipping, DPL and

asynchronous processing” on page 160

This explains how data conversion is configured when the standard

CICS-supplied data conversion programs cannot be used, and a user exit has to

be created.

Which system does the conversion

Function shipping distributed program link and asynchronous processing involves

two categories of data that might need data conversion:

v The name of the CICS resource

v The application data

CICS resource names must always flow across the link in EBCDIC. The system that

is not normally using EBCDIC is responsible for the translation, but this translation

is an internal CICS function and does not require user setup.

The application data is converted on the system that owns the resource (described

in “Standard data conversion for function shipping, DPL and asynchronous

processing” on page 159). Figure 55 on page 157 shows this.

156 TXSeries for Multiplatforms: CICS Intercommunication Guide

In Figure 55, REGIONC owns FILE A. FILE A is encoded with code page IBM-850

(ASCII). A transaction on REGIONA requests that FILE A be updated and the data

is sent encoded with code page IBM-850. Because the transaction data is encoded

in the same code page as is the resource, a conversion of the application data is not

required. However, because CICS resource names are always flowed across the

connection in EBCDIC (IBM-037), a conversion is required at both ends of the

connection.

REGIONB is an EBCDIC system. The transaction data is sent in EBCDIC and

converted on REGIONC before FILE A is updated. The resource name is also

converted on REGIONC. But, because REGIONB is an EBCDIC system, the

resource name is not converted before it is sent across the connection.

How code page information is exchanged

When a request is received from another TXSeries for Multiplatforms region, a

shortcode is included in the flow that identifies the code page that the transaction is

using.

If the transaction on the sending system is using a code page that is not specified

in the table, a null value is flowed. Also, non-TXSeries for Multiplatforms regions

do not flow code page information. In either case, the default code page that is

specified in the conversion template is used. If a shortcode is received that is not in

the table, CICS uses the shortcode as the code page.

When TXSeries for Multiplatforms does not convert the data

If your region does not need to convert application data, you do not need to set it

up for data conversion. Although you might not be concerned with data

conversion on a non-TXSeries for Multiplatforms region, you might need an

understanding of what the differences are. Table 33 on page 158 highlights those

differences, and lists the other intercommunication manuals that describe data

conversion of the other platform.

Figure 55. Data conversion for function shipping

Chapter 7. Data conversion 157

Table 33. Comparison of data conversion with other CICS systems

Data conversion

on:

Differs from data conversion on

TXSeries for Multiplatforms in

the following ways:

Refer to these books:

IBM

mainframe-based

CICS

1. Does not send or use code

page or byte ordering

information flowed over the

network. See note for

exceptions.

2. CICS does the conversion.

Operating system facilities,

such as iconv in TXSeries for

Multiplatforms, are not used.

CICS Family: API Structure.

CICS OS/2 Does not send or use code page or

byte ordering information flowed

over the network.

CICS for OS/2 Intercommunication

Guide

CICS/400 Does not send or use code page or

byte ordering information flowed

over the network.

Communicating from CICS/400

Note: APAR PN75374 provides code page support for CICS Transaction Server for

z/OS 3.3. CICS systems with this APAR recognize code page information in

the PIP data on function-shipping flows. For CICS/VSE 2.2 refer to APAR

PN75374, and for CICS/MVS 2.1.2 refer to PN61020.

Avoiding data conversion

It is usually assumed that conversion is always required between systems that use

different encoding; for example, between EBCDIC and ASCII processors. However,

if requests for a particular resource are always in the same code page, you can

store that resource on your system in that code page, therefore avoiding the need

to convert.Figure 56 shows this.

In this example, the only systems that need access to FILE B on REGIONC are

EBCDIC systems that are using IBM-037. Because of this, FILE B can be encoded in

IBM-037 on REGIONC, although REGIONC is an ASCII processor, and data

conversion is avoided.

REGIONX (EBCDIC system)

Request
update
FILE B
REGIONC

Convert resource
name to EBCDIC.
Send data as is;
IBM-037 (EBCDIC).

REGIONY (EBCDIC system)

Request
update
FILE B
REGIONC

Convert resource
name to EBCDIC.
Send data as is;
IBM-037 (EBCDIC).

REGIONC (ASCII system)

Convert resource name
to ASCII.
Conversion of character
data is not required.

update

FILE B
(IBM-037)

data

Convert resource name
to ASCII.
Conversion of character
data is not required.

update

Figure 56. Avoiding data conversion

158 TXSeries for Multiplatforms: CICS Intercommunication Guide

Standard data conversion for function shipping, DPL and

asynchronous processing

This section describes standard data conversion in which the CICS-supplied data

conversion can be used. “Non-standard data conversion (DFHUCNV) for function

shipping, DPL and asynchronous processing” on page 160 describes the

non-standard conditions in which the CICS-supplied data conversion cannot be

used and user exits must be used.

When a request to access a resource is function shipped, the resource definition for

that resource is examined. If TemplateDefined=yes, CICS looks for a conversion

template that is defined for the resource to determine whether conversion is

required and how conversion is to occur.

Each resource that requires conversion must have a conversion template defined

for it. These conversion templates specify:

v The code page that is used to encode the resource character data when it is

stored on the resource owning system

v The default code page that is to be assumed for the incoming request if the

incoming request does not state how the data is encoded

v Field lengths

v What parts of the field contain character data, binary data, MBCS (graphic), or

packed decimal data

Conversion templates are user-defined. To define a conversion template:

1. You code a macro source conversion table, using the DFHCNV macros, to specify

how you want the resources converted. One macro source conversion table can

contain specifications for several resources. (See Appendix A, “DFHCNV - The

data conversion macros,” on page 321.)

2. You process your macro source conversion table, using a CICS-supplied

command, cicscvt, to create the conversion templates. One conversion template

is built for each resource. (See “Using cicscvt to build the conversion

templates.”)

Note: DFHCNV macros are generally portable between CICS systems. Some minor

changes might be required. See “When TXSeries for Multiplatforms does not

convert the data” on page 157 for information about the differences between

CICS systems.

Using cicscvt to build the conversion templates

The cicscvt program is a standalone utility that converts a macro source conversion

table to individual compiled conversion templates for each resource that is defined

in the table. To produce the conversion templates, enter:

cicscvt fileName

where fileName is the name of the coded DFHCNV conversion table.

cicscvt names the conversion templates based on the resource type and resource

name that are specified with the DFHCNV macro. The source macro format uses

abbreviations for the resource classes. Those abbreviations are shown in Table 34

on page 160:

Chapter 7. Data conversion 159

Table 34. Resource class abbreviations and resource types

RTYPE resource_class

FC

TD

TS

IC

PC

File Definitions (FD)

Transient Data Definitions (TDD)

Temporary Storage Definitions (TSD)

Transaction Definitions (TD)

Program Definitions (PD)

The output of cicscvt is:

resource_name.resource_type.cnv

For example, cicscvt produces a file named “ABCD.TSD.cnv” when the following

is coded:

 DFHCNV TYPE=ENTRY,RTYPE=TS,RNAME=ABCD

To use this conversion template, you need to install it as either:

\var\cics_regions\regionName\database\TSD\ABCD.cnv

/var/cics_regions/regionName/database/TSD/ABCD.cnv

Notice that the file needed to be renamed to “ABCD.cnv”.

Updating a conversion template in the runtime environment: If you want to

update a conversion template in the runtime environment you should:

1. Install the conversion template in the appropriate directory.

2. Delete the resource and reinstall it.

This forces CICS to reload the conversion template the next time that the resource

is accessed.

For TS Queues, you should also execute an EXEC CICS DELETEQ TS of the queue,

before carrying out the above procedure.

Non-standard data conversion (DFHUCNV) for function

shipping, DPL and asynchronous processing

“Standard data conversion for function shipping, DPL and asynchronous

processing” on page 159 describes how the CICS-supplied data conversion

program uses the conversion templates to perform standard data conversions.

When a field requires nonstandard conversion, you can specify, at the resource

level, that a user exit is to be used (USREXIT=YES in the TYPE=ENTRY macro).

For example, a user exit can be used for data conversion when:

v You need to convert uppercase EBCDIC to lowercase ASCII

v The conversion logic is dependent on the data itself

v You have some fields that require standard conversion, and some that require

nonstandard conversion

v You want to provide your own complete conversion mechanism from with

DFHUCNV

A default function-shipping user conversion program, DFHUCNV, is supplied for

nonstandard conversions. This program is provided to showe how to interface

with CICS to perform nonstandard data conversions when function shipping. In its

unmodified form, it converts all uppercase characters to lowercase if the user

conversion type is a particular hexadecimal value.

160 TXSeries for Multiplatforms: CICS Intercommunication Guide

You can implement DFHUCNV in its unmodified form, or you can add

user-dependent processing to meet your particular requirements. However, before

you change the default user-conversion program, try it first; if you do decide to

change the functions of DFHUCNV, take a copy of the program source so that you

have a backup in case you encounter problems and need to revert to the original

version.

You can write the program in C or COBOL, and you can use EXEC CICS

commands.

You must define the program in the Program Definitions (PD) entry DFHUCNV.

Performance and data conversion

CICS could call the user-conversion program every time a function shipping

request is processed. Therefore, the performance of the user program is critical to

the performance of the function-shipping mirror transaction.

When the user-conversion program has returned, CICS performs standard

conversions. CICS examines the conversion template to obtain the first SELECT

item in the linked list. If the user data matches the comparison data in the SELECT

item, CICS traverses the FIELD linked list, and converts the data as described by

the FIELD entry. CICS repeats this process until all matching user data is

converted.

Performance might be degraded if your conversion templates are poorly organized,

and result in extended searches for matching fields. You should ensure that the

most frequently matched fields are defined early in the conversion template,

therefore shortening the search times.

Coding a nonstandard data conversion program: CICS uses the COMMAREA to

pass a parameter list to the user-replaceable conversion program that is providing

access to the data conversion table and the data that is to be converted. All

pointers point to an area in the COMMAREA.

The following lists and describes the parameters. The names shown are those that

are used in the CICS-supplied sample header. A C language header file for these

parameters is in:

prodDir/include/cics_fscv.h

The C language source for the supplied version of DFHUCNV is in:

prodDir/src/samples/ucnv/cics_fscv.ccs

Signature

This is the eight-character signature (ERZ27CVU) for the parameters that

CICS passes to the user-conversion program.

ConvDir

CICS passes this 32-bit parameter to the user conversion program. The

parameter indicates in which direction conversion should be performed,

and has one of these two values:

 0 = Conversion from local to remote

 1 = Conversion from remote to local

ResourceName

This is the name of the resource, and is NULL if CICS has not initialized

the conversion template.

Chapter 7. Data conversion 161

ResourceNameLength

This is an unsigned 16-bit integer that specifies the length of the resource

named. The length is zero if CICS does not initialize the conversion

template.

ResourceT

This 32-bit parameter defines the type of resource that the user data

conversion function can use as a key for obtaining a conversion template.

It has one of these values:

 0 = file control

 1 = transient data

 2 = temporary storage

 3 = interval control

 4 = NOCHECK interval control

 5 = distributed program link (DPL)

UserData

This 32-bit parameter points to the user data for conversion. It might be

NULL if no data exists for conversion.

UserDataLength

This is an unsigned 16-bit integer that specifies the length of the user data.

The length is zero if no user data exists.

KeyData

This 32-bit parameter points to file control key data for conversion. It

might be NULL if no key data exists for conversion.

KeyDataLength

This is an unsigned 16-bit integer that specifies the length of key data. The

length is zero if no key data exists.

LocalToRemote

This is a code page descriptor for conversion from the local code page to

the remote code page.

RemoteToLocal

This is a code page descriptor for conversion from the remote code page to

the local code page.

ByteOrder

The byte ordering of the remote system. (See “Numeric data conversion

considerations” on page 149 for further details about byte ordering.)

 0 = Byte order for IBM mainframes, , HP-UX, and Solaris

(Called Network order, or Big Endian order

 1 = Byte order for OS/2 and Windows Systems

(Called Little Endian)

ConvTable

This is a pointer to the root of a linked list that details selected data from

the conversion template for the resource. Each element in the list contains

the root of a linked list of field data for the conversion template. All

elements in the linked lists are for input only and should not be modified.

The linked list of data for a conversion template consists of:

Signature

This is the eight-character signature (“ERZ27CVS”) for the

structure.

162 TXSeries for Multiplatforms: CICS Intercommunication Guide

Next This is a pointer to the next select element in the linked list. It is

set to NULL if it is at the end of the list.

SelectType

This 32-bit parameter specifies the type of select. Refer to the

following values:

 0 = Default. OPTION=DEFAULT has been specified.

 1 = Data. Indicates that the data to compare is in character

format.

 2 = Hex Data. Indicates that the data is to be compared without

conversion.

 3 = Key. Indicates the start of conversions that are to be applied

to file control keys.

CompareOffset

This is an unsigned 16-bit integer that specifies the offset, from the

start of the data area, at which the comparison is to begin.

CompareLength

This is an unsigned 16-bit integer that specifies the length of the

comparison data.

CompareData

This is a pointer to the data that is to be compared against.

FieldRoot

This is a pointer to the root of a linked list of field data for a

conversion template. It describes what to convert if a match was

found and is part of a linked list such that several conversions can

be made. This field data consists of:

Signature

This is the eight-character signature (“ERZ27CVF”) for the

structure.

Next This is a pointer to the next conversion template element.

It contains NULL if it is at the end of the list.

ConversionOffset

This is an unsigned 16-bit integer that specifies the offset,

from the start of the data, at which the conversion is to

begin.

ConvertType

This 32-bit parameter specifies the type of data to convert,

and has one of these seven values:

 0 = Data is character. Convert as a character, using the

iconv library.

 1 = Data is graphic (DBCS string without SOSI

characters).

 2 = No conversion required.

 3 = User data.

 4 = Data is 16-bit numeric.

 5 = Data is 32-bit numeric.

ConvertLength

This is an unsigned 16-bit integer that specifies the length

of the conversion data.

Chapter 7. Data conversion 163

UserEscapeType

This is the user escape type unsigned 16-bit integer that is

passed to DFHUCNV.

Data conversion for transaction routing

The data that flows between two CICS systems when a CICS transaction is using a

remote terminal consists of:

v The data that is displayed on the screen. This is sent as 3270 data streams.

v Any COMMAREA and TCTUA that is saved by a pseudo-conversational

transaction when it returns.

Data conversion for transaction routing is required when the terminal-owning

region (TOR) and application-owning region (AOR) use a different code page or

byte ordering.

CICS on Open Systems and CICS on Windows Systems can be configured to

convert automatically the screen data (3270 data streams) that is sent to, and

received from, a remote CICS system. Data conversion is triggered by the

RemoteCodePageTR attribute of the Communications Definition (CD) entry for a

connection. If this attribute is set to a code page that is different from the local

code page, TXSeries for Multiplatforms ensures that the screen data that is sent to

the remote system is converted to the code page that is specified in

RemoteCodePageTR. TXSeries for Multiplatforms also assumes that screen data

that is received from the remote system is in the code page that is specified in

RemoteCodePageTR and will convert it to the local code page. So the code page

that is specified in RemoteCodePageTR can be viewed as the code page of all

transaction-routed screen data that is flowing between the two CICS systems.

Choosing an appropriate value for RemoteCodePageTR depends upon the

particular remote CICS system.

v IBM mainframe-based CICS does not perform any data conversion for

transaction routing. Therefore, if your TXSeries for Multiplatforms region is

communicating with an IBM mainframe-based CICS system, set

RemoteCodePageTR to the EBCDIC code page that is used in the IBM

mainframe-based CICS system. Your TXSeries for Multiplatforms region does all

the data conversion and the screen data flows in the code page of the IBM

mainframe-based CICS system.

v CICS OS/2 can perform data conversion for transaction routing. However, it

assumes that all screen data is flowed in EBCDIC. If your TXSeries for

Multiplatforms region is communicating with a CICS OS/2 region, set

RemoteCodePageTR to the same EBCDIC code page as that which is specified

in the CICS OS/2 Partner Code Page attribute of the Connection and Session

Table (TCS) entry for the connection.

v TXSeries for Multiplatforms can receive screen data in both ASCII and EBCDIC.

If your TXSeries for Multiplatforms region is communicating with another

TXSeries for Multiplatforms region, set the RemoteCodePageTR to the same

value in both regions. For performance reasons it is sensible to make the code

page that is specified in RemoteCodePageTR the same as at least one of the

region’s local code pages, to reduce the amount of data conversion. This is not

essential, however, and you can choose to use a code page between which both

regions can convert.

RemoteCodePageTR is expressed by use of the code page names that are defined

in your local machine. Table 32 on page 153 shows the code page names for your

164 TXSeries for Multiplatforms: CICS Intercommunication Guide

operating system. In addition, ensure that an iconv data conversion table that can

convert both ways between the code page that is specified in RemoteCodePageTR

and the local code page, is installed on your machine. The default local code page

for the region is displayed in one of the messages that is output in the

console.nnnnnn file during region startup.

TXSeries for Multiplatforms can convert transaction routing screen data

automatically because the structure of the 3270 data streams is well understood.

TXSeries for Multiplatforms cannot automatically convert the data in a TCTUA or

a COMMAREA that is flowed during transaction routing because its contents are

application defined. It might contain a mixture of character and binary data that

must be converted by different techniques. TXSeries for Multiplatforms therefore

provides a user exit called DFHTRUC, which can be customized to your region’s

applications. The default version of DFHTRUC that is supplied with your TXSeries

for Multiplatforms region does nothing. You might have to change it if:

v Transaction routing is being used between your region and a remote CICS

system that uses a different code page and

v Pseudo-conversational transactions are being routed that save a TCTUA or

COMMAREA when they return and

v Some of the transactions that are accessing this TCTUA and/or COMMAREA

run on one system, while others run on the other

The information that follows discusses how to write your own version of

DFHTRUC.

When is DFHTRUC called

DFHTRUC is called under the following conditions:

v The code page that is in RemoteCodePageTR is different from the local code

page and

v a TCTUA and/or COMMAREA is included in the transaction routing data

It can be called in the following places:

v When you region is the terminal-owning region (TOR) and a TCTUA and/or

COMMAREA is being sent to the application-owning region at the beginning of

a routed transaction

v When your region is the application-owning region (AOR) and a TCTUA and/or

COMMAREA has been received with a routed transaction request

v When your region is the application-owning region (AOR) and a TCTUA and/or

COMMAREA is to be sent with the last data for the routed transaction

v When you region is the terminal-owning region (TOR) and a TCTUA and/or

COMMAREA has been received with the last data for the routed transaction

Only one DFHTRUC is in your region. It must therefore be coded to handle all

transactions that require conversion of the TCTUA or COMMAREA. “Parameters

passed to DFHTRUC” describes the information that is passed to DFHTRUC and

that allows it to determine the conversion required.

Parameters passed to DFHTRUC

DFHTRUC is passed a COMMAREA that contains the following information:

SysIdLength

This is an unsigned 16-bit integer that defines the length of the SYSID that

is stored in the SysId field below. The value must be 1 through 4.

Chapter 7. Data conversion 165

SysId This is a five-character field that contains the SYSID of the remote system,

padded on the right will NULLs (0x00). The SYSID is the name of the

Communications Definition (CD) entry for the remote system.

COMMAREA

This is a pointer to the routed transaction’s COMMAREA. If the routed

transaction did not have a COMMAREA, this field is NULLs (0x00).

COMMAREALength

This is an unsigned 16-bit integer that defines the length of the

COMMAREA.

TCTUA

This is a pointer to the routed transaction’s TCTUA. If the routed

transaction did not have a TCTUA, this field is NULLs (0x00).

TCTUALength

This is an unsigned 16-bit integer that defines the length of the TCTUA.

Direction

This parameter indicates whether the data is being sent to (outbound), or

received from (inbound), the remote system. It has the following values:

0 Outbound

1 Inbound

If the data is outbound, DFHTRUC needs to convert from the local code

page to the remote code page. If the data is inbound, DFHTRUC needs to

convert from the remote code page to the local code page.

LocalCodePageLength

This unsigned 16-bit integer contains the length of the local code page that

is stored in the LocalCodePage parameter.

LocalCodePage

This is a 255-byte character array that contains the local code page that is

extracted from the operating system.

RemoteCodePageLength

This unsigned 16-bit integer contains the length of the remote code page

that is stored in the RemoteCodePage parameter.

RemoteCodePage

This is a 255-byte character array that contains the code page from the

RemoteCodePageTR attribute of the connection’s CD entry.

A C language definition of these parameters is in file prodDir/include/cics_truc.h.

DFHTRUC can look at the EXEC Interface Block (EIB) to determine the transaction

that DFHTRUC is converting for (EIBTRNID). Finally, DFHTRUC can use EXEC

CICS commands such as ASSIGN to determine additional information about the

transaction.

Writing your own version of DFHTRUC

The source for the supplied version of DFHTRUC (cics_truc.ccs) along with a

Makefile to build it are in directory:

 prodDir/samples/truc

In addition, it uses the header file called prodDir/include/cics_truc.h, which

defines the parameters that are passed to DFHTRUC. cics_truc.ccs is written in the

C programming language and includes not only the supplied version of

166 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHTRUC (see the function called main), but also two example functions that

might help you write your own DFHTRUC. The function called Convert uses the

iconv utility to convert a buffer of character data from one code page to another.

The function called SampleDFHTRUC is a sample version of DFHTRUC that converts

the COMMAREA and TCTUA for all transactions that do not begin with ‘c’ (or

‘C’). The conversion logic assumes that the COMMAREA and TCTUA contain only

character data, and that the process of conversion does not change the number of

bytes in the COMMAREA/TCTUA.

Although SampleDFHTRUC is a simple version of DFHTRUC, it does show several

important features of a DFHTRUC program. These are described below.

The first part of a DFHTRUC program should determine whether it understands

the format of the COMMAREA or TCTUA. It can do this by looking at EIBTRNID to

determine whether the transaction is one for which DFHTRUC has been coded to

convert. If it is no, DFHTRUC should return immediately. DFHTRUC must never

convert the COMMAREA/TCTUA of a CICS-supplied transaction because the

format of these data areas is not published. So SampleDFHTRUC looks for a ‘C’ at the

beginning of EIBTRNID and returns if it occurs:

A safer test would be to test explicitly for the transactions for which DFHTRUC is

coded to convert. The code fragment below returns if EIBTRNID is not PT01, PT02 or

PT05.

It can also be useful to test EIBTRMID becauses the terminal name might, for

example, identify the type of TCTUA that the application uses.

When DFHTRUC has identified the type of COMMAREA/TCTUA that it is

converting, it should examine the Direction parameter that is passed to it. This

indicates whether data is being sent to, or received from, the remote system. Its

significance is primarily to determine whether the data conversion is from the local

code page to the remote code page, or from the remote code page to the local code

page. In the code fragment below, the Direction parameter is used to set two local

variables, FromCodePage and ToCodePage that are used later in DFHTRUC when

calling iconv.

 EXEC CICS ADDRESS EIB(EIB);

 if (((EIB->eibtrnid)[0] == ‘C’) || ((EIB->eibtrnid)[0] == ’c’))

 {

 EXEC CICS RETURN;

 }

 EXEC CICS ADDRESS EIB(EIB);

 if ((memcmp(EIB->eibtrnid, "PT01", 4) != 0) &&;amp;

 (memcmp(EIB->eibtrnid, "PT02", 4) != 0) &&;amp;

 (memcmp(EIB->eibtrnid, "PT05", 4) != 0))

 {

 EXEC CICS RETURN;

 }

Chapter 7. Data conversion 167

The final stage of DFHTRUC is to do the conversion. Before you attempt to

convert either the TCTUA or the COMMAREA, check whether one exists. (For

example, an application might be using a TCTUA and not a COMMAREA.

DFHTRUC will be called to convert the TCTUA only.) The code fragment below

tests that the transaction had a COMMAREA before calling the conversion routine.

Character data can be converted by use of iconv. Converting binary data

(numbers) depends on the machine architecture of both the local and the remote

system. No conversion might be necessary. However, some machine architectures

use a different byte ordering for storing numbers and DFHTRUC might need to

swap the bytes around. Use the SysId parameter to identify the remote system and

convert according to the remote system type.

When the conversion is finished, DFHTRUC should return to CICS by using EXEC

CICS RETURN;.

Note: If you want to use the functions in the supplied cics_truc.ccs file, copy

cics_truc.ccs to your own directory before modifying it so that you can refer

to the original version if necessary. If you want to use the sample Makefile,

copy that to you own directory also, and modify the PROGRAM variable to the

path name to which your complied DFHTRUC should be written. The value

of PROGRAM in the supplied Makefile overwritesthe supplied DFHTRUC in

prodDir/bin.

Installing your version of DFHTRUC into the region

The location of DFHTRUC is specified in the DFHTRUC Program Definition (PD)

entry. The PathName attribute of this entry is set to DFHTRUC,which means CICS

usesthe first version of the file DFHTRUC that it finds in the directories that are

specified in the region’s PATH. To install your own version of DFHTRUC either:

v Copy your version as DFHTRUC to a directory that is specified before

prodDir/bin in your region’s PATH. For example,

/var/cics_regions/regionname/bin. This means that CICS will find your version

of DFHTRUC before the supplied version in prodDir/bin.

Alternatively, change the PD entry for DFHTRUC so that it specifies the location

of your version of DFHTRUC in the PathName attribute. This PD entry is

protected (Permanent=yes) so you will have to switch it to unprotected

(Permanent=no) while you update it. The example below shows the PD entry for

 EXEC CICS ADDRESS COMMAREA((cics_char_t **)&Param);

 if (Param->Direction == CICS_DFHTRUC_DIR_OUTBOUND)

 {

 FromCodePage = Param->LocalCodePage;

 ToCodePage = Param->RemoteCodePage

 }

 else

 {

 FromCodePage = Param->RemoteCodePage;

 ToCodePage = Param->LocalCodePage;

 }

 EXEC CICS ADDRESS COMMAREA((cics_char_t **)&Param);

 if (Param->COMMAREALength != 0)

 {

 RetCode = ConvertPT01CommArea(Param->COMMAREA,

 FromCodePage,

 ToCodePage);

 }

168 TXSeries for Multiplatforms: CICS Intercommunication Guide

DFHTRUC being updated in both the permanent and running database of CICS

region cicsopen. The existing version is deleted from the running region. Then,

the new value of PathName is set along with Permanent=no. Finally the process

is repeated to switch the PD entry back to Permanent=yes.

cicsdelete -c pd -r cicsopen -R DFHTRUC

cicsupdate -c pd -r cicsopen -B DFHTRUC PathName=/cicsbin/DFHTRUC \

Permanent=no

cicsdelete -c pd -r cicsopen -R DFHTRUC

cicsupdate -c pd -r cicsopen -B DFHTRUC Permanent=yes

When the PD entry points to the location of your version of DFHTRUC, either:

v Restart your region or

v Use CEMT SET PROGRAM(DFHTRUC) NEW

to bring the new DFHTRUC into use.

Data conversion for distributed transaction processing (DTP)

DTP programs use application-specific data areas and conversion flows. Because of

this, CICS cannot provide a general procedure for data conversion for DTP. It is,

therefore, the application’s responsibility to perform data conversion.

Data conversion for DTP programs can be coded in several ways. Each has its

advantages and disadvantages, so your choice of technique is determined by the

design of your particular DTP program. Your goal should be to minimize data

conversion and, where it must occur, arrange for it to be done by the system that

has the most spare capacity.

If a DTP program will be communicating with partner programs that are, for

example, sometimes on an ASCII system and sometimes on an EBCDIC system,

you could code your DTP programs to flow data always in a common code page,

such as an EBCDIC code page. Then, each program will always know the code

page of the data that it is receiving.

Another strategy is for each program to send details of its code page in the first

flow of data, or use PIP data. The partner can convert, to the correct code page, the

data that it is sending.

Finally, it might be possible for all the DTP programs to work in one code page,

therefore eliminating data conversion completely.

Summary of data conversion

The systems to which your TXSeries for Multiplatforms region can connect can

store data in different character encodings. For example, TXSeries for

Multiplatforms uses ASCII, and CICS Transaction Server for z/OS uses EBCDIC.

You therefore need to use data conversion for integer and text when using function

shipping, transaction routing and distributed transaction processing.

Data conversion for function shipping

The CICS products define that conversion always takes place in the

resource-owning system. That is, in the system that owns the file, queue, program

or transaction that is being accessed by function shipping.

To perform data conversion for function shipping in TXSeries for Multiplatforms:

Chapter 7. Data conversion 169

1. Define a conversion template in the form of a file that contains DFHCNV

macros, and process the conversion template source file by using the TXSeries

for Multiplatforms cicscvt program. (“Standard data conversion for function

shipping, DPL and asynchronous processing” on page 159 describes how the

conversion template source files are coded and converted.)

2. Install the processed files into the appropriate TXSeries for Multiplatforms class

subdirectory for your region.

3. Set the TemplateDefined attribute to yes in the definition for the resource that

is being converted. This tells TXSeries for Multiplatforms that conversion of the

data is required, and that a conversion template should be loaded.

The conversion templates describe the format of the data that is to be converted,

and the code page and byte order between which the data is to be converted.

Because only one conversion template can be defined per resource, all systems that

are accessing that resource must have the same conversion performed on it. That

is, if a TXSeries for Multiplatforms region owns a file named ACCOUNTS, and a

conversion template exists for it that defines that all data in the file is to be

converted from US ASCII to US EBCDIC, that conversion is performed regardless

of what system is accessing the file. This means that if both a TXSeries for

Multiplatforms region and a CICS Transaction Server for z/OS system function

ship a read of that file, they will both receive the data in US EBCDIC. This is fine

for the CICS Transaction Server for z/OS region, but the CICS on Open Systems or

CICS on Windows Systems region will not get the expected data.

To avoid this problem, some CICS products (including TXSeries for

Multiplatforms) flow their code page and byte order in addition to the normal

function shipping information. This allows the resource owning system to

determine in what environment the remote (requesting) system is executing, and to

override the code page and byte order that is specified in the conversion template.

This allows two or more disparate systems to access the same data, and get the

appropriate results. If the requesting system does not support this, the default

action is always to convert the data as it is defined by the conversion template.

Note: Binary queue names should not be used for remote queues, even when the

queues are using the same operating system as the local host. In addition,

IBM mainframe-based CICS does not permit the use of binary queue names.

Data conversion for transaction routing

Transaction routing from CICS Transaction Server for z/OS to TXSeries for

Multiplatforms presents similar problems to those of function shipping. That is, a

panel that is displayed by TXSeries for Multiplatforms on a terminal that is

attached to CICS Transaction Server for z/OS would not be usable, because

TXSeries for Multiplatforms would have flowed its data in ASCII, and the CICS

Transaction Server for z/OS terminal would try to display it in EBCDIC.

To perform data conversion for transaction routing, define, in the

RemoteCodePageTR attribute of the CD entry for the remote system, the code

page that you want the transaction data to use. This causes TXSeries for

Multiplatforms to convert terminal data into that code page.

In addition, a COMMAREA or TCTUA that flows when the transaction routed

transaction starts or finishes can be converted by the Transaction Routing User

Conversion Program (DFHTRUC). This is described in “Data conversion for

transaction routing” on page 164.

170 TXSeries for Multiplatforms: CICS Intercommunication Guide

Data conversion for distributed transaction processing

DTP programs use application-specific data areas and conversion flows. Because of

this, CICS cannot provide a general procedure for data conversion for DTP. It is,

therefore, the application’s responsibility to perform data conversion.

This is discussed in “Data conversion for distributed transaction processing (DTP)”

on page 169.

Chapter 7. Data conversion 171

172 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 3. Operating an SNA intercommunication environment

This part describes how to manage your CICS region, PPC Gateway server, and

SNA product, and reviews the problem determination procedures for these

products.

 Table 35. Road map

If you want to... Refer to...

Read about managing a PPC Gateway

server.

Chapter 8, “Creating and using a PPC

Gateway server in a CICS environment,” on

page 175

Read about the procedures that you should

follow when investigating CICS intersystem

communication problems

“Intersystem problem solving process” on

page 213

Read about PPC Gateway server problem

determination

“PPC Gateway server problem

determination” on page 228

© Copyright IBM Corp. 1999, 2005 173

174 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 8. Creating and using a PPC Gateway server in a

CICS environment

A TXSeries for Multiplatforms region can use a Peer-to-Peer Communications

(PPC) Gateway server to communicate with remote systems across a Systems

Network Architecture (SNA) network with synchronization level 2 (SL2) support.

(For descriptions of synchronization levels, see “Ensuring data integrity with

synchronization support” on page 16.) This chapter discusses the basics of creating

and using a PPC Gateway server with CICS. The following topics are covered:

v “Overview of the PPC Gateway server”

v “Choosing a management method” on page 181

v “Using the CICS control program (cicscp) configuration tool to manage a PPC

Gateway server” on page 182

v “Using CICS commands to manage a PPC Gateway server” on page 184

v “Using the IBM TXSeries Administration Tool to manage a PPC Gateway server”

on page 190

v “Using SMIT to manage a PPC Gateway server” on page 195

v “Using ppcadmin commands” on page 200

v “Changing CICS intercommunication definitions for use with a PPC Gateway

server” on page 210

Overview of the PPC Gateway server

A PPC Gateway server runs independently of a CICS region. A CICS region is

connected to the PPC Gateway server through TCP/IP. The PPC Gateway server

provides a link to the SNA network.

To use PPC Gateway server SNA support, you must install and configure an

appropriate SNA product on the same machine as is the PPC Gateway server. The

appropriate communications product depends upon the platform:

 Table 36. Communications products for various platforms

Platform Communications product

Windows IBM Communications Server or Microsoft SNA Server

AIX IBM Communications Server

Solaris SNAP-IX

HP-UX SNAplus2

To use CICS commands to create or change a PPC Gateway server, CICS must exist

on the same machine as does the server. To use CICS commands only to

communicate with a PPC Gateway server, CICS does not have to exist on the same

machine.

Note: CICS does not support the use of a PPC Gateway server on Solaris.

However, a CICS for Solaris region can use a PPC Gateway server that is

running on a non-Solaris platform.

© Copyright IBM Corp. 1999, 2005 175

A CICS region can use more than one PPC Gateway server. This type of

configuration provides the following performance benefits:

v If one PPC Gateway server fails, another is available as a backup.

v The processing load is spread across more than one PPC Gateway server and

across multiple SNA products.

A single PPC Gateway server can also be shared by more than one CICS region.

This can be an economical alternative if your CICS regions do not make many

SNA intercommunication requests. However, such a configuration can overload a

PPC Gateway server.

Each PPC Gateway server requires an operating system user ID and logical

volume, which you must create before creating the PPC Gateway server. The

logical volume stores the server’s log file, which contains its recoverable

information. As a result, the user ID for the PPC Gateway server must have read

and write permission to this logical volume.

CICS uses a Gateway Server Definitions (GSD) entry to specify the characteristics

that are required to start and stop the PPC Gateway server. This GSD entry is

created automatically when the PPC Gateway server is created, and deleted when

the server is destroyed.

The PPC Gateway server has a directory to store its working files, which is created

automatically when the PPC Gateway server is created. It is of the form:

/var/cics_servers/GSD/cics/ppc/gateway/server_name

on Open Systems and

C:\var\cics_servers\GSD\cics\ppc\gateway\server_name

on Windows systems.

In both cases, server_name is the one- to eight-character unique identifying name of

the particular PPC Gateway server.

 Within the directory cicsgwy are working files that the PPC Gateway server uses,

such as:

lock This file is used by the cicsppcgwylock command to indicate whether the

Figure 57. Directory structure of the PPC Gateway server (assumes an Open Systems

platform)

176 TXSeries for Multiplatforms: CICS Intercommunication Guide

PPC Gateway server is running. (The cicsppcgwylock command is used by

the cicsppcgwycreate, cicsppcgwy, cicsppcgwyshut, and

cicsppcgwydestroy commands, and is not required under normal

conditions.)

restart and restart.bak

These files tell the PPC Gateway server during an autostart where its

logical volume is and how it is formatted. They are created by the PPC

Gateway server and should be read and changed only by the PPC

Gateway server.

msg The PPC Gateway server writes its messages to this file. These messages

are described in “PPC Gateway server problem determination” on page

228.

Sharing server names between a CICS region and a PPC

Gateway server

A PPC Gateway server and a CICS region communicate by using a mixture of

Remote Procedure Calls (RPCs) and native TCP/IP. For a PPC Gateway server and

a CICS region to communicate, they must know one another’s server name.

Figure 58 shows how the server names are stored and passed between them.

 The server name of the PPC Gateway server is configured in the CICS region by

using a Gateway Definitions (GD) entry. (See “Configuring CICS for PPC Gateway

server SNA support” on page 89 for information about how to create a GD entry.)

The CICS region has a CICS-supplied private transaction called CGWY that passes

the server name of the CICS region (and other relevant information) to each of the

CICS region

CGWY transaction
Passes the name of the CICS region’s server
to every PPC Gateway server with a GD entry.

CICSIPC

PPC Gateway server

SNA communications product

SNA network

GD entry
Contains the PPC Gateway
server’s name.

PPC Gateway server log file
Stores the CICS region’s
server name supplied
by the CGWY transaction.

Figure 58. How server names are shared between a CICS region and a PPC Gateway server

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 177

PPC Gateway servers that are defined in the GD entries. This transaction is run

when the region starts up. You can also run the CGWY transaction while the CICS

region is running, by using an EXEC CICS START TRANSID(CGWY) command.

When the PPC Gateway server receives the information from the CGWY

transaction, it stores it in its log file. This information is unaffected by stopping

and restarting the PPC Gateway server.

As the CGWY transaction runs, it writes messages to the console log for the region.

Here are some example messages:

 If the CGWY transaction reports an error message, refer to the description of the

error message that is given in TXSeries for Multiplatforms Messages and Codes. Any

SNA communications that are using the PPC Gateway server that is specified in

the message can fail until the problem is solved.

Process for making an intersystem request from a CICS

region through a PPC Gateway server

A CICS transaction can communicate with a remote system that is connected

through a PPC Gateway server. Figure 59 on page 179 outlines the process that

occurs when such a request is made.

ERZ030060I/3101 time date region : PPC Gateway server configuration

 has started

ERZ030062I/3103 time date region : Configuring PPC Gateway server ’GWY’

 with details of the region

ERZ030063I/3104 time date region : Configuring PPC Gateway server ’GWY’

 with details of local transactions

ERZ030064I/3109 time date region : Configuring PPC Gateway server ’GWY’

 has ended

ERZ030061I/3102 time date region : PPC Gateway server configuration

 has ended

178 TXSeries for Multiplatforms: CICS Intercommunication Guide

When a CICS transaction issues an intersystem request to a remote system, it

specifies the name of the Communications Definitions (CD) entry that represents

that remote system. The CD entry points to the relevant GD entry, using the

GatewayName attribute. The GD entry contains the server name of the PPC

Gateway server, which enables the region to pass the intersystem request to the

PPC Gateway server. The PPC Gateway server then calls the SNA communications

product to contact the remote system. (For information about how to configure CD

and GD entries, refer to “Configuring CICS for PPC Gateway server SNA support”

on page 89.)

Process for making an intersystem request to a CICS region

through a PPC Gateway server

A remote system can request communications with the local CICS region. The

process that occurs in this condition is shown in Figure 60 on page 180.

CICS region

CD entry
The CD GatewayName
attribute points to the GD entry of
the PPC Gateway server used to
contact the remote system.

GD entry
Identifies the PPC Gateway
server’s name.

Intersystem request
Specifies the CD entry of the
remote system to which to
send the request.

CICSIPC

PPC Gateway server
Calls the SNA communications

product.

SNA communications product
Contacts the remote system through the

SNA network.

SNA network

Figure 59. Process for making an intersystem request from a CICS region through a PPC

Gateway server

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 179

When a PPC Gateway server receives an intersystem request for a CICS region

from a remote SNA system, it uses the CICS region’s server name. (The region’s

server name was passed to the PPC Gateway server previously by the CGWY

transaction, and is stored in the PPC Gateway server’s log file.) It can then pass the

intersystem request to the CICS region.

If the PPC Gateway server detects that an intersystem request has failed, or that

the SNA network is unavailable, it writes error messages to its message file

/var/cics_servers/GSD/cics/ppc/gateway/server_name/msg on Open Systems or

C:\var\cics_servers\GSD\cics\ppc\gateway\server_name\msg on Windows

systems. These messages are described in “PPC Gateway server problem

determination” on page 228.

Exchange log names (XLN) process

The PPC Gateway server supports synchronization level 2 (SL2). (Refer to

“Ensuring data integrity with synchronization support” on page 16 for information

about SL2.) As a result, it must record information in its log file about the CICS

transactions that are using SL2 intersystem requests.

This information is used if a failure occurs during an SL2 intersystem request. It

enables the PPC Gateway server to negotiate with the remote SNA system on

behalf of the CICS region to ensure that the data on each system remains

consistent. This negotiation is called resynchronization.

The PPC Gateway server must also record the names of the log files that are used

by the remote SNA systems with which it is communicating. This information is

required during resynchronization to ensure that the remote SNA system is using

the same log file for the resynchronization process as it was using when the

intersystem request failed. If the remote system (or the PPC Gateway server) has

changed log files (because of a cold start, for instance), the resynchronization

process is not reliable. In this case, administrator intervention is required to correct

the data on the affected systems. (See “Using ppcadmin commands” on page 200

for more information about ppcadmin commands.)

CICS region

CICSIPC

PPC Gateway server
Requests the location of the CICS region
using the server name stored in the
log file.When it receives the location, it
passes the intersystem request to the
CICS region.

SNA communications product
Contacts the PPC Gateway server.

SNA network

PPC Gateway server log file
CICS region s server name
from the CGWY transaction is
stored here.

Intersystem
request

Figure 60. Process for making an intersystem request to a CICS region through a PPC

Gateway server

180 TXSeries for Multiplatforms: CICS Intercommunication Guide

The process by which the PPC Gateway server sends its log file name to a remote

SNA system and receives the name of the remote SNA system’s log file is called

exchange log names (XLN). The XLN process occurs every time a connection is

established between the remote SNA system and the PPC Gateway server. SL2

intersystem requests are not permitted until the XLN process has been successful

with the appropriate remote SNA system.

Choosing a management method

You can use several methods to install, configure, and run a PPC Gateway server.

The following list shows the methods that are available and the tasks that can be

performed with each:

v cicscp commands: The cicscp configuration tool provides an easy-to-use

command line interface that automates configuration as much as possible by

using default values where necessary and imposing some naming conventions.

– “Creating a PPC Gateway server” on page 182

– “Starting a PPC Gateway server” on page 183

– “Stopping a PPC Gateway server” on page 184

– “Destroying a PPC Gateway server” on page 184
v CICS commands: Low-level CICS commands allow the creation of more complex

configurations than can be created by using the cicscp configuration tool.

– “Creating a PPC Gateway server” on page 184

– “Starting a PPC Gateway server” on page 186

– “Stopping a PPC Gateway server” on page 187

– “Destroying a PPC Gateway server” on page 188

– “Changing the attributes of a PPC Gateway server” on page 188

– “Listing the PPC Gateway servers defined on a machine” on page 188

– “Viewing the attributes of a PPC Gateway server” on page 188

– “Listing the PPC Gateway servers running on a machine” on page 189

– “Releasing the lock of a PPC Gateway server” on page 189
v The IBM TXSeries Administration Tool: This tool provides a Graphical User

Interface (GUI) method of configuring a PPC Gateway server on a Windows

system.

– “Creating a PPC Gateway server” on page 190

– “Starting a PPC Gateway server” on page 191

– “Stopping a PPC Gateway server” on page 193

– “Modifying the attributes of a PPC Gateway server” on page 193

– “Destroying a PPC Gateway server” on page 194
v SMIT: This tool provides a GUI method of configuring a PPC Gateway server on

an AIX system.

– “Creating a PPC Gateway server” on page 195

– “Starting a PPC Gateway server” on page 197

– “Stopping a PPC Gateway server” on page 198

– “Viewing and changing the attributes of a PPC Gateway server” on page 199

– “Destroying a PPC Gateway server” on page 200
v ppcadmin commands: These commands provide details about the status of

transactions and the XLN process.

– “Viewing CICS configuration in the PPC Gateway server” on page 203

– “Viewing XLN process status in the PPC Gateway server” on page 204

– “Requesting the XLN process with a remote SNA system” on page 205

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 181

– “Viewing pending resynchronizations in the PPC Gateway server” on page

206

– “Canceling pending resynchronizations in the PPC Gateway server” on page

206

– “Viewing intersystem requests running in the PPC Gateway server” on page

207

– “Viewing LUWs in the PPC Gateway server” on page 208

Using the CICS control program (cicscp) configuration tool to manage

a PPC Gateway server

The cicscp configuration tool provides an easy-to-use command-line interface that

automates the creation and configuration of a PPC Gateway server by using

default values where necessary and imposing some naming conventions. For more

information about the cicscp command set, see the TXSeries for Multiplatforms

Administration Reference.

Use cicscp commands to perform the following system management tasks. For

each task, it is assumed that you are logged on as root on Open Systems or with

administrative privileges on Windows systems.

v “Creating a PPC Gateway server”

v “Starting a PPC Gateway server” on page 183

v “Stopping a PPC Gateway server” on page 184

v “Destroying a PPC Gateway server” on page 184

Creating a PPC Gateway server

To use the cicscp create ppcgwy_server command to create a PPC Gateway server:

1. Decide on a one- to eight-character server_name for the PPC Gateway server (for

example, cicsgwy).

2. Enter the following command:

cicscp -v create ppcgwy_server server_name ShortName=shortName

This command creates the underlying structure and file base of the PPC Gateway

server automatically. The following processes are completed:

v If the GSD stanza file does not exist, the cicscp create ppcgwy_server command

creates it.

v If the UserID specified in the GSD for the server does not exist, the cicscp create

ppcgwy_server command creates it with the appropriate home directory.

v If you do not specify a logical volume name in the LogVolume attribute of the

GSD, the cicscp create ppcgwy_server command uses a default name of log_%S.

If the logical volume does not exist, the cicscp create ppcgwy_server command

creates it with a default size of 4 MB and a default location based on the

platform. (As a result, the CICS_PPCGWY_VG and CICS_PPCGWY_SIZE

environment variables do not need to be set.) If the logical volume already exists

and is owned by the correct user, the cicscp create ppcgwy_server command

issues a warning message. If it exists and is owned by a different user, the cicscp

create ppcgwy_server command issues an error message.

v The cicscp create ppcgwy_server command creates a value for the server’s GSD

ShortName attribute of the form PbaseName, where baseName is the first part of

the created server name, truncated to seven characters if necessary. The new

server name must be unique in its first seven characters to use the default

ShortName value. If it is not, and you try to create a second server name with

182 TXSeries for Multiplatforms: CICS Intercommunication Guide

the same first seven characters, an error occurs. For example, if you run the

cicscp create ppcgwy_server command to create a server called ppcgwysrv1, it

also creates a default ShortName value of Pppcgwys. If you then use the cicscp

create ppcgwy_server command to create a second PPC Gateway server called

ppcgwysrv2, the command attempts to create another ShortName value called

Pppcgwys. Because the resulting ShortName value is identical to an existing one,

the command issues an error. You can override the ShortName attribute default

by specifying a value for the ShortName attribute when you issue the cicscp

create ppcgwy_server command, as shown in step 2 on page 182.

v the cicscp create ppcgwy_server command adds an entry for the server to the

server_bindings file that is in the /var/cics_servers directory on Open Systems

or the C:\var\cics_servers directory on Windows systems. If this file does not

exist, the cicscp create ppcgwy_server command creates it.

v If SNA is not configured on the machine, the cicscp create ppcgwy_server

command issues a warning because the server cannot be started until SNA is

configured and started.

Note: If you want to simultaneously create and start a new PPC Gateway server,

use the cicscp start ppcgwy_server command as follows:

cicscp -v start ppcgwy_server server_name StartType=cold

Starting a PPC Gateway server

The cicscp start ppcgwy_server command offers two modes for starting a PPC

Gateway server. A PPC Gateway server can be cold started. In this mode, the server

is passed the name of its logical volume by the cicscp start ppcgwy_server

command, and formats its logical volume with a new log file, destroying the

recoverable information in the existing log file. Therefore, use a cold start only the

first time that you start a PPC Gateway server. More frequently, a PPC Gateway

server is started in autostart mode. In this mode, the server reads the recoverable

information from the existing log file and proceeds as if it had not been shut

down.

The following examples show how to use the cicscp start ppcgwy_server

command to start a PPC Gateway server. If you accept the default StartType

attribute value of auto, issue the command:

cicscp -v start ppcgwy_server server_name

If you want to change the StartType attribute value to cold, enter the command:

cicscp -v start ppcgwy_server server_name StartType=cold

It is possible to change the ThreadPoolSize and SNADefaultModeName attributes

of the PPC Gateway server during either a cold start or an autostart. This PPC

Gateway server continues to use the changed attributes on all subsequent

autostarts. Changing a parameter during a start affects only the runtime database.

Because the change is not placed in the permanent database, this attribute value is

lost on subsequent cold starts.

Note: If you want to simultaneously create and start a new PPC Gateway server,

use the cicscp start ppcgwy_server command as follows:

cicscp -v start ppcgwy_server server_name StartType=cold

In this case, because the server_name that you specify to start with the cicscp

start ppcgwy_server command does not exist, this command creates the

PPC Gateway server automatically using default values for all attributes. It

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 183

then starts this server and applies any attribute values that you specify on

the command line as changes to the defaults. Use this feature carefully

because any changes to attributes that you specify as part of the cicscp start

ppcgwy_server command do not take effect until the server is created. If the

changes that you specify conflict with the default attributes, the command

can fail.

If SNA is not configured, the cicscp start ppcgwy_server command issues an error

message, and the PPC Gateway server is not started.

Stopping a PPC Gateway server

The cicscp stop ppcgwy_server command provides two modes for stopping a PPC

Gateway server. A PPC Gateway server can be shut down in Normal mode, which

means that it waits for all intersystem requests to complete before shutting down.

Or it can be shut down in Forced mode, which causes it to close its files and stop

immediately without waiting for intersystem requests to complete.

To stop a PPC Gateway server, issue the cicscp stop ppcgwy_server command. The

following is an example of a normal shutdown (the default):

cicscp -v stop ppcgwy_server server_name

If you want to force the stop, enter:

cicscp -v stop ppcgwy_server server_name -f

Destroying a PPC Gateway server

To destroy a PPC Gateway server, issue the cicscp destroy ppcgwy_server

command as shown in the following example:

cicscp -v destroy ppcgwy_server server_name

The cicscp destroy ppcgwy_server command stops the server if it is running,

removes the server definition from the Gateway Definitions (GD), but does not

remove the user ID or the logical volume.

Using CICS commands to manage a PPC Gateway server

CICS commands are used to perform the following system management tasks. For

each task, it is assumed that you are logged on as root on Open Systems or with

administrative privileges on Windows systems.

v “Creating a PPC Gateway server”

v “Starting a PPC Gateway server” on page 186

v “Stopping a PPC Gateway server” on page 187

v “Destroying a PPC Gateway server” on page 188

v “Changing the attributes of a PPC Gateway server” on page 188

v “Listing the PPC Gateway servers defined on a machine” on page 188

v “Viewing the attributes of a PPC Gateway server” on page 188

v “Listing the PPC Gateway servers running on a machine” on page 189

v “Releasing the lock of a PPC Gateway server” on page 189

Creating a PPC Gateway server

You create a PPC Gateway server by using the cicsppcgwycreate command. The

following steps show how to use the cicsppcgwycreate command and suggest a

simple naming convention for the PPC Gateway server’s resource definitions.

184 TXSeries for Multiplatforms: CICS Intercommunication Guide

1. Decide on a one- to eight-character server_name for the PPC Gateway server (for

example, cicsgwy).

2. Create an operating system user ID with this server_name and a logical volume

of about one partition (4 MB) called log_server_name (for example,

log_cicsgwy). The procedures that are used to create a user ID and a logical

volume differ according to platform. See the bulleted points listed under this

step for specific instructions on how to create a user ID and logical volume for

your platform. In these steps, server_name represents the name of the PPC

Gateway server.

v To set up the PPC Gateway server user ID and logical volume on the AIX

platform:

a. Enter the following command to create the user ID:

mkuser pgrp=cics home="/var/cics_servers/GSD/cics/ppc/gateway/sv_name"

core=2097152 server_name

This example shows the creation of a user ID for a PPC Gateway server

named server_name. (Setting the attribute value core=2097152 increases

the size of the dumps that the PPC Gateway server is allowed to create.)

The user ID must have the primary group cics and the home directory

/var/cics_servers/GSD/cics/ppc/gateway/sv_name.

b. Enter the following command to create the logical volume:

mklv -y log_server_name rootvg 4

This command places a logical volume named log_server_name in the

/dev directory. If possible, mirror this volume across more than one

physical disk.

c. Grant the PPC Gateway server user ID read and write permission to the

logical volume and the associated raw device by issuing the following

commands:

chown server_name:cics /dev/log_server_name

chown server_name:cics /dev/rlog_server_name

v To set up the PPC Gateway server user ID and logical volume on the HP-UX

platform, consult your HP documentation for information about how to use

the HP System Administration Manager (SAM). If the logical volume is

created on a volume group other than vg00, export the environment variable

CICS_PPCGWY_VG to the name of the volume group that was used before

starting the PPC Gateway server.

v To set up the PPC Gateway server user ID and logical volume on the

Windows platform:

a. Change to the directory C:\var\cics_servers\GSD\cics\ppc\gateway\

by entering the command:

cd C:\var\cics_servers\GSD\cics\ppc\gateway\

b. Make a new directory called server_name by entering the command:

mkdir server_name

c. Click Administrative Tools (Common)>User Manager to create a new

account for the PPC Gateway server.

d. Click User>New User. The New User screen is displayed.

e. If you intend to specify a value for the ShortName attribute when

creating your PPC Gateway server, enter that value in the Username

field.

f. Select the check box that is next to the Password Never Expires option.

g. Click the Profile button.

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 185

h. In the Home Directory part of the screen, select the radio button that is

next to the Local Path option and enter

C:\var\cics_servers\GSD\cics\ppc\gateway\server_name in the box to

the right of this option.

i. Click OK.

j. Click the Groups button.

k. Click the cicsgroup entry under the Not member of portion of the screen.

l. Click the Add button.

m. Click OK.

n. Enter the following command to create the logical volume:

cicsmakelv -v log_svr_name -s volumeSize -p C:\var\log_Pserver_name

3. Follow the instructions under “Viewing the attributes of a PPC Gateway

server” on page 188 to view the default values of the GSD attributes that will

be assigned to the new PPC Gateway server.

4. Use one of the methods that are outlined under “Changing the attributes of a

PPC Gateway server” on page 188 to change the default values of the following

attributes:

v Change the ShortName attribute of the GSD from the default of PPCGWY to

the server_name that is defined in step 1 on page 185 because:

– The value for the ShortName attribute must be unique among all PPC

Gateway servers that are defined on the machine.

– The value for the ShortName attribute affects the default values of the

UserID and LogVolume attributes. If you do not change the ShortName

attribute value, you must change the default values for the UserID and

LogVolume attributes to the name of the user ID and logical volume that

were created in step 2 on page 185.
5. Issue the cicsppcgwycreate command to create the PPC Gateway server:

cicsppcgwycreate /.:/cics/ppc/gateway/server_name

This command takes the name of the PPC Gateway server, which is always of

the format /.:/cics/ppc/gateway/server_name.

Note: You can specify changes to GSD attributes with this command. For

example, if you want to change the ShortName attribute, the command

is:

cicsppcgwycreate /.:/cics/ppc/gateway/server_name ShortName=svr_name

When using HP-UX SNAplus2

The PPC Gateway server must be configured with the modename that is

associated with the Partner LU alias. Specify this value when the PPC

Gateway server is created. The following example shows the PPC

Gateway server called /.:/cics/ppc/gateway/cicsgwy, with the ShortName

attribute changed to cicsgwy and the SNADefaultModeName attribute

defined as CICSISC0:

cicsppcgwycreate /.:/cics/ppc/gateway/cicsgwy ShortName=cicsgwy \

 SNADefaultModeName="CICSISC0"

Starting a PPC Gateway server

The cicsppcgwy command offers two modes for starting a PPC Gateway server. A

PPC Gateway server can be cold started. In this mode, the server is passed the

186 TXSeries for Multiplatforms: CICS Intercommunication Guide

name of its logical volume by the cicsppcgwy command and formats its logical

volume with a new log file, destroying the recoverable information in the existing

log file. Therefore, use a cold start only the first time you start a PPC Gateway

server. More frequently, a PPC Gateway server is started in autostart mode. In this

mode, the server reads the recoverable information from the existing log file and

proceeds as if it had not been shut down.

To start a PPC Gateway server, issue the cicsppcgwy command. If you accept the

default StartType attribute value of auto, enter the command:

cicsppcgwy /.:/cics/ppc/gateway/server_name

Note: In this example, the PPC Gateway server server_name is specified explicitly

on the command line. You can also pass the server name on an autostart by

using the CICS_PPCGWY_SERVER environment variable. In this case, issue

the command to specify the variable before issuing the cicsppcgwy

command. For example:

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

(This example assumes that you are using the Korn shell on an Open

Systems platform; if you are using a different shell or platform, change the

command accordingly.)

If you want to change the StartType attribute value to cold, enter the command:

cicsppcgwy /.:/cics/ppc/gateway/server_name StartType=cold

It is possible to change the PPC Gateway server’s ThreadPoolSize and

SNADefaultModeName attributes during either a cold start or an autostart.

After the PPC Gateway server is running, your CICS region can contact it. The

region uses a Gateway Definitions (GD) entry to locate the PPC Gateway server.

The PPC Gateway server then calls the SNA product to contact the remote system.

(For information about how to configure GD entries, refer to “Configuring CICS

for PPC Gateway server SNA support” on page 89.)

Stopping a PPC Gateway server

The cicsppcgwyshut command offers three modes for stopping a PPC Gateway

server. A PPC Gateway server can be shut down in Normal mode, which means

that it waits for all intersystem requests to complete before shutting down. It can

be shut down in Forced mode, which causes it to close its files and stop

immediately without waiting for intersystem requests to complete. Or it can be

shut down in Cancel mode, which simply kills it. A Cancel mode shutdown leaves

the PPC Gateway server in an undesirable state. Use it only if you have no other

choice.

To stop a PPC Gateway server, issue the cicsppcgwyshut command. The following

example command results in a normal shutdown (the default shutdown mode is

normal):

cicsppcgwyshut /.:/cics/ppc/gateway/server_name

The following example specifies a forced shutdown:

cicsppcgwyshut -f /.:/cics/ppc/gateway/server_name

The following example specifies a cancel:

cicsppcgwyshut -c /.:/cics/ppc/gateway/server_name

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 187

Destroying a PPC Gateway server

The cicsppcgwydestroy command destroys a PPC Gateway server. Use this

command with care because when the server is destroyed, all the data that is

associated with it is lost.

To destroy a PPC Gateway server, issue the cicsppcgwydestroy command as

shown in the following example:

cicsppcgwydestroy /.:/cics/ppc/gateway/server_name

Changing the attributes of a PPC Gateway server

Three wayare possible to update the attributes in a PPC Gateway server’s GSD

entry:

v You can use the cicsppcgwy command to change the StartType,

ThreadPoolSize, and SNADefaultModeName attributes. (This process is

described in “Starting a PPC Gateway server” on page 186.)

v You can use the cicsppcgwydestroy command, followed by the

cicsppcgwycreate command, to destroy and re-create a PPC Gateway server.

(These commands are described in “Destroying a PPC Gateway server” and

“Creating a PPC Gateway server” on page 184, respectively.) This method allows

you to change any of the GSD attributes. Use this method with care because,

although you can re-create a PPC Gateway server with the cicsppcgwycreate

command, all the data that is associated with the original is lost when you

destroy the original server with the cicsppcgwydestroy command. When you

start this new server after running the cicsppcgwycreate command, it is started

as a cold start. (For more information about cold starts, refer to “Starting a PPC

Gateway server” on page 186.)

v You can use the cicsupdate -c gsd command to change any GSD attribute.

Listing the PPC Gateway servers defined on a machine

You can list the PPC Gateway servers that have been created on a particular

machine by using the cicsget -c gsd -l command. The cicsget command output

shows the server name and the description (from the ResourceDescription

attribute of the relevant GSD entry) for each PPC Gateway server. Figure 61 shows

the output for a machine that has two PPC Gateway servers defined.

Viewing the attributes of a PPC Gateway server

The attributes that are required to start and stop a PPC Gateway server are

specified in a GSD entry. You can view the attributes of a PPC Gateway server by

using the cicsget -c gsd command.

Figure 62 on page 189 shows the attributes of an example PPC Gateway server that

has a server name of /.:/cics/ppc/gateway/cicsgwy.

cicsget -c gsd -l

/.:/cics/ppc/gateway/cicsgwy PPC Gateway server Definition

/.:/cics/ppc/gateway/cicsgwy2 PPC Gateway server Definition

Figure 61. Listing PPC Gateway servers with the cicsget command

188 TXSeries for Multiplatforms: CICS Intercommunication Guide

The system substitutes the value that you enter in the ShortName field in the other

fields where the %S value is displayed. For example, in Figure 62, if the value in

the UserID field displays ″%S″, the system reads this value as server_name.

Similarly, if the value in the LogVolume field shows ″log_%S″, the system reads

this value as log_server_name.

You can view the default values for the GSD attributes by using the cicsget -c gsd

"" command. These default values are assigned to a PPC Gateway server when it is

created unless you change them as described in “Changing the attributes of a PPC

Gateway server” on page 188. Figure 63 shows an example of this command.

Listing the PPC Gateway servers running on a machine

You can list the PPC Gateway servers that are running on a machine, by using the

ps -ef | grep ppcgwy command. Figure 64 shows a machine on which two PPC

Gateway servers are running.

Releasing the lock of a PPC Gateway server

If a PPC Gateway server is stopped without the use of the cicsppcgwyshut

command, the PPC Gateway server can be left in a locked state. This state prevents

it from being restarted. If you are sure that the PPC Gateway server is not running,

you can release the lock for it by using the cicsppcgwylock command with the -u

option. After the lock is released, the cicsppcgwy command can be used to start

cicsget -c gsd /.:/cics/ppc/gateway/cicsgwy

/.:/cics/ppc/gateway/cicsgwy:

ResourceDescription="PPC Gateway server Definition"

AmendCounter=0

Permanent=no

StartType=auto

ThreadPoolSize=10

ShortName="cicsgwy"

UserID="%S"

LogVolume="log_%S"

SNADefaultModeName=""

Figure 62. PPC Gateway server attributes for cicsgwy

cicsget -c gsd ""

:ml3

ResourceDescription="PPC Gateway server Definition"

AmendCounter=0

Permanent=no

StartType=auto

ThreadPoolSize=10

ShortName="PPCGWY"

UserID="%S"

LogVolume="log_%S"

SNADefaultModeName=""

Figure 63. Default PPC Gateway server attributes

ps -ef | grep ppcgwy

cicsgwy 22377 2977 0 12:06:43 - 0:02 \

/opt/ibm.cics/bin/ppcgwy -n /.:/cics/ppc/gateway/cicsgwy -v /var/c

cicsgwy2 27009 2977 0 15:19:24 - 1:04 \

/opt/ibm/cics/bin/ppcgwy -n /.:/cics/ppc/gateway/cicsgwy2 -v /var/c

Figure 64. ps -ef | grep ppcgwy command

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 189

the PPC Gateway server. The following example shows the lock being released for

a PPC Gateway server named /.:/cics/ppc/gateway/cicsgwy:

cicsppcgwylock -u /.:/cics/ppc/gateway/cicsgwy

Using the IBM TXSeries Administration Tool to manage a PPC Gateway

server

You can use the IBM TXSeries Administration Tool to perform the following tasks

for PPC Gateway server system management on the Windows platform. For each

task, it is assumed that you are logged onto Windows with administrative

privileges.

v “Creating a PPC Gateway server”

v “Starting a PPC Gateway server” on page 191

v “Stopping a PPC Gateway server” on page 193

v “Modifying the attributes of a PPC Gateway server” on page 193

v “Destroying a PPC Gateway server” on page 194

Creating a PPC Gateway server

Follow these steps to create a PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list is displayed of the existing

CICS regions, SFS file servers, and PPC Gateway servers that are on the host.

2. Click Subsystem>New>PPC. The New PPC GWY Server dialog box appears.

3. Enter the name for the new PPC Gateway server in the PPC GWY CDS name

field.

4. Enter a value in the Short name field if you do not want to use the

system-generated default value. You cannot modify the value of this attribute

later.

The default short name that is generated for the PPC Gateway server takes the

form of Pbasename, where basename is the PPC Gateway server namethat you

entered in the PPC GWY CDS name field, truncated to seven characters if

necessary. Therefore, you must use PPC Gateway server names that are unique

in their first seven characters.

5. Change or accept the default description.

6. If you want to use an existing PPC Gateway server definition as the basis for

this new PPC Gateway server, enter its name in the Based on field, or select an

entry from this field’s drop-down list. An example configuration is shown in

Figure 65 on page 191. (In Figure 65 on page 191, leaving the Short name field

blank causes the default value to be used, as described in step 4.)

190 TXSeries for Multiplatforms: CICS Intercommunication Guide

7. Click OK to create the new PPC Gateway server. A message box informs you

whether the PPC Gateway server has been created successfully.

8. Click OK to exit the message box.

The following tasks are completed for you when you use the above procedure:

v The Short name attribute is set.

v The Server user ID is defined if it does not currently exist.

v A Log volume that is used for recovery information is created in the \var

subdirectory, if none already exists.

v If the PPC Gateway server is to run in an RPC-only environment, the necessary

server binding-file entry is set up. If the server_bindings file does not exist, it is

created.

When you have created your PPC Gateway server, consider whether to use the

default values for the following attributes. If you decide to change them, use the

procedure that is described in “Modifying the attributes of a PPC Gateway server”

on page 193.

Note: The following attributes appear on various tabs of the Properties screen.

v Size of Thread Pool

This attribute determines the number of operations that can run concurrently. It

can be set in the range 1 through 20. The default is 10.

v Protect resource

This attribute specifies whether CICS permits you to change or delete the

permanent database entry. If you check the check box, you cannot change or

delete the entry. The default is unselected (the check box is cleared), meaning

that your entry is not protected from being changed or deleted.

Starting a PPC Gateway server

The IBM TXSeries Administration Tool supports two modes for starting the PPC

Gateway server:

v Cold start

In this mode, the PPC Gateway server performs as if it has never been started. It

is passed the name of its logical volume and formats this logical volume with a

Figure 65. New PPC GWY Server screen with example configuration

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 191

new log file. If the server has been started before, this action destroys the

recoverable information in the existing log file. Therefore, use a cold start only

the first time that the PPC Gateway server is started.

v Autostart

In this mode, the PPC Gateway server reads the recoverable information from

the log file and proceeds as if it had not been shut down.

To start a PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list displays the existing CICS

regions, SFS file servers, and PPC Gateway servers on the host.

2. From the list of servers on the host, select the entry for the required PPC

Gateway server.

3. Click Subsystem>Start to display the Start PPC GWY server dialog box, as

shown in Figure 66.

Note: If you click the Start All option, you can select Servers, CICS Regions,

SFS Servers, or PPC Gateways. A dialog box is displayed, prompting

you to confirm or cancel the start of the systems you have selected.

4. By default, the Start type attribute for a PPC Gateway server is set to auto,

causing CICS to restart it from the state in which it was last shut down. To

verify the attribute setting, or to change it to cold to invoke a cold start, click

the Properties button and make the change before proceeding to the next step.

5. Click OK to confirm the action. A message box informs you whether the PPC

Gateway server has started successfully.

6. Click OK to exit the message box.

When starting the PPC Gateway server, you might see one of the following

messages:

PCS6002A

Some of your configuration settings were not applied successfully. You can

ignore this message; SNA will be started successfully.

PCS6007A

Cannot retrieve the default configuration file name. If this message is

encountered when SNA is starting, it might be because you need to set a

default SNA configuration file that will be used each time you use the

Administration Console to start the PPC Gateway server. To set this

default, issue the following command from the command line:

csstart -d path_to_sna_config_file

For example:

csstart -d C:\ibmcs\private\mySNAconfig.acg

Figure 66. Start PPC GWY server screen

192 TXSeries for Multiplatforms: CICS Intercommunication Guide

You will now be able to start the PPC Gateway server.

Stopping a PPC Gateway server

The IBM TXSeries Administration Tool supports two modes for stopping the PPC

Gateway server:

v Normal

The server waits for all intersystem requests to complete before it shuts down.

This is the default.

v Forced

The server closes its files and stops immediately without waiting for intersystem

requests to complete.

To shut down a PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list displays the existing CICS

regions, SFS file servers, and PPC Gateway servers that are on the host.

2. From the list of servers on the host, select the entry for the required PPC

Gateway server.

3. Click Subsystem>Stop. The Stop PPC GWY server dialog box is displayed, as

shown in Figure 67.

Note: If you select the Stop All option, you can select Servers, CICS Regions,

SFS Servers, or PPC Gateways. A dialog box is displayed, prompting

you to confirm or cancel the action to stop the systems that you have

selected.

4. If you require an immediate stop, click the Force radio button.

5. Click OK to stop the PPC Gateway server. A message box informs you whether

the PPC Gateway server has stopped successfully.

6. Click OK to exit the message box.

Modifying the attributes of a PPC Gateway server

To change the values of an existing PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list displays the existing CICS

regions, SFS file servers, and PPC Gateway servers on the host.

2. From the list of servers on the host, select the entry for the PPC Gateway server

that you want to modify.

Figure 67. Stop PPC GWY server screen

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 193

3. Click Subsystem>Properties. The Properties screen for the PPC Gateway server

is displayed. An example is shown in Figure 68.

4. From the General or Server tabs, select or enter new values for the attributes

that you want to change.

5. Click OK to implement the changes.

Destroying a PPC Gateway server

Note: Before destroying a PPC Gateway server, ensure that it is not still required

for any other CICS regions. Use this facility with care because all the data

that is associated with the PPC Gateway server is lost when the server is

destroyed.

To destroy a PPC Gateway server:

1. Start the IBM TXSeries Administration Tool. A list displays the existing CICS

regions, SFS file servers, and PPC Gateway servers on the host.

2. From the list of servers on the host, select the entry for the required PPC

Gateway server.

3. Click Subsystem>Destroy. The Destroy PPC GWY Server dialog box displays,

as shown in Figure 69 on page 195.

Figure 68. PPC Gateway server Properties screen—General tab

194 TXSeries for Multiplatforms: CICS Intercommunication Guide

Note: If you select the Destroy All option, you can indicate Servers, CICS

Regions, SFS Servers, or PPC Gateways. A dialog box is displayed,

prompting you to confirm or cancel the action that you have selected.

4. Click OK to destroy the PPC Gateway server. This action both stops the PPC

Gateway server and deletes the associated GSD entry. A message box informs

you that the PPC Gateway server has been destroyed successfully.

5. Click OK to close the message box.

Note: When you destroy a PPC Gateway server, the user ID and logical volume

are not destroyed. You must delete the user ID and logical volume

separately (for example, by using the Windows User Manager Tool and

Windows Explorer, respectively).

Using SMIT to manage a PPC Gateway server

The System Management Interface Tool (SMIT) can be used to perform the

following tasks for PPC Gateway server system management on an AIX platform.

For each task, it is assumed that you are logged on as root.

v “Creating a PPC Gateway server”

v “Starting a PPC Gateway server” on page 197

v “Stopping a PPC Gateway server” on page 198

v “Viewing and changing the attributes of a PPC Gateway server” on page 199

v “Destroying a PPC Gateway server” on page 200

Creating a PPC Gateway server

The following steps show how to use SMIT to create a PPC Gateway server:

 1. Decide on a one- to eight-character server_name for the PPC Gateway server

(for example, cicsgwy).

 2. Create an operating system user ID with this server_name. It must have the

primary group cics and the home directory

/var/cics_servers/GSD/cics/ppc/gateway/server_name.

The following example shows the creation of a user ID for a PPC Gateway

server named server_name. (Setting the attribute value core=2097152 increases

the size of the dumps that the PPC Gateway server is allowed to create.)

mkuser pgrp=cics home="/var/cics_servers/GSD/cics/ppc/gateway/server_name"

core=2097152 server_name

 3. Create a logical volume of about one partition (4 MB) called log_server_name

(for example, log_cicsgwy). If possible, mirror this volume across more than

one physical disk. The following example places a logical volume named

log_server_name in the /dev directory.

mklv -y log_server_name rootvg 4

Figure 69. Destroy PPC GWY Server screen

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 195

4. Change the ownership of the logical volume to give read and write

permission to the new user ID that was in step 2 on page 195. The following

example gives the user ID for server_name access to the logical volume:

chown server_name:cics /dev/log_server_name

chown server_name:cics /dev/rlog_server_name

 5. Start SMIT by entering the following command:

smitty cics

 6. Select the following options:

� Manage PPC Gateway Servers

 � Define PPC Gateway Servers

 � Create

The Create PPC Gateway Server screen is displayed.

 7. Enter a value or accept the default value of ("") in the Model PPC Gateway

Server Identifier field and press Enter.

 8. On the expanded screen that is displayed, enter a value in the PPC Gateway

Server Identifier field in the form:

/.:/cics/ppc/gateway/server_name

where server_name is the server name that you defined in step 1 on page 195.

 9. Enter this server_name as the value for the field Short name used for SRC.

The system substitutes the value that you enter in this field, in the other fields

where the %S value is displayed. For instance, if the value in the AIX user ID

for server field displays %S, the system reads this value as server_name.

Similarly, if the value in the AIX logical volume for logging field displays

log_%S, the system reads this value as log_server_name. These values match

the user ID and logical volume that were created in step 2 on page 195 and

step 3 on page 195.

10. Consider whether to use the default values for the following attributes:

v Number of threads for RPC requests

This attribute determines the number of operations that can run

concurrently. It can be set in the range 1 through 20. The default is 10.

v Protect resource from modification?

This attribute specifies whether CICS permits you to change or delete the

permanent database entry. If you enter the value yes in this field, you

cannot change or delete the entry in the permanent database. The default is

no, meaning that your entry is not protected from being changed or

deleted.

An example Create PPC Gateway Server screen is shown in Figure 70 on page

197.

196 TXSeries for Multiplatforms: CICS Intercommunication Guide

11. When all the fields are set, press Enter to create the PPC Gateway server.

Starting a PPC Gateway server

SMIT supports two modes for starting a PPC Gateway server. A PPC Gateway

server can be cold started. In this mode, the server formats its logical volume with a

new log file, and destroys the recoverable information that is in the existing log

file. Therefore, use a cold start only the first time that you start a PPC Gateway

server. More frequently, a PPC Gateway server is started in autostart mode. In this

mode, the server reads the recoverable information from the existing log file and

proceeds as if it had not been shut down.

The following steps show how to use SMIT to start a PPC Gateway server:

1. Optionally, set the environment variable CICS_PPCGWY_SERVER to the name

of the PPC Gateway server. The following example command assumes that you

are using the Korn shell; if you are using a different shell, change the command

accordingly:

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

2. Start SMIT by entering the following command:

smitty cics

3. Select the following option:

� Manage PPC Gateway Servers

4. If you set the CICS_PPCGWY_SERVER environment variable before starting

SMIT, go to step 7. (Step 4, step 5, and step 6 are required only if you have not

set this environment variable before starting SMIT.) If you have not set this

environment variable, select the Change Working PPC Gateway Server option

to select which PPC Gateway server to start.

5. Select the server that you want to start, and press Enter. The COMMAND

STATUS screen confirms your selection.

6. Press F3 to return to the Manage PPC Gateway Servers screen.

7. Select either Cold Start a PPC Gateway Server or Auto Start a PPC Gateway

Server, depending on the type of start that you require. An example Auto Start

a PPC Gateway Server screen is shown in Figure 71 on page 198.

 Create PPC Gateway Server

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* PPC Gateway Server Identifier [/.:/cics/ppc/gateway/cicsgwy]

* Model PPC Gateway Server Identifier ""

 Ignore errors on creation? no +

 Resource description [PPC Gateway Server Definition]

* Number of updates 0

 Protect resource from modification? no +

 Number of threads for RPC requests [10] #

 Short name used for SRC [cicsgwy]

 AIX user ID for server [%S]

 AIX logical volume for logging [log_%S]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 70. Create PPC Gateway Server screen

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 197

8. In this screen, you can change the values for the Number of threads for RPC

requests attribute. Any changes that are made are remembered for subsequent

autostarts.

9. Press Enter to start the PPC Gateway server.

After the PPC Gateway server is running, your CICS region can contact it. The

region uses a Gateway Definitions (GD) entry to locate the PPC Gateway server.

Refer to “Configuring CICS for PPC Gateway server SNA support” on page 89 for

information about how to configure a GD entry.

Stopping a PPC Gateway server

SMIT supports three modes for stopping a PPC Gateway server. A PPC Gateway

server can be shut down in Normal mode, which means that it waits for all

intersystem requests to complete before shutting down. It can be shut down in

Immediate mode, which causes the server to close its files and stop immediately

without waiting for intersystem requests to complete. Or it can be shut down in

Cancel mode, which simply kills the PPC Gateway server. A Cancel mode

shutdown leaves the PPC Gateway server in an undesirable state. Use it only if

you have no other choice.

The following steps show how to use SMIT to stop a PPC Gateway server:

1. Optionally, set the CICS_PPCGWY_SERVER environment variable to the name

of the PPC Gateway server. The following example command assumes that you

are using the Korn shell; if you are using a different shell, change the command

accordingly:

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

2. Start SMIT by entering the following command:

smitty cics

3. Select the following option:

� Manage PPC Gateway Servers

4. If you set the CICS_PPCGWY_SERVER environment variable before starting

SMIT, go to step 7 on page 199. (Step 4, step 5 on page 199, and step 6 on page

199 are required only if you have not set the CICS_PPCGWY_SERVER

environment variable before starting SMIT.) If you have not set this

environment variable, select the Change Working PPC Gateway Server option

to select which PPC Gateway server to stop.

 Auto Start a PPC Gateway Server

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* PPC Gateway Server Identifier /.:/cics/ppc/gateway/cicsgwy

 Ignore errors on startup? no +

 Resource description PPC Gateway server Definition

 Number of threads for RPC requests [10] #

 Short name used for SRC cicsgwy

 AIX user ID for server cicsgwy

 AIX logical volume for logging log_cicsgwy

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 71. Auto Start a PPC Gateway Server screen

198 TXSeries for Multiplatforms: CICS Intercommunication Guide

5. Select the server that you want to stop, and press Enter. The COMMAND

STATUS screen confirms your selection.

6. Press F3 to return to the Manage PPC Gateway Servers screen.

7. Select the Shutdown a PPC Gateway Server option. The Shutdown a PPC

Gateway Server screen is displayed.

8. In the Shutdown Type field, select the type of shutdown that you require:

v NORMAL: A normal shutdown

v IMMEDIATE: A forced shutdown

v CANCEL: To cancel the PPC Gateway server

An example Shutdown a PPC Gateway Server screen is shown in Figure 72.

9. Press Enter to stop the PPC Gateway server.

Viewing and changing the attributes of a PPC Gateway server

Two ways are possible use SMIT to view and update the attributes of a PPC

Gateway server:

v Use the Cold Start of a PPC Gateway Server screen or the Auto Start of a PPC

Gateway Server SMIT screen. Only Number of threads for RPC requests field

can be changed in these screens. (For more information about how to start a

PPC Gateway server, refer to “Starting a PPC Gateway server” on page 197.)

v Use the PPC Gateway server’s Show/Change screen. You can change any of the

server’s attributes from this screen. However, the update process first destroys,

then re-creates the PPC Gateway server. Use this method with care because all

the data that is associated with the server is lost. As a result, the next time the

server is started, it is started as a cold start. (For more information about cold

starts, refer to “Starting a PPC Gateway server” on page 197.)

The following steps show how to use SMIT to view and change a PPC Gateway

server on the server’s Show/Change screen:

1. Start SMIT by entering the following command:

smitty cics

2. Select the following options:

� Manage PPC Gateway Servers

 � Define PPC Gateway Servers

 � Show/Change

 Shutdown a PPC Gateway Server

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* PPC Gateway Server Identifier /.:/cics/ppc/gateway/cicsgwy

 Shutdown Type NORMAL +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 72. Shutdown a PPC Gateway Server screen

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 199

The Select a PPC Gateway Server for Show/Change screen is displayed.

3. In the PPC Gateway Server Identifier field, enter a PPC Gateway server

identifier in the form:

/.:/cics/ppc/gateway/server_name

4. Press Enter. The Show/Change PPC Gateway Server screen is displayed. An

example screen is shown in Figure 73.

5. If you do not want to change the PPC Gateway server, press F3 to return to the

Define PPC Gateway Servers screen. Otherwise, change the required attributes,

and press Enter to destroy and re-create the server with the new values.

Destroying a PPC Gateway server

SMIT can be used to destroy a PPC Gateway server. Use this facility with care

because all the data that is associated with the PPC Gateway server is lost when

the server is destroyed.

The following steps show how to use SMIT to destroy a PPC Gateway server:

1. Start SMIT by entering the following command:

smitty cics

2. Select the following options:

� Manage PPC Gateway Servers

 � Define PPC Gateway Servers

 � Destroy

The Destroy a PPC Gateway Server screen is displayed.

3. In the PPC Gateway Server Identifier field, enter a PPC Gateway server

identifier in the form:

/.:/cics/ppc/gateway/server_name

4. Press Enter to destroy the PPC Gateway server.

Using ppcadmin commands

The PPC Gateway server has a set of administration commands called ppcadmin

that allow you to view its status. The set of commands can display:

 Show/Change PPC Gateway Server

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* New PPC Gateway Server Identifier [/.:/cics/ppc/gateway/cicsgwy]

* PPC Gateway Server Identifier /.:/cics/ppc/gateway/cicsgwy

 Ignore errors? (force redefinition of server) no +

 Resource description [PPC Gateway Server Definition]

* Number of updates 0

 Protect resource from modification? no +

 Number of threads for RPC requests [10] #

 Short name used for SRC [cicsgwy]

 AIX user ID for server [%S]

 AIX logical volume for logging [log_%S]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

Figure 73. Show/Change PPC Gateway Server screen

200 TXSeries for Multiplatforms: CICS Intercommunication Guide

v The CICS regions that have passed configuration data to the PPC Gateway

server, by using the CGWY transaction

v The names of the remote SNA systems in which the exchange log names (XLN)

process is required or has been successful

v The remote SNA systems with which the PPC Gateway server is waiting to

resynchronize, and the CICS transactions that are affected

v The current intersystem requests that are using the PPC Gateway server

Table 37 lists the ppcadmin commands that are applicable to the CICS

environment.

 Table 37. ppcadmin commands that are applicable to the CICS environment

Command Use

ppcadmin help Show syntax of a ppcadmin command (This command lists

all the ppcadmin commands, some of which are not

applicable to the CICS environment.)

ppcadmin list luentries List all CICS regions that have configured the PPC

Gateway server

ppcadmin query luentry View a CICS region’s configuration in the PPC Gateway

server

ppcadmin list xlns List XLN status for all connections

ppcadmin query xln Query XLN status for the specified connection

ppcadmin force xln Force an XLN for the specified connection

ppcadmin list convs List all active intersystem requests

ppcadmin query conv Query an active intersystem request

ppcadmin query stats Query the conversation statistics

ppcadmin list luws List all active Logical Units of Work (LUWs)

ppcadmin query luw Query an active LUW

ppcadmin list transactions List all active transactions

ppcadmin query transaction Query an active transaction

ppcadmin list resyncs List all pending resynchronizations

ppcadmin query resync Query the specified resynchronization

ppcadmin cancel resync Cancel all pending resynchronizations for a connection

Note: If the CICS region runs on a different operating system from that on which

the PPC Gateway server runs, you can issue a ppcadmin command from

either the machine on which the PPC Gateway server runs, or from the

machine on which the CICS region runs.

Use the following procedure to use a ppcadmin command (this procedure assumes

that you are using the Korn shell on an Open Systems platform; if you are using a

different platform or shell, change the export commands accordingly):

1. Decide on the specific ppcadmin command that you require from the list that is

shown in Table 37.

2. Determine the PPC Gateway server’s name. The ppcadmin commands require

the PPC Gateway server’s name, which is passed to the ppcadmin command

by using the command’s -server server_name option or the environment

variable CICS_PPCGWY_SERVER. If you are planning to issue several

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 201

ppcadmin commands to a PPC Gateway server, it is easier to set the

CICS_PPCGWY_SERVER environment variable before calling the first

ppcadmin command as follows:

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/server_name

3. Issue the ppcadmin command. The ppcadmin commands can be run in a

command mode or in an interactive mode, as shown in Figure 74 and

Figure 75. Figure 74 shows a ppcadmin command issued in interactive mode.

To enter this mode, enter the command suite name with no arguments (for

example, ppcadmin). When you do so, the prompt becomes the name of the

command suite, which allows you to enter only the verb, object, and arguments

for subsequent commands.

Figure 75 shows the ppcadmin command issued in command mode:

The sections that follow provide information about selected ppcadmin commands.

For information about the whole ppcadmin command set, see TXSeries for

Multiplatforms SFS Server and PPC Gateway Server: Advanced Administration.

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/cicsgwy

ppcadmin

 PPC administration tool.

Type "help" for help, "exit" to exit.

ppcadmin> help list luentries

NAME

 ppcadmin list luentries -- List all registered executive LU entries

SYNOPSIS

 ppcadmin list luentries [-server server]

ppcadmin> list luentries

Command executed at: Mon Oct 11 12:44:18 1999

total local LU entries: 1

 Executive LU: CICSOPEN

ppcadmin> exit

Figure 74. Using ppcadmin commands in interactive mode

export CICS_PPCGWY_SERVER=/.:/cics/ppc/gateway/cicsgwy

ppcadmin help list luentries

 NAME

 ppcadmin list luentries -- List all registered executive LU entries

 SYNOPSIS

 ppcadmin list luentries [-server server]

ppcadmin list luentries

Command executed at: Mon Oct 11 12:45:46 1999

total local LU entries: 1

 Executive LU: CICSOPEN

Figure 75. Using ppcadmin commands in command mode

202 TXSeries for Multiplatforms: CICS Intercommunication Guide

Viewing CICS configuration in the PPC Gateway server

Use the ppcadmin list luentries command to list the Logical Unit (LU) names that

are configured in the PPC Gateway server. An example of this command and its

output is shown in Figure 76.

In Figure 76, a CICS region’s LU name is shown as an Executive LU. This is the LU

name that is configured in the CICS region’s Gateway Definitions (GD)

GatewayLUName attribute.

The PPC Gateway server, /.:/cics/ppc/gateway/cicsgwy, has two LUs configured:

CICSOPEN and CICSLUGW. The LU OPENCICS is for the CICS region cicsopen, and the

LU CICSLUGW is for the CICS region cicsaix.

If you are using a PPC Gateway server on the AIX platform with the IBM

Communications Server for AIX, you can use the ppcadmin query luentry

command to show the CICS transactions for which the PPC Gateway server is

listening on behalf of the region’s LU name. To use this command, you must

provide the LU name for the CICS region about which you are querying. Figure 77

on page 204 shows an example of this command and its output.

ppcadmin list luentries

Command executed at: Mon Oct 11 09:43:36 1999

total local LU entries: 2

 Executive LU: CICSOPEN

 Executive LU: CICSLUGW

Figure 76. ppcadmin list luentries command

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 203

In Figure 77, the PPC Gateway server is queried about the CICS transactions that

are associated with LU name CICSLUGW. The listed transactions have been passed to

the PPC Gateway server because the cicsaix region’s Transaction Definitions (TD)

TPNSNAProfile attribute is set to the name of an IBM Communications Server for

AIX TPN profile. In this example, the profile is called CICSTPN. The PPC Gateway

server can receive requests only from remote SNA systems for the transactions that

are listed by this command.

The transactions \01, \02, \03, and \05 are hexadecimal versions of the CICS

transactions CSM1, CSM2, CSM3 and CSM5. These hexadecimal transaction names

are used by some CICS systems for function shipping requests. The hexadecimal

transaction names do not have TD entries. Each is given to the PPC Gateway

server whenever its CSMx equivalent transaction name is passed.

Note: When switching between local SNA and a PPC Gateway server, be sure to

purge the old LU entry in the region’s Gateway Definitions (GD) to avoid

duplicate LU names. Refer to “Configuring CICS for PPC Gateway server

SNA support” on page 89 for information about configuring GD entries.

Viewing XLN process status in the PPC Gateway server

Use the ppcadmin list xlns command to view the status of the XLN processes that

are occurring between the CICS region and the remote SNA systems with which it

is communicating. (See “Exchange log names (XLN) process” on page 180 for an

ppcadmin query luentry CICSLUGW

Command executed at: Mon Oct 11 10:48:05 1999

 Executive LU: CICSLUGW

 Total TPN profiles: 1

 TPN Profile: CICSTPN

 Total TP Names: 30

 DTP1

 CEMT

 CVMI

 CRSR

 RECV

 TEST

 ACCT

 BANK

 CSM1

 \01

 CSM2

 \02

 CSM3

 \03

 CESF

 ACC0

 CSM5

 \05

 ACC1

 CSSF

 ADDR

 CECI

 CESN

 CEBR

 CEDF

 CPMI

 CALF

 CECS

 CSMI

 CRTE

Figure 77. ppcadmin query luentry command

204 TXSeries for Multiplatforms: CICS Intercommunication Guide

overview of the XLN process.) An example of this command and its output is

shown in Figure 78.

 In Figure 78, the PPC Gateway server: /.:/cics/ppc/gateway/cicsgwy has made

requests for the XLN process to occur between the local LU CICSLUGW and both

partner LUs CICSESA and CICSMVS. The XLN process, which is represented as Log

Identifier Name Exchange Complete, is successful between CICSLUGW and CICSESA,

but unsuccessful between CICSLUGW and CICSMVS.

An unsuccessful XLN process can occur as a result of network or operations

failures. Check your SNA product’s messages for information about network

availability. Check your PPC Gateway server’s messages for operations problems.

For more information about PPC Gateway server messages, refer to “PPC Gateway

server problem determination” on page 228. For information about the related

ppcadmin query xln command, see TXSeries for Multiplatforms SFS Server and PPC

Gateway Server: Advanced Administration.

Requesting the XLN process with a remote SNA system

Use the ppcadmin force xln command to request that the XLN process occur

between the CICS region and a remote SNA system. (See “Exchange log names

(XLN) process” on page 180 for an overview of the XLN process.)

To use this command, you must provide the local LU name for the local CICS

region and the partner LU name for the remote system. An example of this

command and its output is shown in Figure 79.

In Figure 79, the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy has requested

that the XLN process occur between local LU CICSLUGW and partner LU CICSMVS.

The request is successful.

If the command fails, as shown in the example in Figure 80 on page 206, check the

messages that the PPC Gateway server produces. Refer to “PPC Gateway server

problem determination” on page 228 for information about PPC Gateway server

messages.

ppcadmin list xlns

Command executed at: Mon Oct 11 12:48:16 1999

Number of LU pairs: 2

Executive LU: CICSLUGW

SNA Partner LU: CICSESA

Log Identifier Name Exchange Complete: YES

Executive LU: CICSLUGW

SNA Partner LU: CICSMVS

Log Identifier Name Exchange Complete: NO

Figure 78. ppcadmin list xlns command

ppcadmin force xln CICSLUGW CICSMVS

Command executed at: Mon Oct 11 15:39:22 1999

Figure 79. ppcadmin force xln command with successful results

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 205

Viewing pending resynchronizations in the PPC Gateway

server

Use the ppcadmin query resync command to view the resynchronization requests

that the PPC Gateway server requires to resolve the outcome of distributed CICS

LUWs. (See “Exchange log names (XLN) process” on page 180 for an overview of

the resynchronization process.)

To use this command, you must provide the local LU name for the local CICS

region and the partner LU name for the remote system. An example of this

command and its output is shown in Figure 81.

In Figure 81, the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy is requested to

show the resynchronization requests that are pending between local LU CICSLUGW

and partner LU CICSMVS. Currently, only one resynchronization request is required.

For information about the related ppcadmin list resyncs command, see TXSeries for

Multiplatforms SFS Server and PPC Gateway Server: Advanced Administration.

Canceling pending resynchronizations in the PPC Gateway

server

Use the ppcadmin cancel resync command to delete the resynchronization

requests that the PPC Gateway server requires to resolve the outcome of

distributed CICS LUWs. (See “Exchange log names (XLN) process” on page 180 for

an overview of the resynchronization process.)

ppcadmin force xln CICSLUGW CICSMVS

Error: ENC-ppc-0016: Connection failure, no retry

Figure 80. ppcadmin force xln command with unsuccessful results

ppcadmin query resync CICSLUGW CICSMVS

Command executed at: Mon Oct 11 16:15:53 1999

Log Identifier Name Exchange Complete: NO

Number of transactions with pending resynchronizations: 1

Executive LU: CICSLUGW SNA Partner LU: CICSMVS

 Logical Unit of Work Id: MYSNANET.TMVS412:1c2f3594dea2:0001

 Transaction Id: 2

 Global tid: 00 00 00 02 06 12 01 01 e0 1f 0a 00 b3 f9 a4 1e 8c c0 08

 convId: 20493824

 Conversation Correlator: 60 f9 f8 d3

 Session Id: f0 1c 0f ec 37 51 68 01

 SNA Mode Name: CICSISC0

 Local Tran State: PPC_TRAN_STATE_PREPARED

 Peer Tran State: PPC_TRAN_STATE_PENDING

Transaction is prepared and awaiting resolution at this site. (Not finished).

A prepare has been sent by the peer. The peer has resynchronization

responsibility towards this site.

Figure 81. ppcadmin query resync command

206 TXSeries for Multiplatforms: CICS Intercommunication Guide

To use this command, you must provide the local LU name for the local CICS

region and the partner LU name for the remote system. An example of this

command and its output is shown in Figure 82.

In Figure 82, the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy is requested to

delete the resynchronization requests that are required between local LU CICSLUGW

and partner LU CICSMVS.

Note: Use this command only if the remote SNA system has been cold started, or

the remote system will not contact the PPC Gateway server again. If a

transaction in the local CICS region is waiting for the result of any of the

deleted resynchronization requests, you must issue a FORCEPURGE against

it before it will complete. If the transaction is in doubt, it will commit or

back out as specified in the InDoubt attribute of its Transaction Definitions

(TD) entry.

Viewing intersystem requests running in the PPC Gateway

server

Use the ppcadmin list convs command to view the intersystem requests that are

running in a PPC Gateway server. An example of this command and its output is

shown in Figure 83.

In Figure 83, the PPC Gateway server /.:/cics/ppc/gateway/cicsgwy is requested to

list the current conversations. Two intersystem requests running. One intersystem

request is for the CICS transaction ACCT and is between the local LU CICSLUGW and

the partner LU CICSMVS. The other intersystem request is for the CICS transaction

CEMT and is between the local LU CICSLUGW and the partner LU CICSESA.

If you need more information about a particular conversation, use the ppcadmin

query conv command. This command requires the convId number for the

particular conversation, which you can obtain from the results of the ppcadmin list

ppcadmin cancel resync CICSLUGW CICSMVS

Command executed at: Mon Oct 11 16:15:53 1999

Figure 82. ppcadmin cancel resync command

ppcadmin list convs

Command executed at: Mon Oct 11 16:08:24 1999

total convs: 2

convId: 20493824

 Logical Unit of Work Id: MYSNANET.TMVS412:1c2f3594dea2:0001

 Transaction Id: 2

 Global tid: 00 00 00 02 06 12 01 01 e0 1f 0a 00 b3 f9 a4 1e 8c c0 08

 TP Name: ACCT

 Executive LU: CICSLUGW <-- SNA Partner LU: CICSMVS

convId: 204898c4

 Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002

 Transaction Id: 1

 Global tid: 00 00 00 c6 01 0c 73 6e 61 74 65 73 74 31 00 00 00 08

 TP Name: CEMT

 Executive LU: CICSLUGW <-- SNA Partner LU: CICSESA

Figure 83. ppcadmin list convs command

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 207

convs command. An example of the ppcadmin query conv command and its

output is displayed in Figure 84.

For information about the related ppcadmin query stats command, see TXSeries for

Multiplatforms SFS Server and PPC Gateway Server: Advanced Administration.

Viewing LUWs in the PPC Gateway server

Use the ppcadmin list luws command to view the LUWs that are active in a PPC

Gateway server. An example of this command and its output is shown in Figure 85

on page 209.

ppcadmin query conv 204898c4

Command executed at: Mon Oct 11 17:55:51 1999

convId: 204898c4

Conversation Parameters:

Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002

Transaction Id: 1

Global tid: 00 00 00 c6 01 0c 73 6e 61 74 65 73 74 31 00 00 00 08

TP Name: CEMT

Sync Level: CM_SYNC_POINT

Conversation Type: CM_MAPPED_CONVERSATION

Conversation State: CM_SEND_STATE

Last Sync point State: CM_SEND_STATE

This is an SNA conversation.

 Conversation Correlator: 60 f9 f8 e5

 Session Id: f0 1c 10 19 23 86 ea 02

Peer Information:

 Executive LU: CICSLUGW <-- SNA Partner LU: CICSESA

 Local Tran State: PPC_TRAN_STATE_ACTIVE

 Perceived Peer (Tran) State: PPC_TRAN_STATE_ACTIVE

SNA Parameters:

 SNA Mode Name: CICSISC0

 SNA Security Type: CM_SECURITY_NONE

 SNA User Id:

Conversation Statistics:

 Bytes sent: 933

 Bytes Received: 686

 Error Count: 0

 Number of Sync points: 0

 Number of Backouts: 0

Figure 84. ppcadmin query conv command

208 TXSeries for Multiplatforms: CICS Intercommunication Guide

In Figure 85, the command is issued to the PPC Gateway server

/.:/cics/ppc/gateway/cicsgwy. This PPC Gateway server has two LUWs. For each

LUW, the ppcadmin list luws command displays the following:

v The Logical Unit of Work Id (or LUWId): the SNA unique name for the LUW.

v The Transaction Id (or tid): the local identifier of the LUW that the PPC

Gateway server uses.

v The Global tid: the identifier for the LUW that all involved servers use, such as

a Structured File Server (SFS) server.

If you need more information about a particular LUW, use the ppcadmin query

luw command. This command requires the Logical Unit of Work Id value for the

particular LUW, which you can obtain from the results of the ppcadmin list luws

command. An example of the ppcadmin query luw command and its output is

shown in Figure 86.

For information about the related ppcadmin list transactions and ppcadmin query

transaction commands, see TXSeries for Multiplatforms SFS Server and PPC Gateway

Server: Advanced Administration.

ppcadmin list luws

Command executed at: Mon Oct 11 15:56:58 1999

Total LUWs: 2

Logical Unit of Work Id: MYSNANET.TMVS412:1c2f3594dea2:0001

 Transaction Id: 2

 Global tid: 00 00 00 02 06 12 01 01 e0 1f 0a 00 b3 f9 a4 1e 8c c0 08

Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002

 Transaction Id: 1

 Global tid: 00 00 00 c6 01 0c 73 6e 61 74 65 73 74 31 00 00 00 08

Figure 85. ppcadmin list luws command

ppcadmin query luw MYSNANET.TESA232:1c2bb7ccd158:0002

Command executed at: Mon Oct 11 15:57:39 1999

Logical Unit of Work Id: MYSNANET.TESA232:1c2bb7ccd158:0002

Total transactions: 1

Transaction Id: 1

Global tid: 00 00 00 c6 01 0c 73 6e 61 74 65 73 74 31 00 00 00 08

Number of conversations associated with this transaction: 1

 convId: 204898c4

 Executive LU: CICSLUGW

 SNA Partner LU: CICSESA

 Conversation Correlator: 60 f9 f8 e5

 Session Id: f0 1c 10 19 23 86 ea 02

 Local Tran State: PPC_TRAN_STATE_ACTIVE

 Peer Tran State: PPC_TRAN_STATE_ACTIVE

Transaction is currently active at this site. (Not yet resolved).

Transaction is currently active at the peer. (Not yet resolved).

Figure 86. ppcadmin query luw command

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 209

Changing CICS intercommunication definitions for use with a PPC

Gateway server

If you need to change the routing of the SNA flow, you possibly need to add,

change, or delete CICS intercommunication resource definitions such as:

v Listener Definitions (LD) entries

v Gateway Definitions (GD) entries

v Communications Definitions (CD) entries

This section includes information about when and how these resource definitions

can be updated, and the effects of updating them on the SNA communications

product and the PPC Gateway server.

CICS resource definitions exist in two places:

v In the permanent database that contains the CICS resource definitions that are

available to the region during a cold start.

v In the runtime database that contains the CICS resource definitions that are

available to the region during an autostart. The runtime database is created as

part of a region cold start. It can be changed only when the region is running.

Use the cicsadd command to add intercommunication resource definitions to the

permanent database, and, if the region is running, to the runtime database. For

example, the following command adds a Listener Definitions (LD) entry called

LOCALSNA to a region. The -B option causes the entry to be added to the permanent

database, and, if the region is running, to the runtime database:

cicsadd -c ld -r regionName -B LOCALSNA Protocol=SNA

Use the cicsinstall command to add, to a running region, resources that are

defined in the permanent database. For example, the following command adds to

your region all resources that have the attribute ActivateOnStartup equal to yes:

cicsinstall -r regionName -a

Use the cicsdelete command to delete resources that are defined in the permanent

database, and sometimes, in a running region. For example, the following

command deletes a Listener Definitions (LD) entry called LOCALSNA from a region’s

permanent database only (indicated by the -P option):

cicsdelete -c ld -r regionName -P LOCALSNA

The following table summarizes the effects of changing CICS intercommunication

resource definitions on the region’s permanent and runtime databases.

 Table 38. The effect of updating CICS intercommunication resource definitions

Action Listener Definitions

(LD) entry

Gateway Definitions

(GD) entry

Communications

Definitions (CD)

entry

Add new entry to

permanent database.

This can be done at

any time. The entry

is then available at

the next cold start.

Same as the LD

entry.

Same as the LD

entry.

210 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 38. The effect of updating CICS intercommunication resource definitions (continued)

Action Listener Definitions

(LD) entry

Gateway Definitions

(GD) entry

Communications

Definitions (CD)

entry

Add new entry to

runtime database

while region is

running.

The region accepts a

new LD entry, but it

has no effect. You

must restart the

region before it uses

the new LD entry.

When the GD entry

is added to the

region, CICS

immediately

configures the PPC

Gateway server that

is named in the GD

entry so that it is

available for use by

the region.

The CD entry is

immediately

available for use by

CICS transactions.

Update existing entry

in permanent

database.

This can be done at

any time. The

updated entry is then

available at the next

cold start.

Same as the LD

entry.

Same as the LD

entry.

Update existing entry

in runtime database

while region is

running.

This is not allowed. The entry must be

deleted by using the

cicsdelete -R

command, then

updated.

The entry must be

deleted by using the

cicsdelete -R

command, then

updated.

Delete existing entry

from permanent

database.

This can be done at

any time. The entry

will no longer be

available at the next

cold start.

Same as the LD

entry.

Same as the LD

entry.

Delete existing entry

from runtime

database while

region is running.

The LD entry cannot

be deleted from the

runtime database.

The GD entry can be

deleted at any time.

Before deleting the

entry, CICS removes

its configuration from

the PPC Gateway

server.

The CD entry can be

deleted from the

region only if a CICS

transaction is not

using it for an

intersystem request.

Transaction Definitions (TD) entries also contain intercommunication information

in the TPNSNAProfile, SNAModeName, and IsBackEndDTP attributes. These

attributes affect the way that intersystem requests are processed that involve the

transaction that is named in the TD entry. In addition, TD entries that have the

TPNSNAProfile attribute configured can affect the PPC Gateway servers that are

configured in the Gateway Definitions (GD) and the CICS local SNA support.

If you add a GD entry to your region while it is running, CICS attempts to contact

the PPC Gateway server that is configured in the GD entry in order to pass it

information about the local system. If the PPC Gateway server is not running,

CICS cannot contact it. If this occurs, start the PPC Gateway server, then run the

CGWY transaction. This is described in “Sharing server names between a CICS

region and a PPC Gateway server” on page 177.

If you delete a GD entry from your region, you must ensure that all information

about your region has been removed from the PPC Gateway server. You can do

this by:

v Using the command:

Chapter 8. Creating and using a PPC Gateway server in a CICS environment 211

ppcadmin delete luentry -server server_name LUentry

where server_name is the name of the PPC Gateway server (for example,

/.:/cics/ppc/gateway/cicsgwy) and LUentry is the local LU name taht is

configured in the GatewayLUName attribute of the deleted GD entry. Refer to

TXSeries for Multiplatforms SFS Server and PPC Gateway Server: Advanced

Administration for further information.

v Stopping, then cold starting the PPC Gateway server.

v Stopping and destroying the PPC Gateway server.

Similarly, if you change the local LU name that is configured in the GD entry

attribute GatewayLUName, you must ensure that the information that associates

the original LU name with your region is removed from the PPC Gateway server.

You can do this by stopping and cold starting the PPC Gateway server, or by

issuing the ppcadmin delete luentry command. After the original information is

removed from the PPC Gateway server, you can run the CGWY transaction to add

new information. Refer to “Sharing server names between a CICS region and a

PPC Gateway server” on page 177 for further information.

When you add, update, or delete a Transaction Definitions (TD) entry that has a

non-blank TPNSNAProfile attribute in the running region, the region passes

information about the changes to every PPC Gateway server that is configured in

the GD. If a PPC Gateway server is not running, it does not receive the updates.

This is a concern only if you are adding a TD entry and the PPC Gateway server is

running on AIX. Until this PPC Gateway server is given the information about the

new transaction, it cannot receive intersystem requests for the transaction from

remote SNA systems. If this condition occurs, start the PPC Gateway server and

perform one of the following actions to pass the configuration to the PPC Gateway

server:

v Run the CGWY transaction. This action configures all PPC Gateway servers that

are defined in the GD, with details of the local region and all transactions that

have a TD entry where the TPNSNAProfile attribute is configured.

v Delete, then add the TD entry for the transaction. This action configures all PPC

Gateway servers with the transaction.

v Delete, then add the GD entry for the PPC Gateway server. This action

configures the PPC Gateway server with details of the local region and all

transactions that have a TD entry where the TPNSNAProfile attribute is

configured.

212 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 9. Intersystem problem determination

This chapter contains information about problem determination in an

intercommunication environment. It is provided for CICS users who are new to

SNA. The information in this chapter is not intended to replace the information

that is provided in the administration and diagnosis books that are available with

the SNA products that you are using. Refer to TXSeries for Multiplatforms Concepts

and Planning for a list of relevant SNA books.

This chapter describes:

v The steps to take to track down and solve an intersystem problem

v Common intercommunication problems

v CICS intercommunication error codes that appear in CICS messages

v PPC Gateway server problem determination procedures

Intersystem problem solving process

Problem solving in the CICS intersystem environment might seem a difficult task

because of the number and variety of products that are involved. It requires a

systematic approach that enables you to find the component in the network that is

causing the problem. It is also helpful if you have:

v Knowledge of what each product does

v Familiarity with the diagnostics

v Experience to recognize the symptoms of common problems

The information that follows guides you through the process of intersystem

problem determination and shows you where to look for clues and how to

interpret those clues. It is sometimes difficult in this description to be specific

because each problem is different. However, by following the process that is

suggested, you will be able to isolate your particular problem to one component in

the network and most likely fix it yourself. If you cannot solve the problem, the

information that you have collected will help the service representative to solve the

problem.

To solve intersystem problems, do the following steps:

v “Step 1. Understand the failure scenario”

v “Step 2. Identify the failing component” on page 214

v “Step 3. Fix the problem” on page 215

Step 1. Understand the failure scenario

The first step in problem determination is to have a clear picture of exactly what is

failing. Here are some questions to ask yourself:

v What was the system doing when the failure occurred? For example, was it

initializing or had it been running successfully for some time?

v What transactions were running at the time of the failure? What should these

transactions do?

v When does it fail? Does it fail all the time, or is it intermittent?

v How does it fail? Is it a hang, loop, or abend?

v Did it start failing after a particular event such as a change to the configuration

or a system crash?

v What steps are needed to re-create the problem?

© Copyright IBM Corp. 1999, 2005 213

If possible, try a little experimentation to either narrow the failure down to a

specific scenario, or to discover the extent of the problem. (The CICS-supplied

CECI and CRTE transactions might be useful.)

This experimentation process is best demonstrated with an example. Consider the

problem in which a function shipped temporary storage (TS) queue request that is

issued by a CICS transaction fails. You should try a few requests to see if all

function shipped TS queue requests fail or if it is only the one that was issued by

the failing transaction. If all function shipped TS queue requests fail, do function

shipping requests to files work, for example? If function shipping in general fails,

is transaction routing working or do you have a scenario in which all outbound

requests are failing? If all outbound requests are failing, do inbound requests

work?

By answering these questions you are generating a clear picture of the problem

that you are trying to solve, an important first step to identifying the cause.

Step 2. Identify the failing component

When you are sure of the exact nature and extent of the problem that you are

trying to solve, you must identify which component in the network is failing. You

might have strong suspicions about this already, but if not, or you want to confirm

your suspicions, continue as follows:

1. Identify the components of the network that are involved in the request.

For example, the request might flow from your CICS region, across TCP/IP to

a PPC gateway, then from the PPC gateway through an SNA network to arrive

in a mainframe CICS/ESA system where it is to be run.

2. Check whether each component is running. If a component is running, check

whether it has produced any error or attention messages. (Refer to Table 39 for

some suggestions about where to look for diagnostics.)

 Table 39. Sources of information for following the path of a request

Type of request Local CICS

messages

(console.msg

and CSMT.out)

PPC Gateway

server messages

SNA link trace Remote system’s

message

TCP/IP

intersystem

request

Yes Yes

PPC Gateway

server

configuration

Yes Yes

PPC Gateway

server/SNA

intersystem

request

Yes Yes Yes Yes

Local SNA

intersystem

request

Yes Yes Yes

Note: CICS messages are described in TXSeries for Multiplatforms Messages and

Codes . They are very useful in intersystem PD because:

v They log information on the failing request.

214 TXSeries for Multiplatforms: CICS Intercommunication Guide

v During region startup, messages are logged that describe the network

name and protocols that the region uses and any errors that are detected

in the communication configuration (such as LD, CD and GD entries).

PPC Gateway server messages are described in “PPC Gateway server

message descriptions” on page 232.

It is possible that several components have reported the error. However, it is

usually the component that initially detects the error that gives the most precise

diagnostics. Refer to the message descriptions because they might give you the

exact cause of the error.

If the messages do not identify the problem, try turning on the trace in each

component and rerunning the failing request. Traces show the calls and responses

that are being passed between the different components that might highlight a bad

parameter or return code. They tend to be designed for developers of the product

and so are not easy to read without the product design information. However, the

trace will tell you whether the request even reached a particular component. If you

find that the request failed before reaching the remote system, concentrate your

suspicions around the component that rejected the request. Check the configuration

of this component. Also refer to the information that is given in “Common

intercommunication errors” on page 216 because it might describe the failure that

you are seeing.

If you still cannot determine what is wrong, refer to “Getting further help” because

you need help from the service representative.

Step 3. Fix the problem

The message descriptions and other diagnostics should provide you with the

information that you need in order to solve the problem.

When the problem is fixed, think about whether it could happen again, and

whether you can take any steps to prevent it. This can save you time and trouble

in the future.

Getting further help

If you really cannot solve the problem yourself, collect the appropriate information,

as shown in Table 40, and contact the service representative.

 Table 40. Required information for the service representative

Information Required TCP/IP request Local SNA

request

PPC Gateway

server request

PPC Gateway

server

configuration

Description of the problem Yes Yes Yes Yes

CICS messages, trace and resource

definitions

Yes Yes Yes Yes

PPC Gateway server messages Yes Yes

PPC Gateway server GSD entry Yes Yes

PPC Gateway server trace Yes Yes

PPC Gateway server configuration Yes Yes

SNA product configuration,

messages and link trace

Yes Yes Yes

Chapter 9. Intersystem problem determination 215

Table 40. Required information for the service representative (continued)

Information Required TCP/IP request Local SNA

request

PPC Gateway

server request

PPC Gateway

server

configuration

Messages and other diagnostics on

the remote system

Yes Yes Yes

Common intercommunication errors

This section describes how to solve common intercommunication problems for the

following symptoms:

v “Symptom: cannot start (acquire) SNA sessions”

v “Symptom: the PPC Gateway server fails to start” on page 217

v “Symptom: CICS will not configure the PPC Gateway server” on page 217

v “Symptom: CICS will not configure my transactions in the PPC Gateway server”

on page 217

v “Symptom: CICS cannot configure the PPC Gateway server” on page 218

v “Symptom: CICS for MVS/ESA transactions abend AXFX” on page 219

v “Symptom: SNA exchange log names (XLN) fails” on page 219

v “Symptom: all inbound requests fail” on page 220

v “Symptom: all outbound requests fail” on page 220

v “Symptom: invalid or unrecognizable data is passed to applications” on page

221

v “Symptom: applications fail because of security violations” on page 221

v “Symptom: Transaction routing to CICS Transaction Server for z/OS fail with

communications error 15a00007/a0000100” on page 221

v “Symptom: Transaction routing causes screen errors” on page 222

v “Symptom: CICS fails to detect a predefined CD entry, and autoinstalls another”

on page 222

Symptom: cannot start (acquire) SNA sessions

These problems are usually because of:

v A configuration problem

v The remote system, or part of the network, being unavailable

Check whether all the components of your network, including the remote system,

are running. Check whether the configuration in these components is properly

installed.

If the link will not start and the relevant machines are running, either your local

machine, VTAM, or the remote machine does not have correct node, or machine

address information.

If the link is running but the session will not start, experiment to see whether the

session can be activated from one side only. For example, the session might not

start if the request is issued locally, but will start if activated from the remote

system. If this occurs, the local and partner Logical Unit (LU) names are correctly

configured but either,

v The modename definition that is used does not allow both systems to bind

contention winners.

216 TXSeries for Multiplatforms: CICS Intercommunication Guide

v The side that cannot start any sessions cannot locate the remote system. This

could be because the remote system is defined as located on the wrong machine,

or using the wrong link.

If the session will not start in either direction, check:

v The local and partner LUs are correctly defined on all systems.

It is often easy to misspell LU names; for example, replacing a numeric 0 (zero)

with the letter O, or the number one (1) with the letter l.

v If VTAM is used, the PU and LU definitions that are used are correct.

v The modenames that are used are consistent both in the local definitions and in

the remote system’s definitions. In addition, if VTAM is used, MODEENT

definitions are required for each modename.

Refer to the specific SNA product information for details of local configuration and

how to display the status of your SNA product.

Symptom: the PPC Gateway server fails to start

The PPC Gateway server is started using the cicsppcgwy command. If this fails to

work, check the message descriptions that this command produces. Also check the

PPC Gateway server’s message file, because the PPC Gateway server might have

started, detected a bad condition, then exited. More information about PPC

Gateway server messages is given in “PPC Gateway server message descriptions”

on page 232.

If RPC-only is being used, check the server_bindings file CICS_HOSTS

environment variable.

Symptom: CICS will not configure the PPC Gateway server

Your CICS region requires a Gateway Definitions (GD) entry for your PPC

Gateway server in order to pass it configuration information. Check whether you

have defined a GD entry for the PPC Gateway server and this entry is installed in

your CICS region. If your GD entry is correct, refer to “Symptom: CICS cannot

configure the PPC Gateway server” on page 218.

Symptom: CICS will not configure my transactions in the PPC

Gateway server

When configuring a PPC Gateway server, your CICS region attempts to pass the

names of all CICS transactions that have a value configured in the TPNSNAProfile

attribute of their Transaction Definitions (TD) entry. Only the AIX PPC Gateway

Server requires this information because it cannot receive an intersystem request

from Communications Server for AIX unless:

v The TD entry for the CICS transaction has the TPNSNAProfile attribute set to

the name of a valid AIX TPN profile.

v This profile is in Communications Server for AIX’s runtime database.

v CICS has successfully configured the AIX PPC Gateway Server with the name of

the CICS transaction.

You can view the CICS transactions that are configured in the PPC Gateway server

by using ppcadmin. If your transaction is not configured in the PPC Gateway

server, check whether:

v The TPNSNAProfile attribute in the TD entries is set up correctly.

Chapter 9. Intersystem problem determination 217

v Your CICS region can successfully configure the PPC Gateway server. (For more

information, refer to “Symptom: CICS cannot configure the PPC Gateway

server.”)

Note: When using a non-AIX PPC Gateway Server, it is usual to leave the

TPNSNAProfile attributes set to their default value of ″″. However, if the

TPNSNAProfile attributes are changed and CICS passes some transaction

names to a non-AIX PPC Gateway Server, it responds to CICS by indicating

that it does not need this information, and CICS stops the configuration.

Therefore, if you do configure the TPNSNAProfile attribute in your TD

entries, CICS will make one unnecessary configuration request to the

non-AIX gateway each time it is configured.

Symptom: CICS cannot configure the PPC Gateway server

The CICS-supplied transaction CGWY configures the PPC Gateway servers at CICS

region startup, or you can run it by using the EXEC CICS START

TRANSID(CGWY) command. To configure the PPC Gateway servers, CGWY

needs:

v A Transaction Definitions (TD) entry for CGWY that allows it to run as a

background task

v A Gateway Definitions (GD) entry for each PPC Gateway server that it is to

configure

Check whether these conditions are satisfied.

Your CICS region also configures a PPC Gateway server when a GD entry for that

PPC Gateway server is successfully installed in the region.

When the PPC Gateway server configuration is in progress:

v The PPC Gateway server must be running.

v Your SNA product must be correctly configured.

CICS writes messages to the console.nnnnnn file while the PPC Gateway server

configuration is in progress. These messages show the GD entries that are being

used for the configuration. In the example below, the CICS region cics6000 has two

GD entries, one named GWY and the other named GWY2.

If CICS detects errors when configuring a PPC Gateway server, it writes an error

message that describes the problem to console.nnnnnn, and moves to the next GD

entry. Examine these messages in your region’s nnnnnn file. They are described in

ERZ030060I/3101 date time region : \

PPC Gateway server configuration has started

ERZ030062I/3103 date time region : \

Configuring PPC Gateway server ’GWY’ with details of the region

ERZ030063I/3104 date time region : \

Configuring PPC Gateway server ’GWY’ with details of local transactions

ERZ030064I/3109 date time region : \

Configuring PPC Gateway server ’GWY’ has ended

ERZ030062I/3103 date time region : \

Configuring PPC Gateway server ’GWY2’ with details of the region

ERZ030063I/3104 date time region : \

Configuring PPC Gateway server ’GWY2’ with details of local transactions

ERZ030064I/3109 date time region : \

Configuring PPC Gateway server ’GWY2’ has ended

ERZ030061I/3102 date time region : \

PPC Gateway server configuration has ended

218 TXSeries for Multiplatforms: CICS Intercommunication Guide

the TXSeries for Multiplatforms Messages and Codes manual. If error messages occur,

follow the instructions that are given in the message descriptions. If no error

messages occur, check whether the GD entries contain the correct values for the

PPC Gateway server. Also check whether the required GD entries are installed in

your region. Finally, check the PPC Gateway server’s message file, because the

PPC Gateway server may have reported the reason for the error.

Symptom: CICS for MVS/ESA transactions abend AXFX

The AXFX abend code usually occurs if a CICS for MVS/ESA transaction makes a

synchronization level 2 request to CICS for Open Systems on a connection that has

not successfully exchanged log names (XLN).

XLN can be successful only on a SNA connection that uses a PPC Gateway Server.

So check whether the CICS for Open Systems Communications Definition (CD)

entry for the connection is set up with ConnectionType=ppc_gateway.

If the SNA connection is using a PPC Gateway Server, refer to “Symptom: SNA

exchange log names (XLN) fails” because this explains how to make the XLN

work.

If the connection should use local SNA (ConnectionType=local_sna) and, therefore,

you want CICS for MVS/ESA to use synchronization level 1 intersystem requests,

change the local LU definition in your SNA product so it requests synchronization

level 1 instead of synchronization level 2. For information about synchronization

levels, refer to “Ensuring data integrity with synchronization support” on page 16.

Alternatively:

v “Communicating across SNA connections” on page 8 compares using local SNA

with using a PPC Gateway Server.

v Chapter 4, “Configuring CICS for SNA,” on page 67 describes how to configure

CICS to use local SNA or a PPC Gateway Server.

Symptom: SNA exchange log names (XLN) fails

SNA Synchronization level 2 intersystem requests can be sent only to a remote

system that has successfully completed exchange log names (XLN). XLN occurs

between the remote SNA system and a PPC Gateway Server. Ensure that the

remote system, SNA session, and PPC Gateway Server are running. Also check

whether the remote system can support synchronization level 2 requests.

Use the ppcadmin list xln command to list the XLN status of your SNA

connections. (This is described in “Viewing XLN process status in the PPC

Gateway server” on page 204.)

If XLN is not successful for a connection, check the PPC Gateway Server’s message

file because the PPC Gateway Server might have logged an error message that

indicates why the XLN failed. Follow the instructions that are given in “PPC

Gateway server message descriptions” on page 232 for any error messages that

you find.

If the ppcadmin list xln command does not list a particular SNA connection, XLN

has never been attempted for the connection since the PPC Gateway Server was

last cold started. Use the ppcadmin list luentries command, which is described in

“Viewing CICS configuration in the PPC Gateway server” on page 203, to show

which CICS regions have configured the PPC Gateway Server. Follow the

Chapter 9. Intersystem problem determination 219

instructions that are given in “Symptom: CICS will not configure the PPC Gateway

server” on page 217 if your CICS region has not configured the PPC Gateway

Server.

When you have ensured that the PPC Gateway Server has been configured by

your CICS region, use the ppcadmin force xln command, which is described in

“Requesting the XLN process with a remote SNA system” on page 205, to issue an

XLN request. If this command fails, check the PPC Gateway Server’s message file

because the PPC Gateway Server will have logged an error message that indicates

why the XLN failed. Follow the instructions for these messages, which are given in

“PPC Gateway server message descriptions” on page 232.

For information about synchronization levels, refer to “Ensuring data integrity with

synchronization support” on page 16. Alternatively:

v “Mixing the communications methods” on page 11 compares using local SNA

with using a PPC Gateway Server.

v Chapter 4, “Configuring CICS for SNA,” on page 67 describes how to configure

CICS to use local SNA or a PPC Gateway Server.

v “Overview of the PPC Gateway server” on page 175 describes how the PPC

Gateway Server works.

Symptom: all inbound requests fail

Check whether your CICS region is available and configured correctly. Examine the

CICS messages that are written to your region’s console.nnnnnn and CSMT.out

because they might explain what the problem is.

Check whether the network and the remote system are available and configured

correctly. If you are using a PPC Gateway server and SNA synchronization level 2,

check whether exchange log names has been successful. (Refer to “Symptom: SNA

exchange log names (XLN) fails” on page 219.)

If you are using a PPC Gateway server, check whether the PPC Gateway server is

configured correctly. Refer to “Symptom: CICS cannot configure the PPC Gateway

server” on page 218 for more information.

Look for error messages that are written by the remote system, because the remote

system might have rejected the request before it was sent into the network.

If you are using Communications Server for AIX, ensure that the TPNSNAProfile

attribute for all your Transaction Definitions (TD) entries are set to the name of an

Communications Server for AIX TPN profile, and, if you are using an AIX PPC

Gateway Server, that CICS has configured these transactions in the PPC Gateway

server. (Refer to “Symptom: CICS will not configure my transactions in the PPC

Gateway server” on page 217.)

Symptom: all outbound requests fail

Examine the CICS messages that are written to your region’s console.nnnnnn and

CSMT.out because they might explain what the problem is.

Check whether the network and the remote system are available and configured

correctly.

If you are using a PPC Gateway server, check whether the PPC Gateway server is

configured correctly and running. The PPC Gateway server is configured in your

220 TXSeries for Multiplatforms: CICS Intercommunication Guide

CICS region using a Gateway Definitions (GD) entry. (Refer to “Symptom: CICS

cannot configure the PPC Gateway server” on page 218 for more information.) If

the PPC Gateway server is successfully configured, check whether the PPC

Gateway server has written any error messages. More information about PPC

Gateway server messages is given in “PPC Gateway server message descriptions”

on page 232.

The Communications Definitions (CD) entry for your connection should point to

this GD entry by the GatewayName attribute.

If you are using SNA synchronization level 2, check whether exchange log names

has been successful. (Refer to “Symptom: SNA exchange log names (XLN) fails” on

page 219.)

Look for error messages that are written by the remote system, because the remote

system might have rejected the request.

Symptom: invalid or unrecognizable data is passed to

applications

If your applications are starting correctly, but the data that they are given is not

what was sent (for example, the COMMAREA that is passed to a DPL program

has invalid values), it could be that:

1. The data conversion templates are not installed correctly.

2. The TemplateDefined attribute of your local resource (for example, a program

or file) is not set to yes.

See “Summary of data conversion” on page 169 and Chapter 7, “Data conversion,”

on page 147.

Symptom: applications fail because of security violations

If intersystem requests fail for security reasons, your security configuration might

be incorrect. Access to resources for intersystem requests are controlled by static

configuration. When configured, the security checking operates automatically. Try

to establish which part of the network is rejecting the request. For example:

v Is the request failing before it leaves the originating system? TXSeries for

Multiplatforms returns NOTAUTH to an application if it attempts to use the

SYSID option on a function shipping request when RSLCheck=internal in the

application’s Transaction Definitions (TD) entry.

v Check whether any user IDs that are sent with CICS intersystem requests are

recognized by the remote system. This includes the CICS default user ID, which

is configured in the RD attribute DefaultUserId, that is used by CICS private

transactions.

Refer to Chapter 6, “Configuring intersystem security,” on page 123 and “Common

configuration problems with intersystem security” on page 144 for more

information about security configuration and problems.

Symptom: Transaction routing to CICS Transaction Server for

z/OS fail with communications error 15a00007/a0000100

If your region is communicating with CICS Transaction Server for z/OS version 4.1

or later, and all transaction routing requests fail with a communications error

15a00007/a0000100, this could be because of a mismatch in the security

configuration in the two systems.

Chapter 9. Intersystem problem determination 221

If the CONNECTION definition on CICS Transaction Server for z/OS has

ATTACHSEC set to IDENTIFY or VERIFY, and USEDFLTUSER set to NO, CICS

Transaction Server for z/OS requires a user ID to be sent with all transaction

routing requests. If a user ID is not received, CICS Transaction Server for z/OS

unbinds the session that is used by the transaction routing request with a

sensecode of X’080F6051’. Your region is informed of a conversation failure and

reports communications error 15a00007/a0000100.

To solve this problem you can either:

v Set OutboundUserIds=sent in the Communications Definition (CD) entry for the

remote system so that your region sends user IDs to CICS Transaction Server for

z/OS, or

v Change the settings of ATTACHSEC or USEDFLTUSER in the CICS Transaction

Server for z/OS CONNECTION definition so that it does not require your

region to send user IDs.

Symptom: Transaction routing causes screen errors

Problems with the data that is displayed at a terminal by a transaction routed

transaction can be caused by:

v Incorrect code page defined in the RemoteCodePageTR attribute of the

Communications Definitions (CD) entry. Refer to “Data conversion for

transaction routing” on page 164 for information about how to code this

attribute.

v Incompatible terminal definitions in the local or remote regions. Check whether

the terminal definitions that are used by each system are compatible. TXSeries

for Multiplatforms uses a Terminal Definitions (WD) entry to define a terminal.

v Errors in the application program. Check whether the application runs with a

local terminal.

Symptom: CICS fails to detect a predefined CD entry, and

autoinstalls another

If you have previously defined a Communications Definitions (CD) entry for a

remote system that is connected over CICS family TCP/IP, CICS might fail to use

it when a connection request is received, and it might autoinstall another CD entry.

When CICS receives a connection request from a remote CICS system, it searches

the CD entries in your region to determine whether one already exists for that

connection.

The CD attributes that it checks are:

v ConnectionType

v RemoteLUName

v RemoteTCPAddress

v RemoteTCPPort

v ListenerName

Also, the CD entry must not be in use by another connection.

If you have predefined a CD entry for the remote system, but CICS does not use it

and proceeds to build an autoinstall entry, check the following:

v Verify that the attributes that are listed above have been defined correctly.

v Check whether both systems are trying to acquire the connection simultaneously.

222 TXSeries for Multiplatforms: CICS Intercommunication Guide

When your local CICS region attempts to acquire a connection to a remote

system, it will use its CD entry for that connection. If the remote system

attempts to acquire the connection at the same time, your local CICS region will

not be able to use that same CD entry when it receives the connection request,

because that entry will be in use. Therefore your CICS region will autoinstall

another CD entry.

v Check the definition of the connection in the remote system, and ensure that

when your local region sends a connection request, the remote system selects the

correct definition.

If the remote system is a CICS OS/2 system, it should issue an EXEC CICS

INQUIRE CONNECTION() NETNAME() command before your local CICS

region issues its connection request. This command ensures that the correct LU

Name is set into its definition of the connection, and so it will use that definition

when it receives the connection request from your CICS region.

SNA product-specific errors

For SNA product-specific errors, you should refer to the appropriate SNA product

book:

v TXSeries for Multiplatforms Using IBM Communications Server for AIX with CICS

v TXSeries for Multiplatforms Using IBM Communications Server for Windows Systems

with CICS

v TXSeries for Multiplatforms Using Microsoft SNA Server with CICS

v TXSeries for Multiplatforms Using SNAP-IX for Solaris with CICS

v TXSeries for Multiplatforms Using HP-UX SNAplus2 with CICS

CICS error codes

Some CICS error messages contain:

Communications error primaryCode/secondaryCode

where primaryCode is the primary error code, and where secondaryCode is the

secondary error code. The following list shows the primary and secondary error

codes. Refer to this list for problem determination when you get a CICS

communications error message that contains these codes:

15a0000a/15a0010a Unsupported

Explanation: An attempt has been made to use a

communications function that is not supported by the

communications protocol.

System action: The communications conversation

might fail.

User response: Look for additional messages in the

console.nnnnnn file and the CSMT log. These might

describe the cause of the problem, and tell you how to

proceed.

 If the problem remains, contact your service

representative.

15a00001/8890000 Program Error Purging

Explanation: The remote program called EXEC CICS

ISSUE ERROR.

System action: The transaction might be abnormally

terminated.

User response: If you are using distributed transaction

processing (DTP), check whether the front-end and

back-end transactions that are involved in the

communications conversation are behaving as expected.

Refer to “Communicating errors across a conversation”

on page 295 for more information. If the indicated

transaction is a back-end DTP transaction, ensure that

the transaction definition IsBackEndDTP is set to yes.

If the problem remains, contact your service

representative.

15a00002/15a00101 Allocate Busy

Explanation: CICS attempted to allocate a

conversation, but no bound contention winner sessions

were available.

System action: The communications conversation has

not been started.

Chapter 9. Intersystem problem determination 223

User response: Query your SNA product to determine

whether any sessions are active to the remote system. If

no sessions are active, start some. This might require

restarting the remote system, or part of the network. If

all available sessions are bound, but they are in use,

considering increasing the number of sessions. This is

configured in the mode (or session) definition both in

your local SNA product and in the remote system.

These ″session limits″ must be the consistent in both

system for the connection to activate.

 When sessions have been made available, rerun the

intersystem request.

15a00002/15a00102 Allocate Failure

Explanation: CICS was unable to initiate an

intersystem request with the remote system because

either

v The remote system or intervening network is

unavailable

v The communications configuration in the

Communications Definitions (CD) entry for the

connection is incorrect

v If the remote system is connected by SNA, the SNA

configuration might be incorrect

System action: The intersystem request fails. Further

messages that give more detail might follow.

User response: Check the Communications Definitions

(CD) entry for the connection on the local and the

equivalent definitions on the remote system. Check

whether the remote system and the network path to the

remote system are available and correctly configured.

 If CICS Bind time security is being used, ensure that no

mismatch exists in the bind passwords that are used by

each system. Refer to “Authenticating systems across

SNA connections” on page 125 for further information

about Bind time security.

15a00003/15a00109 Allocate Timed Out

Explanation: The communications operation did not

complete in the acceptable time. The timeout value is

configured in the AllocateTimeout attribute in the

Communications Definitions (CD) entry.

System action: The intersystem request has not been

started, or has been terminated.

User response: Check whether the remote system is

available and the connection between the local system

and the remote system is working if the connection is

using a PPC Gateway server.

 Check the value that is specified in the CD entry for

the AllocateTimeout attribute, or the Timeout on

allocate if you are using the IBM TXSeries

Administration Tool (on Windows systems), or Timeout

on allocate (in seconds) field if you are using AIX

SMIT. The configuration of the CD entries is described

in:

v “Configuring CD entries for CICS PPC TCP/IP” on

page 47

v “Using SMIT to configure CD entries (AIX only)” on

page 52

v “Configuring CICS for PPC Gateway server SNA

support” on page 89

You can change the configured value, which is

described in:

v “Changing the attributes of a PPC Gateway server”

on page 188

15a00004/15a0010d Synclevel Not Supported Locally

Explanation: The local system cannot support the

requested synchronization level. This is usually because

the transaction has requested a higher synchronization

level than is supported on the connection. The type of

connection is configured in the ConnectionType

attribute of the CD entry that is specified in the SYSID

option for the intersystem request. “Designing your

network configuration” on page 5 describes the

different types of connections and the synchronization

levels that they support. “Ensuring data integrity with

synchronization support” on page 16 describes the

synchronization levels, and their uses in intersystem

requests.

System action: The communications conversation has

not been started, or has been terminated.

User response: Examine the CD entry that the request

uses. Check whether the ConnectionType is correct.

Check the type of intersystem request that the

application is making, and that the synchronization

level that is requested is supported on the connection.

If using distributed transaction processing (DTP), check

the SYNCLEVEL option that is used on CONNECT

PROCESS. Refer to the TXSeries for Multiplatforms

Application Programming Reference for more information.

Make any necessary changes to the CD entry or the

application, and rerun the request.

15a00004/15a00103 Invalid Convid

Explanation: An invalid conversation identifier has

been used on a call to an intersystem communications

function.

System action: The communications function is not

processed.

User response: If using distributed transaction

processing (DTP), check whether the CONVID option

on EXEC CICS calls is set correctly. If the problem

remains, contact your service representative.

15a00004/15a00104 Invalid Mode/Partner LU alias

Explanation: An intersystem request was unsuccessful

because either the modename, or the remote system

name is not correctly configured in SNA.

224 TXSeries for Multiplatforms: CICS Intercommunication Guide

The modename can be specified in:

v The PROFILE option of an EXEC CICS ALLOCATE

command

v The SNAModeName attribute of the Transaction

Definitions (TD) entry for the transaction that is

issuing the intersystem request

v The DefaultSNAModeName attribute of the

Communications Definitions (CD) entry

v The local SNA product

Refer to “Default modenames” on page 110 for more

information about SNA modenames.

 The remote system name is specified by using the

RemoteLUName, RemoteNetworkName, and

SNAConnectName attributes of the Communications

Definitions (CD) entry that the intersystem request

uses. Those attributes must be consistent with the

configuration in both your local SNA product and the

remote system.

System action: The intersystem request is

unsuccessful.

User response: Examine the CICS message logs and

the definitions that are used by the issuing transaction,

to determine which remote system and modename is

requested. Ensure that the configuration in CICS is

consistent with the configuration that is in your local

SNA product and remote system. Rerun the request

after you have corrected the error.

15a00004/15a00105 Invalid Parameter

Explanation: An unrecognized parameter, such as a

local or partner LU name, has been used on an

intersystem request. If the intersystem request was

received from a remote system, the error might be that

the remote system is not correctly defined in the

Communications Definitions (CD). If the intersystem

request is issued by a local transaction, the error might

be that the application has requested invalid options.

Possible reasons for this are:

v The local LU name that is used on the request is not

correctly defined to your SNA product.

v The local LU name is being used by more than one

PPC Gateway server or CICS region.

v The remote system names that are configured in the

RemoteLUName and SNAConnectName attributes

of the CD entry are incorrect or are not configured in

your SNA product.

v The application has requested an invalid option.

If the CD entry for the remote system is correct and a

valid intersystem request is being issued, this error

could be caused by incompatible versions of the

software that your region is using.

System action: The parameter is ignored and the

intersystem request might abnormally terminate.

User response: Examine the console.nnnnnn file and

the CSMT log for additional messages that might

describe the cause of this error. If additional messages

are produced, follow the instructions for these

messages. Also look for messages from your SNA

product or PPC Gateway server if you are using one. If

no additional messages are produced, check whether

the levels of software that are used by your region are

compatible. In addition, if you are using a SNA

product, a PPC Gateway server, or both, ensure that

they are also compatible with your CICS region.

15a00004/15a00110 Exchange log name failed

Explanation: The PPC Gateway server attempted to

set up a synchronization level 2 conversation with a

remote system across SNA, but was unable to exchange

log names with it.

System action: The communication conversation has

not been started.

User response: See “PPC Gateway server message

descriptions” on page 232 for a description of how to

find the PPC Gateway server message file, and how to

use it to solve the exchange log name problem. Search

the message file for messages about log name exchange

for the local and remote systems, and follow the

instructions for the message. When the exchange has

completed successfully, retry the request.

15a00005/15a00108 State Error

Explanation: The communications verb is not allowed

in this particular conversation state.

System action: The communications conversation is

abnormally terminated.

User response: If using distributed transaction

processing (DTP) check whether the front-end and

back-end transactions that are involved in the

communications conversation are correct. Refer to “The

state numbers” on page 331 for more information. If

this problem remains, contact your service

representative.

15a00005/15a00111 Backout required

Explanation: The transaction is in backout (or

rollback) required state, because it received a backout

request from the remote system, or because a previous

synchronization level 2 intersystem request abnormally

terminated. When in this state, the transaction must

issue an EXEC CICS SYNCPOINT ROLLBACK

command. The transaction did not issue a rollback

command, and the command that it did issue failed

with this error code.

System action: CICS abnormally terminates the

intersystem request.

User response: Examine, then correct, the logic of the

transaction program to ensure that it issues an EXEC

Chapter 9. Intersystem problem determination 225

CICS SYNCPOINT ROLLBACK command when in

backout required state. The CSMT log might show

additional messages that help you identify the

command that was issued and caused this error.

15a00006/15a0010c Local SNA not initialized

Explanation: An intersystem request is using a

Communications Definitions (CD) entry that is

configured to use local SNA. However, local SNA is not

enabled in your region.

System action: CICS abnormally terminates the

intersystem request.

User response: Configure your region to use local

SNA (as described in “Configuring CICS for local SNA

support” on page 70), and retry the request.

15a00006/15a00106 Communications Protocol Specific

Error

Explanation: A communications protocol specific

failure has occurred. This might occur if a transaction

has been abnormally terminated.

System action: The communications conversation fails.

User response: If the problem remains, contact your

service representative.

15a00007/a0000100 Conversation Failure

Explanation: The conversation to the remote system

has failed.

System action: The communications conversation has

been terminated.

User response: Check whether the remote system is

available and whether the link between the local

system and the remote system is working.

15a00007/10086021 Transaction Unknown on Remote

System

Explanation: The transaction is not known by the

remote system.

System action: The communications conversation has

not been started, or has been terminated.

User response: Check whether the transaction is

defined on the remote system.

 Check whether the communication products that are

used by the remote system are available.

15a00007/10086031 PIP Data Not Supported by the

Remote System

Explanation: A CICS transaction sent Process

Initialization Parameter (PIP) data to a remote system

that does not support PIP data. The use of PIPLENGTH

and PIPLIST on the EXEC CICS CONNECT PROCESS

is not allowed on this conversation.

System action: The conversation state is switched to

FREE.

User response: If using distributed transaction

processing (DTP), check the usage of PIPLENGTH and

PIPLIST on the calls to EXEC CICS CONNECT

PROCESS. Refer to the TXSeries for Multiplatforms

Application Programming Reference for more information.

Also check the SNA configuration in the remote system

because it might be possible to enable PIP data.

15a00007/10086032 PIP Data Incorrectly Specified

Explanation: A CICS transaction sent incorrectly

specified Process Initialization Parameter (PIP) data to a

remote system. The remote system rejected the PIP

data. PIP data is passed by using the PIPLENGTH and

PIPLIST options on the EXEC CICS CONNECT

PROCESS is command.

System action: The connection will not be made.

User response: If using distributed transaction

processing (DTP), check the usage of PIPLENGTH and

PIPLIST on the calls to EXEC CICS CONNECT

PROCESS. If the problem remains, contact your service

representative. Refer to the TXSeries for Multiplatforms

Application Programming Reference for more information.

15a00007/10086034 Conversation Type Mismatch

Explanation: An attempt has been made to allocate a

mapped conversation, but the remote system was

expecting a basic conversation. CICS supports only

mapped conversations, so the remote system and

program need to be changed.

 This error can also occur if CICS receives a request

from a remote system to attach a basic conversation

System action: The communications conversation has

not been started, or has been terminated.

User response: Change the configuration and the

program in the remote system so that it can accept a

mapped conversation from your region. then rerun the

request.

15a00007/10086041 Sync Not Supported by Remote

Program or System

Explanation: Indicates that synchronization level 2

conversations are not supported.

System action: CICS abnormally terminates the

intersystem request.

User response: If using distributed transaction

processing (DTP), check the SYNCLEVEL option that is

used on CONNECT PROCESS. Refer to the TXSeries for

Multiplatforms Application Programming Reference for

more information.

226 TXSeries for Multiplatforms: CICS Intercommunication Guide

15a00007/80f6051 Security Violation

Explanation: The remote system has rejected an

intersystem request because the local transaction, or the

local region, does not have the authority to access the

required resource. The reason could be:

v The Communications Definitions (CD) entry that is

defined in your region for the remote system is not

configured to send user IDs. (Refer to the

OutboundUserIds attribute of the CD.)

v The user ID that is associated with the local

transactions does not have enough authority on the

remote system to access the resources that are

requested in the intersystem request.

System action: CICS abnormally terminates the

intersystem request.

User response:

v Check whether the CD entry is configured to flow

user IDs (OutboundUserIds=sent).

v Check whether the security configuration in the

remote system allows your local region, and the user

ID of the user who is making the intersystem

request, to gain access to the required resource.

Refer to Chapter 6, “Configuring intersystem security,”

on page 123 for more information about how to

configure for security.

15a00007/84b6031 Remote Transaction Temporarily

Not Available

Explanation: The transaction is known at the remote

system, but cannot be started.

System action: The communications conversation has

not been started, or has been terminated.

User response: Look at the errors that are logged by

the remote system. Determine why the transaction is

not available on the remote system at the present time.

15a00007/84c0000 Remote Transaction Not Available

Explanation: The transaction is known at the remote

system, but cannot be started.

System action: The communications conversation has

not been started, or has been terminated.

User response: Look at the errors that are logged by

the remote system. Determine why the transaction is

not available on the remote system.

15a00007/8640000 Conversation Abnormal Termination

Explanation: The remote program or system has

performed an EXEC CICS ISSUE ABEND.

System action: CICS abnormally terminates the

intersystem request.

User response: Look for additional error messages in

both the local and remote system that might indicate

the cause of the network failure. If using distributed

transaction processing (DTP), check whether the

front-end and back-end transactions that are involved

in the communications conversation are correct. Refer

to “Communicating errors across a conversation” on

page 295 for more information.

 If the problem remains, contact your service

representative.

15a00007/8640001 Conversation Abnormal Termination

Explanation: The remote system has performed an

EXEC CICS ISSUE ABEND.

System action: The communications conversation is

abnormally terminated.

User response: Look for additional error messages in

both the local and remote system that might indicate

the cause of the network failure. If using distributed

transaction processing (DTP), check whether the

front-end and back-end transactions that are involved

in the communications conversation are correct. Refer

to “Communicating errors across a conversation” on

page 295 for more information.

 If the problem remains, contact your service

representative.

15a00007/8640002 Conversation Abnormal Termination

Explanation: The remote system has abnormally

terminated the conversation because of a timeout.

System action: The communications conversation is

abnormally terminated.

User response: Look for additional error messages in

both the local and remote system that might indicate

the cause of the network failure. If using distributed

transaction processing (DTP), check whether the

front-end and back-end transactions that are involved

in the communications conversation are correct. Refer

to “Communicating errors across a conversation” on

page 295 for more information.

 If the problem remains, contact your service

representative.

15a00008/15a00107 Conversation Terminated Normally

Explanation: The remote system has terminated the

conversation normally.

System action: The communications conversation ends

normally, but unexpectedly.

User response: Look for additional error messages in

both the local and remote system that might indicate

the cause of the network failure. If using distributed

transaction processing (DTP), check whether the

front-end and back-end transactions that are involved

Chapter 9. Intersystem problem determination 227

in the communications conversation are correct. Refer

to the description of FREE in the TXSeries for

Multiplatforms Application Programming Reference for

more information.

 If the problem remains, contact your service

representative.

15a00009/8240000 Backed Out

Explanation: The remote system has requested that

work that has been done since the last sync point be

backed out. This indicates that the transaction has been

abnormally terminated.

System action: The local transaction will back out to

the previous sync point.

User response: Check for any error messages that are

logged by the remote system. Refer to the description

of the TXSeries for Multiplatforms Application

Programming Reference for more information.

PPC Gateway server problem determination

The PPC Gateway server uses the standard CICS Toolkit trace facilities to generate

its messages and its trace. This means that the style and content of its output is

very different from the CICS messages and trace that is described in TXSeries for

Multiplatforms Messages and Codes and TXSeries for Multiplatforms Problem

Determination Guide. The following information describes the general layout of the

PPC Gateway server’s messages and trace and provides explanations of some of

the messages that you might see.

Format of PPC Gateway server messages and trace

The PPC Gateway server produces messages and trace that are in the same format.

Below is an example of a PPC Gateway server message, showing the information

that it contains.

Table 41 shows the different message types the PPC Gateway server uses. Refer to

“PPC Gateway server message descriptions” on page 232 for descriptions of

individual messages.

 Table 41. Message types

Designator Description

A These messages are named audit messages. They record significant events

that occur while the PPC Gateway server is running. The text that appears in

the message is free format. Here is an example (this message is produced

when the PPC Gateway server has completed initialization):

31 22644 96/01/01-19:43:43.744425 74182e16 A Ready...

message header message text

1 37944 94/10/11 12:02:08.828956 74183c38 A Initialized

The type of message or trace entry

The message catalog number

The time

The date

The operating system process identifier (pid)

The thread identifier

Figure 87. Example PPC Gateway server message

228 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 41. Message types (continued)

Designator Description

W These messages are named attention messages. They record unexpected

events that occur while the PPC Gateway server is running. Here is an

example of an attention message:

31 22644 96/01/01-19:43:43.744425 a0040437 W System crash

 imminent, machine low on swap space. (0x74183027) : ppc_gwy

The first line of text describes the error condition. The second line, that

describes where in the PPC Gateway server code the message was produced,

is in two parts. The first part contains the value, in parentheses, of the NLS

message number (0x74183027 in the example). The second part, which is

separated by a colon (:), is the name of the component within the PPC

Gateway server that produced the attention (ppc_gwy in our example). The

component name is useful if you have to investigate a problem, because it is

possible to switch on the PPC Gateway server trace so that it is produced

only by a particular component. The attention message might indicate which

component is failing and, therefore, which component to trace.Need to

replace this with an example that does not mention

F These messages are named fatal messages and are issued just before the PPC

Gateway server exits. They indicate that an event has occurred which the

PPC Gateway server can not process. Here is an example of a fatal error

message that was produced by the PPC Gateway server. Notice that it

follows a similar format to the format of the attention message above:

 31 22644 96/01/01-19:43:43.744425 50400415 F unable to

 create signal handler thread

When these messages occur, the PPC Gateway server writes as much

debugging information as it has to a file named EncinaBacktrace.pid, where

pid is the operating system process identifier for the failed PPC Gateway

server process. This file is written to the directory in which you started the

PPC Gateway server. You can format it by using the interpretTrace utility as

follows:

interpretTrace < EncinaBacktrace.pid > outputfile

The remaining types of PPC output are trace entries. This trace is designed for use

by the PPC developers. Therefore, a precise definition of the contents of the PPC

Gateway server trace is not published. Because it is often possible to follow the

trace output, a general overview is given below:

 Table 42. Trace types

Designator Description

> This is a function entry trace point. It is produced on entry to a function if

trace is switched on. Here is an example that contains the function name,

followed by the source file and component to which the function belongs:

31 22644 96/01/01-19:43:43.744425 30349826 > ppc_snaOS_Open

 ppc_snaOS.c ppc_sna

Chapter 9. Intersystem problem determination 229

Table 42. Trace types (continued)

Designator Description

< This is a function exit trace point. It is produced on exit from a function if

trace is switched on. Two types of exit trace are possible. Which trace is used

depends on whether the function returns datat. An example of each is shown

below:

31 22644 96/01/01-19:43:43.744425 00000006 < ppc_snaOS_Init

 ppc_snaOS.c ppc_sna

31 22644 96/01/01-19:43:43.744425 28040c00 <R ppc_snaOS_Open

 ppc_snaOS.c ppc_sna -> 7601a003

The first example shows the exit from ppc_snaOS_Init, which is a function

that returns no data (a void function). The second example shows the exit

from ppc_snaOS_Open which returns a return code. Most (but not all, so

beware when reading the trace) of these PPC functions return a ppc_status_t

return code, which are defined in:

install_directory/include/ppc/ppc_status.h

A value of 00000000 means that the function was successful; a hexadecimal

value that begins with 7601a indicates an unsuccessful response. The

translateError command can be used to find out what the unsuccessful

response was. This is how you would find out what the 7601a003 response

meant:

$ translateError 0x7601a003

ENC-ppc-003: Allocate failure, retry

The output of translateError is in the same format as that which CICS uses

to display return codes from the PPC Gateway server in the CICS messages.

Note that translateError is NLS enabled. If you see the following output:

$ translateError 0x7601a003

ENC-ppc-003

Check that your LANG environment variable is set up correctly.

P This is a trace entry that shows the parameters that are passed to a function.

The contents of this type of trace entry varies widely, depending on the

function, and might span several lines. Here are some examples:

31 22644 96/01/01-19:43:43.744425 28040c23 P address:

 0x202359a8

31 22644 96/01/01-19:43:43.744425 28040c01 P *dataLengthP:

 16, *requesttosendP: 0

 *whatDataReceivedP: PPC_RECEIVED_DATA_COMPLETE,

 *whatControlReceivedP: PPC_RECEIVED_CONTROL_SEND

E This final type of trace is an event trace. It can be used to show the data that

the PPC Gateway server is processing, or error conditions. Here are some

examples:

31 22644 96/01/01-19:43:43.744425 04800017 E ppc Config:

 Adding SNA tpn[3] : CEMT

31 22644 96/01/01-19:43:43.744425 10043819 E result mask:

 00000000

Tracing a PPC Gateway server

Tracing in a PPC Gateway server is controlled by the -t and -T parameters of the

cicsppcgwy.

The -t option tells the PPC Gateway server which components in the PPC Gateway

server to trace. Here are some examples of PPC Gateway server components:

230 TXSeries for Multiplatforms: CICS Intercommunication Guide

ppc_sna

This component issues the calls to your SNA product. Tracing ppc_sna

shows you the calls that are being made and the responses given.

ppc_gwy

This component provides the overall control for the PPC Gateway server.

Tracing ppc_gwy shows you the requests that the PPC Gateway server is

processing.

ppc_tcp

This component controls the communications to your CICS region across

TCP/IP.

ppc_snp

This component controls sync point and backout processing.

ppc_rsn

This component controls resynchronization.

To turn tracing on in a component, specify the component name followed by :0x1f.

For example:

 -t ppc_sna:0x1f

You can specify more than one component as follows:

 -t ppc_sna:0x1f:ppc_gwy:0x1f

The -T parameter specifies where the trace information is written to. If you do not

specify a -T parameter, the destination for trace is the internal ring buffer in the

PPC Gateway server. This is a cyclic buffer so only the most recent trace is kept.

You can display the contents of the ring buffer by using the tkadmin dump

ringbuffer. The trace information is also dumped to the EncinaBacktrace file that

the PPC Gateway server produces when it exits unexpectedly. Using the ring

buffer is useful if the PPC Gateway server has to run for a while before the

problem that you are trying to trace occurs. If you want the trace to be written to

the same file asare the PPC Gateway server messages, specify -T all:stdout. If you

want the trace to be written to another file, specify -T all:filename. This command

also causes the PPC Gateway server messages to be written to this file.

The example below shows the:

/.:/cics/ppc/gateway/cicsgwy

PPC Gateway server being started with components ppc_sna and ppc_gwy tracing.

The output will be written to the PPC Gateway server’s message file:

/var/cics_servers/GSD/cics/ppc/gateway/cicsgwy/msg

% cicsppcgwy /.:/cics/ppc/gateway/cicsgwy -t ppc_sna:0x1f:ppc_gwy:\

 0x1f -T all:/var/cics_servers/GSD/cics/ppc/gateway/cicsgwy/msg

Note: Your PPC Gateway server can produce a large amount of trace output so, if

you have requested that the trace be sent to a file, ensure that there is plenty

of disk space available. Trace also slows down the PPC Gateway server.

Therefore, use it only when you are trying to solve a problem.

Chapter 9. Intersystem problem determination 231

PPC Gateway server message descriptions

While the PPC Gateway server is running it writes messages to a file that is in a

directory under /var/cics_servers. For example, if the PPC Gateway server is

named:

/.:/cics/ppc/gateway/cicsgwy

the message file is named:

/var/cics_servers/cics/ppc/gateway/cicsgwy/msg

Below are descriptions for common PPC Gateway server messages. They are

sequenced by message type as follows:

v Audit messages (A)

v Attention messages (W)

v Fatal messages (F)

(Refer to “Format of PPC Gateway server messages and trace” on page 228 for

information about PPC Gateway server message types.) Within each message type,

the messages are shown in alphabetical sequence.

Audit messages

A connection down: regionLU

Example:

A connection down: OPENCICS

Explanation: The PPC Gateway server cannot start a

listener for your CICS region’s Logical Unit (LU)

regionLU because your SNA product is unavailable. The

PPC Gateway server needs a listener in order to receive

intersystem requests from remote SNA systems.

System action: The PPC Gateway server repeatedly

tries to start the listener.

User response: Restart your SNA product.

A Connection Failure during Resynchronization for

tid: tId, luwid: luwId. localLu: regionLU - partnerLu:

remoteSystem

Example:

A Connection Failure during Resynchronization for tid: 0x2, luwid: 0x207e797c

 {length: 16, luName: MYSNANET.TESA232, instance: 7f09b9643173,

 sequence: 1}. localLu: OPENCICS - partnerLu: CICSESA

Explanation: The PPC Gateway server needs to

communicate with a remote system remoteSystem in

order to exchange log names or resolve the outcome of

a particular Logical Unit of Work (LUW). However, the

gateway cannot allocate a conversation to this remote

system. This could be because:

v Your SNA product is not running, or

v The link/connection to the remote system is down,

or

v The remote system itself is unavailable

The luwId is the SNA identifier for the LUW. It is

displayed in the following format:

luwid: address {length: luNameLen, luName: luName ,

instance: instance, sequence: seqno}

 where:

v address is the address of the LUW record in the PPC

Gateway server’s storage

v luName is the Logical Unit (LU) name of the

system/terminal that started the LUW

v luNameLen is the length of luName

v instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server will retry the

allocate request.

User response: Restore the connection to the remote

system so that the PPC Gateway server can

communicate with the remote system.

A Connection Failure during Resynchronization for

localLu: regionLU - partnerLu: remoteSystem

Example:

 A Connection Failure during Resynchronization for localLu:

 OPENCICS - partnerLu: CICSESA

Explanation: The PPC Gateway server needs to

communicate with a remote system remoteSystem in

order to exchange log names or resolve the outcome of

a particular Logical Unit of Work (LUW). However, the

gateway cannot allocate a conversation to this remote

system. This could be because:

v Your SNA product is not running or

v The link/connection to the remote system is down or

v The remote system itself is unavailable

System action: The PPC Gateway server will retry the

allocate request.

232 TXSeries for Multiplatforms: CICS Intercommunication Guide

User response: Restore communications with the

remote system so that the PPC Gateway server can

communicate with it.

A connection not available: regionLU

Example:

A connection not available: OPENCICS

Explanation: The PPC Gateway server cannot start a

listener for your CICS region’s Logical Unit (LU)

regionLU because your SNA product is unavailable. The

PPC Gateway server needs a listener in order to receive

intersystem requests from remote SNA systems.

System action: The PPC Gateway server repeatedly

tries to start the listener.

User response: Restart your SNA product.

A connection up: regionLU

Example:

A connection up: OPENCICS

Explanation: The PPC Gateway server has

successfully started a listener for your CICS region’s

Logical Unit (LU) regionLU. Inbound intersystem

requests to the CICS region will now be passed from

Communications Server for AIX to the PPC Gateway

server.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A gateway configuration local lu data written to log

Explanation: A CICS region has passed configuration

information to the PPC Gateway server and the PPC

Gateway server has saved this to its log file stored in

its logical volume.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A gateway configuration restore from log

Explanation: The PPC Gateway server has read all the

configuration information from its log file that is stored

in its logical volume.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A Initialized ...

Explanation: This message means that the PPC

Gateway server has completed initialization and is

ready for requests. When this message is displayed the

PPC Gateway server will accept acl_edit commands,

CICS configuration calls and intersystem requests from

both remote SNA systems and from your local CICS

region.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A local lu entry regionLU deleted

Example:

A local lu entry OPENCICS deleted

Explanation: All configuration information for a

particular CICS region (for example, the region name)

has been deleted from the PPC Gateway server.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A local lu entry regionLU created

Example:

A local lu entry OPENCICS created

Explanation: A CICS region has passed its region

name to the PPC Gateway server. The PPC Gateway

server needs this information to pass intersystem

requests from remote SNA systems to the CICS region.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A Log Name Mismatch during Resynchronization for

tid: tId, luwid: luwId. localLu: regionLU - partnerLu:

remoteSystem

Example:

A Log Name Mismatch during Resynchronization for tid: 0x2, luwid: 0x207e797c

 (length: 16, luName: MYSNANET.TESA232, instance: 7f09b9643173, sequence: 1)

 localLu: OPENCICS - partnerLu: CICSESA

Explanation: This message indicates that either the

PPC Gateway server, or the remote system, has been

cold started while one or more incomplete logical units

of work (LUW) are outstanding. This is a potentially

serious condition because when a system is cold

started, its old log file is discarded and replaced by a

new, empty, log file. Therefore, it loses all the

information about incomplete LUWs. When this

happens, the PPC Gateway server and the remote

system cannot decide the outcome (commit or backout)

Chapter 9. Intersystem problem determination 233

for these incomplete LUWs, and human intervention is

required.

 The luwId is the SNA identifier for the LUW. It is

displayed in the following format:

 luwid: address {length: luNameLen, luName: luName ,

instance: instance, sequence: seqno}

 where

v address is the address of the LUW record in the PPC

Gateway server’s storage

v luName is the Logical Unit (LU) name of the system

or terminal that started the LUW

v luNameLen is the length of luName and

v instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server continues

processing. It might retry the request to resolve the

LUW outcome with the remote system. Until this

condition is resolved, your CICS region cannot use

synchronization level 2 intersystem requests to the

remote system.

User response: Work down the instructions shown

that are below. After you have completed each step,

check whether the problem is solved. If it is, stop. Each

step that you take is more severe and the affects might

be more widespread, so your aim is to solve the

problem with as little intervention as possible.

1. Stop the PPC Gateway server, then restart by using

an auto start.

2. Delete the resynchronization records from the PPC

Gateway server. (Refer to “Canceling pending

resynchronizations in the PPC Gateway server” on

page 206 for information about how to do this).

Then shutdown and auto start the PPC Gateway

server. (See “Starting a PPC Gateway server” on

page 186, “Starting a PPC Gateway server” on page

191, or “Starting a PPC Gateway server” on page

197.)

3. Allow all current intersystem requests that are

running in the PPC Gateway server to complete

normally, then prevent new intersystem requests

from starting. Ensure that none of the remote

systems that have been communicating with the

PPC Gateway server has outstanding

resynchronizations. (If the remote system is CICS

Transaction Server for z/OS, outstanding or

pending resynchronizations exist if the Pen

indicator is set for the connection to your CICS

region when you issue CEMT INQUIRE

CONNECTION.) If outstanding resynchronizations

exist, activate the connection and allow the

resynchronizations to complete.

4. If these resynchronizations will not complete, delete

the resynchronization records from the remote

system. (For example if the remote system is CICS

Transaction Server for z/OS, refer to the CEMT SET

CONNECTION(xxxx) NOTPENDING command.)

5. Finally, shutdown the PPC Gateway server, and

restart by using a cold start. Then shutdown and

restart each of your local CICS regions that use the

PPC Gateway server.

A Log Name Mismatch during Resynchronization for

localLu: regionLU - partnerLu: remoteSystem

Example:

A Log Name Mismatch during Resynchronization for

 localLu: OPENCICS - partnerLu: CICSESA

Explanation: This message indicates that either the

PPC Gateway server, or the remote system, has been

cold started while one or more incomplete logical units

of work (LUW) are outstanding. This is a potentially

serious condition because when a system is cold

started, its old log file is discarded and replaced by a

new, empty, log file. Therefore, it loses all the

information about incomplete LUWs. When this

happens the PPC Gateway server and the remote

system cannot decide the outcome (commit or backout)

for these incomplete LUWs, and human intervention is

required.

System action: The PPC Gateway server continues

processing. It might retry the request to resolve the

LUW outcome with the remote system. Until this

condition is resolved, your CICS region cannot use

synchronization level 2 intersystem requests with the

remote system.

User response: Work down the instructions shown

below. After you have completed each step, check

whether the problem is resolved. If it is, stop. Each step

that you take is more severe and the affects might be

more widespread, so your aim is to solve the problem

with as little intervention as possible.

1. Stop the PPC Gateway server, then restart by using

an auto start.

2. Delete the resynchronization records from the PPC

Gateway server. (Refer to “Canceling pending

resynchronizations in the PPC Gateway server” on

page 206 for information about how to do this).

Then shutdown and auto start the PPC Gateway

server. (See “Starting a PPC Gateway server” on

page 186, “Starting a PPC Gateway server” on page

191, or “Starting a PPC Gateway server” on page

197.)

3. Allow all current intersystem requests that are

running in the PPC Gateway server to complete

normally, then prevent new intersystem requests

from starting. Ensure that none of the remote

systems that have been communicating with the

PPC Gateway server has outstanding

resynchronizations. (If the remote system is CICS

Transaction Server for z/OS, outstanding or

pending resynchronizations exist if the Pen

indicator is set for the connection to your CICS

region when you issue CEMT INQUIRE

CONNECTION.) If outstanding resynchronizations

234 TXSeries for Multiplatforms: CICS Intercommunication Guide

exist, activate the connection and allow the

resynchronizations to complete.

4. If these resynchronizations will not complete, delete

the resynchronization records from the remote

system. (For example if the remote system is CICS

Transaction Server for z/OS, refer to the CEMT SET

CONNECTION(xxxx) NOTPENDING command.)

5. Finally, shutdown the PPC Gateway server, and

restart by using a cold start. Then shutdown and

restart each of your local CICS regions that use the

PPC Gateway server.

A Logging new Log name: logName for partner:

remoteSystem

Example:

A Logging new Log name: 0BBF2D7A for partner: CICSESA

Explanation: The PPC Gateway server is about to

write to its local log file the name of the log file that is

used by the remote system remoteSystem. The PPC

Gateway server and the remote system send each other

their log file names whenever the connection between

them is acquired. By storing the name of a remote

systems’ log file, it is possible for the PPC Gateway

server to check whether the remote system is still using

the same log file when the PPC Gateway server

requests the outcome of a particular LUW.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A lu pair regionLU/remoteSystem will use old rule state

after bo and cc

Example:

A lu pair OPENCICS/CICSMVS will use old rule state after bo and cc

Explanation: The remote CICS system has informed

the PPC Gateway server that it was written before

changes were made to the sync point part of the SNA

LU 6.2 architecture. This means that:

v If a TXSeries for Multiplatforms distributed

transaction processing (DTP) program has

conversations with one or more DTP programs that

are running on this remote system, and a rollback

(backout) occurs, the state of these conversations will

be:

– Send (state 2) if a backout request was sent to the

remote system on this conversation by use of the

EXEC CICS SYNCPOINT ROLLBACK command.

– Receive (state 5) if the conversation received a

backout request in the EIBSYNRB flag of the

EXEC Interface Block (EIB), and responded with

an EXEC CICS SYNCPOINT ROLLBACK

command.
v The remote system does not use a fully qualified

conversation correlator (CC) in resynchronization

requests. (This is part of the S.4 sync point option

set that is described in the SNA LU 6.2 Reference:

Peer Protocols (SC31-6808) manual.)

This behavior does not affect the PPC Gateway server’s

ability to participate in distributed logical units of work

(LUWs) with this remote system. The only difference

that you might notice is that the state of DTP

conversations to this remote system after a DTP

program issues an EXEC CICS SYNCPOINT

ROLLBACK command might be different from what

you would have expected if the remote system used

the new SNA architected rules. (These new rules set the

conversation state to the value that it was at the

beginning of the LUW, if a backout occurs.)

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A lu pair regionLU/remoteSystem will not use flag byte

or bo with rip

Example:

A lu pair OPENCICS/CICSESA will not use flag byte or bo with rip

Explanation: The remote system has informed the

PPC Gateway server that it:

v Does not support the use of the flag byte in SNA

presentation headers and

v Will not send a resynchronization in progress (RIP)

indicator with a backout request

These functions are part of the S.4 sync point option

set that is described in the SNA LU 6.2 Reference: Peer

Protocols (SC31-6808) manual. The absence of support

for these functions in the remote system does not affect

the PPC Gateway server’s ability to participate in

distributed logical units of work with this remote

system.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A LU pair disconnect: regionLU/remoteSystem

Example:

A LU pair disconnect: OPENCICS/CICSESA

Explanation: The connection between the local CICS

region regionLU and the remote system remoteSystem

has been released (shutdown). This might have

occurred because the remote system or the network has

failed, or it might be as a result of operator action.

System action: The PPC Gateway server continues

processing.

User response: Determine why the connection was

released. If it is because of a network failure and the

Chapter 9. Intersystem problem determination 235

connection is currently required, attempt to restore it.

A new config data

Explanation: This message means that the PPC

Gateway server has been cold started and so has no

record of your CICS region and its transactions. Until

your CICS region has configured the PPC Gateway

server, the PPC Gateway server cannot send or receive

intersystem requests on behalf of your CICS region.

Also, it cannot exchange log names with a remote

system for your region.

System action: The PPC Gateway server continues

processing.

User response: When the PPC Gateway server

displays the ″Initialized...″ message, restart your CICS

region. This causes CICS to pass to the PPC Gateway

server all the information that is needed in order to

send and receive intersystem requests on behalf of your

CICS region.

A Normal gateway server shutdown scheduled

Explanation: The PPC Gateway server has been

requested to shutdown normally. The PPC Gateway

server exits when all the intersystem requests that are

running in the PPC Gateway server have completed.

System action: The PPC Gateway server stops

accepting new intersystem requests. It monitors the

intersystem requests that are still running, and when

they are completed, the PPC Gateway server shuts

down.

User response: This message is for information only.

No action is required.

A Normal gateway server shutdown with no

conversations

Explanation: The PPC Gateway server is about to

shutdown. No outstanding intersystem requests are

running in the PPC Gateway server.

System action: The PPC Gateway server shuts down.

User response: This message is for information only.

No action is required.

A Partner Detected Protocol Violation:

Resynchronization for tid: tId, luwid: luwId. localLu:

regionLU - partnerLu: remoteSystem

Example:

A Partner Detected Protocol Violation: Resynchronization for tid: 0x2, luwid: 0x207e797c

 {length: 16, luName: MYSNANET.TESA232, instance: 70f9b9463713, sequence: 1}.

 localLu: OPENCICS - partnerLu: CICSESA

Explanation: The remote system remoteSystem

abnormally terminated a conversation with the PPC

Gateway server that was being used to resolve the

outcome of a particular LUW. The reason for this could

be that the process on the remote system that was

controlling the conversation was canceled, or it failed.

(For example, if the remote system is CICS Transaction

Server for z/OS, CICS/MVS, or CICS/VSE, this would

occur if the CLS2 transaction was purged.)

Alternatively, the remote system might have detected a

protocol error that the PPC Gateway server made.

 The luwId is the SNA identifier for the LUW. It is

displayed in the following format:

 luwid: address {length: luNameLen, luName: luName ,

instance: instance

 where

v address is the address of the LUW record in the PPC

Gateway server’s storage

v luName is the Logical Unit (LU) name of the system

or terminal that started the LUW

v luNameLen is the length of luName

v instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server retries the

request.

User response: Look for messages on the remote

system that might explain why the conversation was

abnormally terminated. If this is a persistent problem,

take a trace of the SNA link while the PPC Gateway

server is trying the request and contact the service

representative.

A Partner Detected Protocol Violation:

Resynchronization for localLu: regionLU - partnerLu:

remoteSystem

Example:

A Partner Detected Protocol Violation: Resynchronization for

 localLu: OPENCICS - partnerLu: CICSESA

Explanation: The remote system remoteSystem

abnormally terminated a conversation with the PPC

Gateway server that was being used to exchange log

names. The reason for this could be that the process on

the remote system that was controlling the conversation

was canceled, or it failed. (For example, if the remote

system is CICS Transaction Server for z/OS,

CICS/MVS, or CICS/VSE, this would occur if the CLS2

transaction was purged.) Alternatively, the remote

system might have detected a protocol error that the

PPC Gateway server made.

System action: The PPC Gateway server retries the

request.

User response: Look for messages on the remote

system that might explain why the conversation was

abnormally terminated. If this is a persistent problem,

take a trace of the SNA link while the PPC Gateway

server is trying the request, and contact the service

representative.

236 TXSeries for Multiplatforms: CICS Intercommunication Guide

A Ready for additional configuration ...

Explanation: The PPC Gateway server is part way

through initializing. When the A Initialized ...

messages is displayed, the PPC Gateway server is

ready for intersystem requests.

System action: The PPC Gateway server continues

initializing.

User response: This message is for information only.

No action is required.

A Resynchronization Completed Successfully: for tid:

tId, luwid: luwId. localLu: regionLU - partnerLu:

remoteSystem

Example:

A Resynchronization Completed Successfully: for tid: 0x6, luwid:

 0x205a3990 {length: 16, luName: MYSNANET.TESA232, instance:

 eaf612febe30, sequence: 1}. localLu: OPENCICS - partnerLu: CICSESA

Explanation: The PPC Gateway server has

successfully completed a resynchronization request

with remoteSystem.

 The luwId is the SNA identifier for the LUW. It is

displayed in the following format:

 luwid: address {length: luNameLen, luName: luName ,

instance: instance

 where

v address is the address of the LUW record in the PPC

Gateway server’s storage

v luName is the Logical Unit (LU) name of the system

or terminal that started the LUW

v luNameLen is the length of luName

v instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A Resynchronization Completed Successfully: for

localLu: regionLU - partnerLu: remoteSystem

Example:

A Resynchronization Completed Sucessfully: for

 localLu: OPENCICS - partnerLu: CICSESA

Explanation: The PPC Gateway server has

successfully completed a exchange log names request

with remoteSystem.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A security disabled

Explanation: The PPC Gateway server writes this

messages during its initialization if it was started with

a ProtectionLevel set to none. (Refer to section

“Viewing the attributes of a PPC Gateway server” on

page 188 for information about viewing the attributes

of the PPC Gateway server.) This means that the PPC

Gateway server does not check the identity of any

CICS region (or PPC executive application such as

ppcadmin) that makes requests to it.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

A Signal -- Forced gateway server shutdown

Explanation: The PPC Gateway server has been

requested to shutdown immediately. Before exiting, it

closes its log file and abnormally terminates any

intersystem requests that are using the PPC Gateway

server.

System action: The PPC Gateway server abnormally

terminates all intersystem requests that are running in

the PPC Gateway server, and shuts down.

User response: This message is for information only.

No action is required.

A Signal -- Normal gateway server shutdown

Explanation: The PPC Gateway server has been

requested to shutdown normally. The PPC Gateway

server exits when all the intersystem requests that are

running in the PPC Gateway server have completed.

System action: The PPC Gateway server stops

accepting new intersystem requests. It monitors the

intersystem requests that are still running, and when

they are completed, the PPC Gateway server shuts

down.

User response: This message is for information only.

No action is required.

A SIGUSR1 received (probably from AIX SNA) and

ignored

Explanation: The operating system has passed a

SIGUSR1 (value 30) signal to the PPC Gateway server.

This signal usually indicates that a SNA connection to a

remote system has shutdown unexpectedly.

System action: The PPC Gateway server continues.

Any intersystem requests that are using the SNA

connection that has shutdown might abnormally

terminate.

User response: Look for further messages that are

produced by the PPC Gateway server. These might

Chapter 9. Intersystem problem determination 237

indicate which connection has shut down. Follow the

instructions for these messages.

A sna relay allocate failure, local LU = regionLU,

remote LU = remoteSystem, tpn = transId, status =

returnCode

Example:

A sna relay allocate failure, local LU = OPENCICS, remote LU = CICSESA,

 tpn = CRSR, status = ENC-ppc-0001: Allocation failure, all sessions busy

Explanation: This message means that the PPC

Gateway server cannot route an intersystem request

from your CICS region (regionLU) to a remote SNA

System (remoteSystem). The transId is the name of the

CICS transaction that failed and the returnCode

indicates why the request failed. Here are some

examples:

v ENC-ppc-0001: Allocation failure, all sessions busy

 All the contention winner sessions that are currently

bound to the remote system are busy. If this is a

persistent error, and if you are using CICS for AIX,

use the sna -display sl command to determine how

many contention winner sessions are currently

bound between the remote system and your region.

These are shown in the Act ConW column. At least

one contention winner session should be shown for

each of the mode groups that are used between your

CICS region and the remote system. If this problem

is persistent, activate some more contention winner

sessions for your connection. If this fails, check your

SNA definitions to determine why contention winner

sessions cannot be bound.

v ENC-ppc-0002: Allocation failure, conversation type

mismatch

 The remote SNA system has rejected the request for

transId because CICS is using an SNA mapped

conversation and the remote system expected a basic

conversation.

v ENC-ppc-0003: Allocation failure, no retry

 Your SNA configuration has a problem that is

preventing your SNA product from starting an

intersystem request on the remoteSystem.

v ENC-ppc-0004: Allocation failure, retry

 Your SNA product cannot start an intersystem

request on the remoteSystem. Check whether the

remote system is available. If it is running, you

might have an SNA configuration problem.

v ENC-ppc-0005: Allocation failure, PIP data not

supported

 CICS has sent Process Initialization Parameter (PIP)

data with an intersystem request, but the remote

system does not support PIP data. If the intersystem

request is a:

– Function shipping

– Distributed program link

– Asynchronous processing or

– Transaction routing request

CICS retries the request without PIP data. If the

intersystem request is a distributed transaction

processing (DTP) conversation, modify the CICS

transaction that issued the EXEC CICS CONNECT

PROCESS PROCNAME(transId) to start the DTP

conversation, so that the EXEC CICS CONNECT

PROCESS command does not specify the PIPLIST

and PIPLENGTH parameters.

v ENC-ppc-0006: Allocation failure, PIP data incorrectly

specified

 A CICS transaction that is running on regionLU has

issued an EXEC CICS CONNECT PROCESS

command that specifies, using the PIPLIST and

PIPLENGTH parameters, Process Initialization

Parameter (PIP) data that has either:

– More than 16 PIP elements or

– A PIP elements that is longer than 64 bytes

– A PIP elements that contains a space character

v ENC-ppc-0008: Allocation failure, security violation

 The intersystem request does not have enough

authority to run in the remote system.

v ENC-ppc-0009: Allocation failure, LU does not

support synchronization level

 regionLU has requested a synchronization level 2

conversation, but the SNA remote system

remoteSystem does not support it. If the intersystem

request is a:

– Function shipping

– Distributed program link

– Asynchronous processing or

– Transaction routing request

CICS retries the request by using synchronization

level 1. If the intersystem request is a distributed

transaction processing (DTP) conversation, modify

the CICS transaction that issued the EXEC CICS

CONNECT PROCESS PROCNAME(transId)

SYNCLVL(2) to use synchronization level 0 or 1.

v ENC-ppc-0010: Allocation failure, TPN does not

support synchronization level

 Transaction transId on the remote system does not

support the synchronization level that is requested

on the intersystem request.

v ENC-ppc-0011: Allocation failure, TPN unavailable,

no retry

 A configuration error has occurred that is preventing

the remote system from starting the requested

transaction transId.

v ENC-ppc-0012: Allocation failure, TPN unavailable,

retry

 The remote transaction transId is temporarily

unavailable.

v ENC-ppc-0013: Allocation failure, TPN unknown

 The transaction transId is not recognized by the

remote system.

v ENC-ppc-0016: Connection failure, no retry

238 TXSeries for Multiplatforms: CICS Intercommunication Guide

A configuration error is either in your SNA product,

or in the SNA network. This error is preventing

suitable sessions from being bound between your

SNA product and the remote system.

v ENC-ppc-0017: Connection failure, retry

 This could mean that:

– The remote system is unavailable

– The session that is being used for the intersystem

request has failed

– Not enough sessions are available for the request

– The connection to the remote system cannot be

started

v ENC-ppc-0025: Failure

 The intersystem request has failed in an unexpected

way. Look for other messages that the PPC Gateway

server has produced that might indicate the cause of

the error.

v ENC-ppc-0032: Invalid LU name

 This could mean that either of the following:

– Your CICS region has not configured the PPC

Gateway server. This means that the PPC Gateway

server is unable to process intersystem requests

from your region. Run the CGWY transaction to

configure the PPC Gateway server. Then rerun the

intersystem request.

– The regionLU or remoteSystem values contain

incorrect characters.

v ENC-ppc-0033: Invalid mode name

 The transaction that is running on your region and

that issued the intersystem request, specified a

modename that the remote system does not

recognize. The modename might have been explicitly

specified either in the PROFILE option of the EXEC

CICS ALLOCATE command, or by the

SNAModeName attribute of the Transaction

Definitions (TD) entry. Alternatively, if a modename

was not specified in the PROFILE or the

SNAModeName attribute in the TD entry, CICS

would have used the default modename that was

specified in the DefaultSNAModeName attribute of

the Communications Definitions (CD) entry.

 Refer to “Default modenames” on page 110 for

further information on default modenames.

v ENC-ppc-0036: Invalid security level

 Your region passed a user ID with the intersystem

request. However, the remote system does not expect

to receive user IDs. Either:

– Set OutboundUserIds=not_sent in the

Communications Definitions (CD) entry for the

remote system or

– Change the connection definition in the remote

system so that it can accept user IDs. For example,

if the remote system is CICS Transaction Server

for z/OS, CICS/MVS, or CICS/VSE, set the

ATTACHSEC=IDENTIY in the CONNECTION

definition.

v ENC-ppc-0073: Connection failure, no retry BO

A configuration error is in either your SNA product,

or in the SNA network. This error is preventing

sessions from being bound between your SNA

product and the remote system.

v ENC-ppc-0074: Connection failure, retry BO

 This could mean that:

– The remote system is unavailable

– The session that is being used for the intersystem

request has failed

– Not enough sessions are available for the request

– The connection to the remote system cannot be

started

v ENC-ppc-0079: Failure BO

 The intersystem request has failed in an unexpected

way. Look for other messages that the PPC Gateway

server produces that might indicate the cause of the

error.

A x [TCP & SNA] conversations active at the

Gateway. Waiting for all conversations to complete ...

Example:

A 2 [TCP & SNA] conversations active at the Gateway.

 Waiting for all conversations to complete ...

Explanation: The PPC Gateway server is about to

shutdown. However, Outstanding intersystem requests

are running in the PPC Gateway server.

System action: The PPC Gateway server waits until:

v All intersystem requests that are using the PPC

Gateway server have completed, or

v It is requested to shut down immediately (in which

case it abnormally terminates all remaining

intersystem requests before it shuts down).

User response: This message is for information only.

No action is required.

A tcp relay allocate failure, local LU = regionLU,

remote LU = remoteSystem, tpn = transId, status =

returnCode

Example:

A tcp relay allocate failure, local LU = OPENCICS, remote LU = CICSESA,

 tpn = XEMT, status = ENC-ppc-0013: Allocation failure, TPN unknown

Explanation: The PPC Gateway server cannot route an

intersystem request from a remote SNA system

(remoteSystem) to your cics region (regionLU). The

transId is the name of the CICS transaction that failed

and the returnCode indicates why the request failed.

Here are some examples:

v ENC-ppc-0002: Allocation failure, conversation type

mismatch

 Your region has rejected the request for transId

because the remote system is using an SNA basic

conversation and your CICS region supports only

mapped conversations.

v ENC-ppc-0007: Allocation failure, transaction

scheduler failure

Chapter 9. Intersystem problem determination 239

The PPC Gateway server cannot contact regionLU.

Check whether regionLU is running and whether the

PPC Gateway server has been set up correctly to

communicate with it.

v ENC-ppc-0012: Allocation failure, TPN unavailable,

retry

 Your CICS region is not running.

v ENC-ppc-0013: Allocation failure, TPN unknown

 Your CICS region does not recognize the transaction

transId.

v ENC-ppc-0017: Connection failure, retry

 Your CICS region, or the transaction transId failed

part way through the intersystem request.

v ENC-ppc-0025: Failure

 The intersystem request has failed in an unexpected

way. Look for other messages that the PPC Gateway

server produces that might indicate the cause of the

error.

v ENC-ppc-0079: Failure BO

 The intersystem request has failed in an unexpected

way. Look for other messages that the PPC Gateway

server produces that might indicate the cause of the

error.

A Time expired; Forced gateway server shutdown

with x SNA conversations

Example:

A Time expired; Forced gateway server shutdown with 3 SNA conversations

Explanation: The PPC Gateway server is shutting

down. x outstanding intersystem requests are running

in the PPC Gateway server, and these will be

abnormally terminated when the PPC Gateway server

shuts down.

System action: The PPC Gateway server abnormally

terminates the remaining intersystem requests, closes

its log file, and exits.

User response: This message is for information only.

No action is required.

A tpn not added: transId

Example:

A tpn not added: CEMT

A tpn not added: * resync *\

Explanation: The PPC Gateway server cannot listen

for intersystem requests for the transaction transId on

behalf of one of your CICS regions. The cause of this

problem could be:

v Your SNA product is not running.

v The SNA TPN profile that is configured in the

TPNSNAProfile attribute of the Transaction

Definitions (TD) entry for the transaction is not

defined and verified in your SNA product. A

possible reason for this is that the tpn profile name is

TDEFAULT, which was valid for CICS/6000® and

SNA services, but is not valid for AIX SNA

Server/6000 Version 2., or for Communications

Server for AIX.

v Another operating system process is already listening

for this transaction on behalf of your CICS region.

(Your SNA product will not allow two processes to

listen for your CICS region’s transactions if those

processes are using the same local LU name, because

it would not know to which process to pass inbound

requests.)

Refer to “Configuring CICS for local SNA from the

command line” on page 75 for information about how

to configure Listener Definitions (LD) entries.

System action: The PPC Gateway server retries to

start the listener for your CICS region.

User response: First ensure your SNA product is

running and start it if necessary. If your SNA product is

running, check whether the TPN SNA profile is defined

in your SNA product. If it is, you must determine

which process is also listening for the transaction on

behalf of your CICS region. This could be an

independent SNA application program, or another PPC

Gateway server, or your CICS region’s local SNA

listener.

 Check whether you are using a PPC Gateway server

and CICS local SNA support and whether the Gateway

Definitions (GD) entry in your region for the PPC

Gateway server has a different GatewayLUName from

that which is coded in the LocalLUName attribute of

the Region Definitions (RD). The easiest way to do this

is to look at your region’s startup messages because

they show the default LU name for your region (this is

used by your region’s local SNA listener) and the LU

name that is to be used by the PPC Gateway server.

 If you have more than one CICS region, check whether

each region is using a different LU name.

 List the PPC Gateway servers that are running on your

machine. (See “Listing the PPC Gateway servers

running on a machine” on page 189.) Look for two

copies of the same PPC Gateway servers running. (If

you discover that two PPC Gateway servers are

running for your CICS region, stop both of them by

using the kill command. Then restart a new copy of the

PPC Gateway server.)

 Finally look for SNA applications that are running on

your machine and ensure that the SNA configuration

that they are using is different from the configuration

that your CICS regions are using.

A Unrecognized Error Occurred during

Resynchronization for tid: tid, luwid: luwid. localLu:

regionLU - partnerLu: remoteSystem

Example:

240 TXSeries for Multiplatforms: CICS Intercommunication Guide

A Unrecognized Error Occurred during Resynchronization for tid: 0x10000,

 luwid: 0x2081b97c {length: 16, luName: MYSNANET.TESA218,

 instance: 8b706bb88c78, sequence: 1}. localLu: OPENCICS

 - partnerLu: CICSESA

Explanation: This message means that a

resynchronization request to remoteSystem has failed.

Usually, the cause of this is that the ppcadmin

command has been used to cancel all resynchronization

requests to remoteSystem. However, this message might

also appear as a result of other events occurring when

the PPC Gateway server does not expect them.

 The luwId is the SNA identifier for the LUW. It is

displayed in the following format:

 luwid: address {length: luNameLen, luName: luName ,

instance: instance

 where

v address is the address of the LUW record in the PPC

Gateway server’s storage

v luName is the Logical Unit (LU) name of the system

or terminal that started the LUW

v luNameLen is the length of luName

v instance and seqno uniquely identify the LUW

The tId is the local internal name for the LUW.

System action: The PPC Gateway server might retry

the resynchronization request.

User response: Look for other error messages that

were produced at the same time as was this message,

and follow the instructions that are associated with

those messages. No specific action is required for this

message.

A Unrecognized Error Occurred during

Resynchronization for localLu: regionLU - partnerLu:

remoteSystem

Example:

A Unrecognized Error Occurred during Resynchronization for

 localLu: OPENCICS - partnerLu: CICSESA

Explanation: An exchange log names request to

remoteSystem has failed. Usually, the cause of this that

the ppcadmin command has been used to cancel all

resynchronization requests to remoteSystem. However,

this message might also appear as a result of other

events occurring when the PPC Gateway server does

not expect them.

System action: The PPC Gateway server might retry

the exchange log names request.

User response: Look for other error messages that

were produced at the same time as was this message,

and follow the instructions that are associated with

those messages. No specific action is required for this

message.

Attention messages

W CreateLuEntry failed after add of local lu

ENC-ppc-0025: Failure

Explanation: The PPC Gateway server cannot use the

local LU name that CICS passes. This local LU name is

configured in the GatewayLUName attribute of the

Gateway Definitions (GD) entry fort the PPC Gateway

server.

System action: The PPC Gateway server cannot

receive incoming intersystem requests. Further

messages will be logged.

User response: Look at additional messages in the

PPC Gateway server message file, and follow the

instructions that are given in these messages.

W failed to restore local lu regionLU from config:

ENC-ppc-0025: Failure

Example:

 W failed to restore local lu OPENCICS from config: ENC-ppc-0025: Failure

Explanation: This message might occur if the PPC

Gateway server is started while your SNA product is

not running.

System action: The PPC Gateway server keeps polling

to check whether your SNA product has been restarted.

User response: Start your SNA product and the links

and connections to remote systems.

W failed to restore tpn entries [regionLU] from config:

ENC-ppc-0055: SNA TPNs not configured

Example:

W failed to restore tpn entries [OPENCICS] from config:

 ENC-ppc-0055: SNA TPNs not configured

Explanation: This message might occur if the PPC

Gateway server is started while your SNA product is

not running.

System action: The PPC Gateway server keeps polling

to check whether your SNA product has been restarted.

User response: Start your SNA product and the links

and connections to remote systems.

W listener getStatus error

Explanation: Your SNA product failed while the PPC

Gateway server was receiving a new intersystem

request from a remote SNA system.

System action: The intersystem request is discarded

and the PPC Gateway server starts polling to determine

whether your SNA product has been restarted.

User response: Start your SNA product and the links

and connections to remote systems.

W ppc_Extract failed (sna): returnCode

Example:

Chapter 9. Intersystem problem determination 241

W ppc_Extract failed (sna): ENC-ppc-0016: Connection failure, no retry

Explanation: The PPC Gateway server cannot receive

an intersystem request from a remote system.

System action: The PPC Gateway server abnormally

terminates the intersystem request.

User response: Look for other error messages that

were produced at the same time as was this message,

and follow the instructions that are associated with

those messages. No specific action is required for this

message.

W (SNA)EPERM: Primary group must be system

Explanation: The PPC Gateway server’s user ID does

not have its primary group set to a group name that is

trusted by Communications Server for AIX. Until this is

changed, the PPC Gateway server cannot receive:

v CICS user IDs

v Exchange lognames requests

v Resynchronization request

from remote systems.

System action: The PPC Gateway server continues

processing but all synchronization level 2 intersystem

requests and inbound security requests fail.

User response: List the attributes of the PPC Gateway

server to determine the user ID. (See “Viewing the

attributes of a PPC Gateway server” on page 188.) View

the attributes for the user ID by using the lsuser userid

command. The primary group is shown as the pgrp (it

is usually set to cics). Add the primary group name to

the SNA configuration, and activate this configuration.

Finally, stop and restart SNA and the link stations to

pick up the new group name.

W SNA_FAIL: Check sna system status (lssrc -s sna)

Explanation: Your SNA product is not running.

System action: The PPC Gateway server keeps polling

to check whether SNA has been restarted.

User response: Start your SNA product and the links

and connections to remote systems.

W SNA_NSLMT: Session resource limit encountered

Explanation: Your SNA product cannot bind any

additional session for the connection because the

session limit for the modename has been reached. The

causes of this problem are:

v Your CICS region is sending more simultaneous

intersystem requests that the modename is

configured to allow.

v Your CICS region has issued a synchronization level

2 request but your SNA product is not configured to

support synchronization level 2 requests. This means

that all the sessions for the connection are bound at

synchronization level 1. When the synchronization

level 2 request is made, your SNA product tries to

bind another session.

System action: The PPC Gateway server abnormally

terminates the intersystem request.

User response: Check whether your SNA product is

configured for synchronization level 2. If it is, ensure

that the definition of your modenames in your SNA

product allows for the number of simultaneous

intersystem requests that your CICS region might issue.

W SNA_PARMS: Internal bad parameter

Explanation: Your CICS region has issued an

intersystem request to a remote SNA system. This

request has failed because one of your SNA

configuration profiles contains an error. For example:

v A Communications Server for AIX LU 6.2 side

information profile does not exist for your CICS

region’s LU name.

v The default mode name is not set up in the

Communications Server for AIX LU 6.2 side

information profile for your CICS region.

v A Communications Server for AIX LU 6.2 partner

profile does not exist or is not set up correctly for the

remote system. (For example, the Partner LU alias

field is not set up.)

System action: The PPC Gateway server abnormally

terminates the intersystem request.

User response: Correct your SNA configuration so

that your SNA product has the information that it

needs to process the intersystem request.

W SNA_PROTOCOL: System protocol error

Explanation: The PPC Gateway server has called

Communications Server for AIX incorrectly. This

mighty be because of incorrect SNA configuration, or it

might be a programming error in the PPC Gateway

server code.

System action: The PPC Gateway server abnormally

terminates the current request. Further messages might

be logged.

User response: Look for additional messages in the

PPC Gateway server message file, and follow the

instructions that are given in these messages. Check the

SNA configuration that the PPC Gateway server uses,

and make any necessary correction.

 If you cannot solve the problem yourself, contact your

support organization. “Getting further help” on page

215 describes the information that your support

organization requires.

242 TXSeries for Multiplatforms: CICS Intercommunication Guide

W sp support bits mismatch

Explanation: One of the remote SNA systems with

which the PPC Gateway server is communicating has

been upgraded so that it now supports a different set

of SNA options. This message does not affect

intercommunications with the remote system.

System action: The PPC Gateway server continues

processing.

User response: This message is for information only.

No action is required.

W System crash imminent, machine low on swap

space.

Explanation: The PPC Gateway server has received

the SIGDANGER signal from the operating system

kernel. This means that your machine is running short

of paging (swap) space. The PPC Gateway server

ignores this signal, but Communications Server for AIX

does not and terminates immediately.

System action: The PPC Gateway server continues

processing.

User response: If required, restart your SNA product.

If this error condition occurs regularly, you must

increase the paging space for your machine. Refer to

your AIX books for information about how to increase

paging space.

W unable to listen for resync tp on local LU regionLU:

returnCode

Example:

W unable to listen for resync tp on local LU OPENCICS:

 ENC-ppc-0055: SNA TPNs not configured

Explanation: The PPC Gateway server cannot start a

listener for the SNA resynchronization transaction. The

returnCode indicated the reason for the failure.

v ENC-ppc-0055: SNA TPNs not configured

 This means that either:

– Your SNA product is not running.

– The RESYNCTP TPN profile is not configured in

Communications Server for AIX. Enter

 lssnaobj -t local_tp | grep RESYNCTP.

– You have previously configured your CICS region

to use a different gateway on this machine, and

the other gateway is still running. Either stop the

other gateway, or use ppcadmin to delete the

luentries.

– More than one copy of this PPC Gateway server is

running with the same LU name. Refer to the

description of the:

 A tpn not added: transId

 message for information about this problem.

v ENC-ppc-0088: Unknown LU Name

 The local CICS region configured the PPC Gateway

server when your SNA product was unavailable.

Ensure that your SNA product is running, then

either:

– Stop and restart your region or

– Run the CGWY transaction

to reconfigure the PPC Gateway server with the

CICS region details.

System action: The PPC Gateway server retries the

request to start the listener.

User response: Correct the cause of the problem.

Fatal messages

F Invalid trace specification -- traceParameter

Example:

 F Invalid trace specification -- "/var/cics_servers/ ... /cicsgwy/msg"

Explanation: The PPC Gateway server has been

started with an invalid -t or -T parameter. This is

shown in traceParameter.

System action: The PPC Gateway server terminates

immediately.

User response: Restart the PPC Gateway server with

correct parameters.

 Table 43. Authority required by PPC Gateway Server

CDS directory Access required by the cics_ppcgwy group.

/.: r--t---

/.:/cics r--t---

/.:/cics/trpc rwdtcia

/.:/cics/ppc rwdtcia

/.:/cics/ppc/gateway rwdtcia

Chapter 9. Intersystem problem determination 243

244 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 4. Writing application programs for intercommunication

This part describes how to write application programs that will be used in a

distributed CICS network.

 Table 44. Road map

If you want to... Refer to...

Read about writing applications that use

distributed program link

Chapter 10, “Distributed program link

(DPL),” on page 247

Read about writing applications that use

function shipping

Chapter 11, “Function shipping,” on page

257

Read about writing applications that use

transaction routing

Chapter 12, “Transaction routing,” on page

263

Read about writing applications that use

asynchronous processing

Chapter 13, “Asynchronous processing,” on

page 273

Read about writing applications that use

distributed transaction processing

Chapter 14, “Distributed transaction

processing (DTP),” on page 279

© Copyright IBM Corp. 1999, 2005 245

246 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 10. Distributed program link (DPL)

When a CICS program issues an EXEC CICS LINK command, control passes to a

second program (referred to as the linked-to program) that is named in the EXEC

CICS LINK command. The second program executes and, after completion, returns

control to the first program (referred to as the linking program) at the instruction

that follows the EXEC CICS LINK command. The linked-to program can return

data to the linking program if the EXEC CICS LINK command has used the

COMMAREA option to pass the address of a communication area.

Distributed program link (DPL) extends the use of the EXEC CICS LINK command

so that the linked-to program can be on a remote CICS system. When the linked-to

program is on a remote CICS system, it is referred to as a back-end program.

The following are some reasons why you might use DPL:

v To separate the end-user interface (for example, BMS screen handling) from the

application business logic (for example, accessing and processing data). This

makes it easier to port part of an application between systems, such as moving

the end-user interface from a IBM mainframe-based CICS system to a TXSeries

for Multiplatforms system.

v To obtain performance benefits from running programs closer to the resources

that they access, therefore reducing the need for function shipping requests and

reducing the number of flows of data between the connected CICS regions.

v Where applicable, to provide a simpler solution than distributed transaction

processing (DTP).

v To access relational database management systems (RDBMSs) with a program

using Structured Query Language (SQL).

DPL is used when either the linked-to program is defined as remote in the

Program Definitions (PD) for that program, when the SYSID option is specified on

the EXEC CICS LINK command, or when the program is linked with the dynamic

distributed program link user exit. This is described in “Using the dynamic

distributed program link user exit” on page 252.

Comparing DPL to function shipping

DPL is similar to function shipping in that it provides a way of executing an EXEC

CICS call on a remote system. The difference is that the DPL function is used when

the EXEC CICS LINK command is called, whereas function shipping is used for

those EXEC CICS calls that access remote resources. In either case, CPMI and the

mirror program are used on the remote system to execute the calls.

An example of a DPL request is given in Figure 88 on page 248. In this figure, the

linking program issues a program-control EXEC CICS LINK command to a

program named PGA. From the Program Definitions (PD), CICS discovers that

PGA is owned by a remote CICS system named CICB. CICS changes the EXEC

CICS LINK request into a suitable transmission format, then ships it to the remote

system for execution.

In the remote system, a mirror transaction is attached. The mirror program,

DFHMIRS, which is invoked by the mirror transaction, recreates the original

request, issues it on the remote system, and, when the back-end program has run

© Copyright IBM Corp. 1999, 2005 247

to completion, returns any communication-area data (COMMAREA) to the local

region.

It is possible for a back-end program to be defined on the remote system as

remote. If this is the case, the link request is passed on. When this occurs, the

systems are said to be serially connected.

BDAM files, and IMS, DL/I, and SQL databases

DPL enables TXSeries for Multiplatforms application programs to access BDAM

files and IMS™, DL/I, and SQL databases that are on a IBM mainframe-based CICS

system. The TXSeries for Multiplatforms program links to a IBM mainframe-based

CICS application program that reads and updates the databases or files.

Performance optimization for DPL

The performance of DPL can be affected by the amount of data transmitted, which

includes the optional COMMAREA that is specified in an EXEC CICS LINK

command. The length of the COMMAREA is 1 through 32767 bytes. CICS reduces

the number of bytes transmitted by removing some trailing binary zeros from the

COMMAREA before transmission and restoring them after transmission. This is

transparent to the application programs, which always see the full-size

COMMAREA.

CICA

DEFINE
PROGRAM('PGA')
REMOTESYSTEM(CICB)

CICB

DEFINE
PROGRAM('PGA')

.
EXEC CICS LINK
PROGRAM('PGA')
COMMAREA(...)
.
.
.

ISC
session

CICS mirror
transaction
(issues LINK
command and
passes back
commarea)

Figure 88. Distributed program link

CICA

DEFINE
PROGRAM('PGA')
REMOTESYSTEM(CICB)

.
EXEC CICS LINK
PROGRAM('PGA')
COMMAREA(...)
.
.
.

ISC
session

CICB

DEFINE
PROGRAM('PGA')
REMOTESYSTEM(CICC)

CICS mirror
transaction
(issues LINK
command and
passes back
commarea)

CICC

DEFINE
PROGRAM('PGA')

CICS mirror
transaction
(issues LINK
command and
passes back
commarea)

ISC
session

Figure 89. Serially connected systems

248 TXSeries for Multiplatforms: CICS Intercommunication Guide

When transmission time accounts for a significant part of the response time at a

user terminal or workstation, application programs might be able to improve

performance by using the DATALENGTH and LENGTH attributes in the EXEC

CICS LINK command. LENGTH gives the number of bytes that are returned from

the remote region in the COMMAREA, while DATALENGTH specifies a smaller

size of COMMAREA that is sent from the local region to the remote region. If

DATALENGTH is not specified, LENGTH is used to specify the number of bytes

that are sent.

If the SYNCONRETURN option is not specified in the EXEC CICS LINK

command, the mirror transaction remains active, and does not commit changes to

resources, until the front-end program takes a sync point. This can produce

unnecessary delays. Using SYNCONRETURN can prevent these delays, and also

avoids communication between the front-end and back-end when the back-end

resources are committed. The SYNCONRETURN option is not suitable for use,

however, when the two regions share resources.

The dynamic distributed program link user exit can also be used to improve

performance. This user exit is used to link a program dynamically, based on

conditions that are specified in the user exit program. This is described further in

“Using the dynamic distributed program link user exit” on page 252.

Restrictions on application programs that use DPL

Because the back-end program resides on a remote system, unpredictable results

can occur that would not normally occur if the program were on the local system.

Therefore, ensure that the back-end program is restricted to those functions that

can perform reliably in a DPL condition. For example, do not attempt to link to

back-end programs that share either a transient data queue or a temporary storage

queue with the linking program. Use function shipping instead.

TXSeries for Multiplatforms enforces a subset of the full execution set of EXEC

CICS calls. This subset is known as the DPL subset. If an attempt is made to issue a

call that is not in the DPL subset, an INVREQ is returned to the linking program

from the mirror program. To stay within the boundaries of the DPL subset, do not

link to:

v Back-end programs that issue EXEC CICS XCTL commands.

v Back-end programs that issue EXEC CICS SYNCPOINT commands, unless

SYNCONRETURN was specified in the EXEC CICS LINK command.

v Back-end programs that issue terminal control commands. Those commands are

EXEC CICS CONVERSE, EXEC CICS HANDLE AID, EXEC CICS RECEIVE,

EXEC CICS SEND, EXEC CICS WAIT TERMINAL, and EXEC CICS SEND TEXT.

v Back-end programs that issue Basic Mapping Support (BMS) commands. Those

commands are EXEC CICS RECEIVE MAP, EXEC CICS SEND CONTROL, and

EXEC CICS SEND MAP.

v Back-end programs that issue data interchange commands.

v Back-end programs that address the terminal user area (TCTUA), such as EXEC

CICS ADDRESS TCTUA. Note that while you can use the transaction work area

(TWA) in back-end programs, it is separate from the front-end TWA. You must

use the COMMAREA to pass data between regions.

v Back-end programs that inquire on terminal attributes and that use the EXEC

CICS ASSIGN command with the following options:

– BTRANS

– COLOR

Chapter 10. Distributed program link (DPL) 249

– EXTDS

– FACILITY

– FCI

– GCHARS

– GCODES

– HILIGHT

– KATAKANA

– MAPCOLUMN

– MAPHEIGHT

– MAPLINE

– MAPWIDTH

– MSRCONTROL

– NETNAME

– NEXTTRANSID

– OPCLASS

– OPERKEYS

– OPSECURITY

– OUTLINE

– PS

– QNAME

– SCRNHT

– SCRNWD

– SIGDATA

– SOSI

– TCTUALENG

– TERMCODE

– UNATTEND

– VALIDATION
v Back-end programs that refer to the principal facility by using the following

commands:

– EXEC CICS ALLOCATE

– EXEC CICS CONNECT PROCESS

– EXEC CICS SEND

– EXEC CICS RECEIVE

– EXEC CICS CONVERSE

– EXEC CICS FREE CONVID

– EXEC CICS WAIT CONVID

– EXEC CICS ISSUE ABEND

– EXEC CICS ISSUE CONFIRMATION

– EXEC CICS ISSUE ERROR

– EXEC CICS ISSUE PREPARE

– EXEC CICS ISSUE SIGNAL

– EXEC CICS EXTRACT PROCESS

Security and DPL

If you specify the RSLCheck attribute as internal or external in the Transaction

Definitions (TD) entry for a transaction, CICS raises the NOTAUTH condition on

the local system if the transaction attempts to issue an EXEC CICS LINK command

with the SYSID option specified. This prevents transactions from bypassing local

security checking. Therefore, you must set the RSLCheck attribute to none for

those transactions that invoke programs that use DPL.

In addition, you should be aware that when you are accessing DB2® data that is

located on a IBM mainframe-based CICS system from a transaction in TXSeries for

Multiplatforms, the mirror transaction (which is CPMI unless a different

250 TXSeries for Multiplatforms: CICS Intercommunication Guide

transaction is specified either with the EXEC CICS LINK command or in the

Program Definitions (PD)) must have access to DB2 data. In all other respects (for

example, security attributes and task priority) the mirror transaction on the IBM

mainframe-based CICS system operates normally.

See “Security and function shipping” on page 141 for information about how to

implement security checking when DPL is used.

Abends when using DPL

If the back-end program terminates abnormally, the mirror program returns an

abend code. The code returned is that which would have been returned by an

EXEC CICS ASSIGN ABCODE command. Note that the abend code that is

returned to the linking CICS system represents the last abend to occur in the

back-end program, which may have handled other abends before terminating.

Taking sync points when using DPL or function shipping

If the SYNCONRETURN option is not specified in an EXEC CICS LINK command,

or for any type of function shipping, CICS initiates the commit procedure when

the front-end program takes a sync point, by requesting the back-end CICS region

to commit data changes. CICS then commits changes itself, after receiving

confirmation of attached region commitment through the link.

You can, of course, have a number of connected CICS regions. In the case of

multiple connected regions, the commit request is propagated through all the

region connections. However, this is not safe with synchronization level 1.

You cannot take sync points in a back-end region unless the SYNCONRETURN

option was specified on the EXEC CICS LINK command. If it was, sync points that

are taken in the back-end program (either explicitly in the program, or implicitly

taken by CICS when the linked-to program finishes) are not propagated to the

front-end region. Because of this, no sharing of resources should occur between the

front-end and back-end programs.

To determine whether the back-end program was invoked with the

SYNCONRETURN option, the program can issue the EXEC CICS ASSIGN

STARTCODE (or EXEC CICS INQUIRE TASK STARTCODE) command. These

return a value of DS for a back-end DPL program that is started with the

SYNCONRETURN option, and D for one that is started without it.

Multiple DPL links to the same region

When a front-end program issues a LINK command with the SYNCONRETURN

option, the mirror transaction terminates as soon as control is returned to the

front-end program. It is therefore possible for the front-end program to issue a

subsequent LINK command to the same back-end region.

However, when a front-end program issues a LINK command without the

SYNCONRETURN option, the mirror transaction is suspended pending a sync

point request from the front-end region. The front-end program can issue

subsequent LINK commands to the same back-end region provided that the

SYNCONRETURN option is omitted and the TRANSID value is not changed. A

subsequent LINK command with the SYNCONRETURN option or with a different

TRANSID value is unsuccessful unless it is preceded by a SYNCPOINT command.

Chapter 10. Distributed program link (DPL) 251

These errors are indicated by the INVREQ condition. An accompanying RESP2

value of 14 indicates that a sync point is necessary before the failed LINK

command can be successfully attempted. A RESP2 value of 15 indicates that the

TRANSID value is different from that of the linked mirror transaction.

Two ways to implement DPL in your application program

An application program can use DPL in two ways, either ignoring the location of

the back-end program or explicitly specifying a remote system name. Dynamic

distributed program linking, which is described in “Using the dynamic distributed

program link user exit,” can be used both for implicit links and for explicit links.

Implicitly specifying the remote system

An application that uses DPL need not know the location of the back-end program;

it can issue an EXEC CICS LINK command as if the program were owned by the

local system. You specify that the back-end program is to run on a connected CICS

region by providing the RemoteSysId and RemoteName attributes in the Program

Definitions (PD) entry for the program. These attributes allow you to specify that

the named program is owned by a remote system. The request is routed to the

system that is named by the PD RemoteSysId attribute. Refer to the following

example:

EXEC CICS LINK PROGRAM(’LOCLPGM’)

If the PD for LOCLPGM has a RemoteSysId defined, the link request is forwarded

to that system.

Explicitly specifying the remote system

With the EXEC CICS LINK command, an application program can use the SYSID

parameter to specify the connection to the remote system that owns the program.

The advantage is that any system, including the local system, can be named in the

SYSID attribute. Refer to the following example:

EXEC CICS LINK PROGRAM(’LOCLPGM’) SYSID(’SYS1’)

The EXEC CICS LINK command is routed to the region that is defined by the

Communications Definitions (CD) SYS1. Any local Program Definitions (PD) entry

for LOCLPGM is bypassed. A PD entry must be defined on SYS1 for LOCLPGM.

Using the dynamic distributed program link user exit

When a program link is requested from an application program, CICS links either

to a program that is on the local system, or to a program that is on a remote

system, depending on how the program has been defined in the PD, or on the

parameters that are passed in the application program. The dynamic distributed

program link user exit allows you to select dynamically the system to which the

link request is routed.

CICS invokes the dynamic distributed program link user exit in the following

conditions:

v When the user exit has been declared by using the UserExitNumber attribute in

the PD for the user exit program. The user exit number is 50.

v When a program that has been specified in the PROGRAM field of the EXEC

CICS LINK command is about to be linked to.

v When an External CICS Interface (ECI) program invokes a link request to a CICS

application program.

252 TXSeries for Multiplatforms: CICS Intercommunication Guide

v When a link request that is made by a CICS application program or by an ECI

program specifies a program that does not have a PD for it.

v After a program that has been dynamically linked-to encounters a problem, and

the initial invocation requests reinvocation at termination.

v After a program that has been dynamically linked-to successfully completes, and

the initial invocation requests reinvocation at termination.

This user exit cannot be used:

v To link dynamically programs that are not started by using a link request

v When a short on storage problem occurs while the user exit is called

v To link dynamically a CICS-supplied transaction

Information passed to the user exit

CICS passes information to the dynamic distributed program link user exit by

means of a parameter list. The parameter list contains both a standard header

structure (cics_UE_Header_t) that is passed to all user exits, and a dynamic DPL

specific structure (cics_UE015050_t). Both of these structures are included in the

header file (cicsue.h).

References are made to the results of setting a parameter to a null string. A null

string is a string that begins with a null character ’\0’. For example, a null string

could be placed into the SYSID parameter of the user exits specific structure by:

strcpy (UE_specificptr->UE_Dplsysid, "");

All other strings that are returned by the user exit must also be null terminated.

Initial invocation of the user exit

CICS invokes the dynamic distributed program link exit if a link request is issued

for a program. This link request can take the form of either an EXEC CICS LINK

command that is specified by an application program or a link request that is

made by an ECI program.

If the program that is specified on the link request has a valid PD entry, the user

exit is invoked with a reason of UE_LINKSEL. However, programs that are

specified on link request do not require PD entries. If a link request for a program

that does not have a database entry is received, the user exit is invoked with a

reason of UE_LINKUNKNOWN. It is the responsibility of the user exit to decide

whether to try rerouting the link request, or to decide that the program was

invalid (by returning a return code of UE_ProgramNotKnown).

When CICS invokes the dynamic distributed program link user exit, it passes in

information about where the program is to be run. This information consist of:

v The name of the remote system on which to run the program. This can be blank

if the local system is to be used.

v The name of the mirror transaction that is to be used. This can be blank if the

CICS-supplied mirror transaction CPMI is to be used.

v The name of the program that is to be run either on the local system, or on the

remote system.

v The CICS user ID under which to run the program, on either local systems, or

on remote systems. This is initially the user ID that is executing the EXEC CICS

LINK command. This can be updated if the request is to the local system.

Chapter 10. Distributed program link (DPL) 253

The above fields are set up by CICS to indicate the default action for a program

link request. When the user exit invocation reason is UE_LINKSEL, these fields

can remain as default, or be changed, depending on the action that y the user exit

decides.

If the invocation is UE_LINKUNKNOWN, either the remote SYSID or the name of

the program must be changed. Both of these fields (and the mirror transaction

name) can be changed if needed.

The defaults for the above fields are decided by using the following, depending on

whether an implicit or explicit request has been made, whether the program has a

PD entry, and also whether this is a local or remote link request:

v If this is an explicit link request (regardless of whether the program has a PD

entry):

1. The remote program name is taken from the PROGRAM field of the EXEC

CICS LINK command.

2. The remote SYSID is taken from the SYSID field of the EXEC CICS LINK

command.

3. The mirror transaction ID is either taken from the TRANSID option of the

EXEC CICS LINK, or, if no TRANSID option was specified, set to a null

string.
v If this is an implicit request for a program that does not exist:

1. The remote program name is taken from the PROGRAM field of the EXEC

CICS LINK command.

2. The remote SYSID is set to a null string.

3. The mirror transaction ID is either taken from the TRANSID option of the

EXEC CICS LINK, or, if no TRANSID option was specified, set to a null

string.
v If this is an implicit local request for a program that does exist:

1. The remote program name is taken from the PROGRAM field of the EXEC

CICS LINK command.

2. The remote SYSID is set to a null string.

3. The mirror transaction ID is either taken from the TRANSID option of the

EXEC CICS LINK, or, if no TRANSID option was specified, taken from the

TransId field of the PD.
v If this is an implicit remote request for a program that does exist:

1. The remote program name is taken from the RemoteName attribute of the

PD, or, if this is a null string, the PROGRAM field of the EXEC CICS LINK

command is used.

2. The remote SYSID is taken from the RemoteSysId option of the PD entry for

the program.

3. The mirror transaction ID is either taken from the TRANSID option of the

EXEC CICS LINK, or, if no TRANSID option was specified, taken from the

TransId field of the PD.

Changing the target CICS system

The user exit is passed the default remote SYSID that CICS works out by using the

rules that are shown in “Two ways to implement DPL in your application

program” on page 252.

254 TXSeries for Multiplatforms: CICS Intercommunication Guide

If the default SYSID is that of the local SYSID, a null string is passed to the user

exit.

The information that is passed to the dynamic distributed program link exit in the

user exit specific structure can be changed so that the distributed program link

request can be rerouted.

If you want to reroute the program link request to the local system, leave the

SYSID blank or set it to the local SYSID, which is passed in by using the parameter

UE_Dpllclsys.

Changing the remote program name

The user exit is passed the default program name that CICS works out by using

the rules that are shown in “Two ways to implement DPL in your application

program” on page 252. If the request is local, this is the name of the program that

is to be run on the local system. If the request is remote, this is the name of the

program on the remote system.

Note: If the user exit returns a null string in the UE_Dplprog parameter, an abend

and message is issued.

Changing the mirror transaction name

The user exit is passed the default mirror transaction ID that CICS work out by

using the rules that are shown in “Two ways to implement DPL in your

application program” on page 252. A blank mirror transaction ID indicates that the

CICS-supplied mirror transaction CPMI will be used as the default.

Changing the user ID

The user exit is passed the user ID that is executing the EXEC CICS LINK

command. If the request is to a remote system and the request is not already part

of an existing logical unit of work in that system, the DPL request can be executed

under the modified user ID at the remote system. The modified user ID does not

need to be configured on the CICS system that is executing the DPL user exit. The

user ID is sent the request as already verified; that is, any setting for the

OutboundUserids attribute in the Communication Definitions for the remote

system is ignored, and the user ID is sent without a password. If the exit changes

the field UE_Dpluserid to a null string, the request is sent with no security

attributes. If the user ID is unchanged, the security attributes are sent as

configured by the Communication Definitions for the remote system.

If further requests are made within the same unit of work to the same remote

system, the same user ID is used for all requests to that system for the particular

logical unit of work.

Invoking the user exit at end of routed program

If you want your dynamic distributed program link user exit program to be

invoked again when the routed program has completed, you must set the

UE_Dyropter field in the parameter list to UE_Yes before returning control to

CICS, on the initial invocation of the user exit.

The final exit is invoked either with a reason of UE_LINKTERM (the application

program that is linked-to completed successfully) or UE_LINKABEND (the

application program that is linked-to completed unsuccessfully). For both reasons,

the parameter list contains the values that are used to route the link request.

Chapter 10. Distributed program link (DPL) 255

Therefore, the final exit points can be used to keep statistics, such as which link

requests have been successful, or which systems seem to be unavailable.

For more information about DPL, see the TXSeries for Multiplatforms Administration

Reference.

256 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 11. Function shipping

Function shipping enables CICS application programs to:

v Access CICS files that are owned by other CICS systems

v Transfer data to or from transient data and temporary storage queues in other

CICS systems

v Initiate transactions in other CICS systems. This form of communication is

described in “How to use asynchronous processing” on page 273

Note: Function shipped commands cannot access BDAM files, or IMS, DL/I, or

DB2 databases in a IBM mainframe-based CICS. To access this data, use DPL

as described in Chapter 10, “Distributed program link (DPL),” on page 247.

How to use function shipping

Use the guidelines in this section to write application programs that use function

shipping. More information about function shipping is available in the CICS

Family: Interproduct Communication

Two ways to use function shipping

An application program can use function shipping in two ways, either ignoring the

location of resources, or explicitly specifying a remote system name.

v Implicitly specifying the remote system.

An application that uses function shipping need not know the location of the

requested resources; it can issue commands as if all resources are owned by the

local system. CICS resource definitions allow the system programmer to specify

that the named resource is owned by a remote system. The request is routed to

the system that is named by the resource definition RemoteSysId attribute. Refer

to the following example:

 EXEC CICS READ FILE(FILEA)

The File Definitions (FD) for FILEA would have a RemoteSysId defined.

v Explicitly specifying the remote system.

In a resource-accessing command, an application program can use the SYSID

parameter to specify the connection to the remote system that owns the resource.

The advantage is that any system, including the local system, can be named in

the SYSID attribute. Refer to the following example:

 EXEC CICS READ FILE(FILEA)

 SYSID(SYS1)

CICS routes the read request to the region that is defined by the

Communications Definitions (CD) entry SYS1. Any local FD for FILEA is

bypassed. A file should be defined on SYS1.

If the local SYSID is specified, the command is executed as if the SYSID option had

not been given.

Serial connections

A definition of the resource that is being accessed is required in the remote CICS

system to which the function shipping request is directed. This definition might

© Copyright IBM Corp. 1999, 2005 257

itself be a remote definition, causing the request to be relayed to another CICS

system. When this occurs, the linking system and the linked-to system are said to

be serially connected.

CICS file control data sets

Function shipping allows read and update access to files located on a remote CICS

system. Function ship of INQUIRE FILE and SET FILE are not supported.

Note: Take care when designing systems that use remote file requests that contain

physical record identifier values (for example, VSAM RBA files, and files

with keys not embedded in the record). Application programs that are in

remote systems must have access to the correct values following the

updating or reorganization of such files.

Transient data

When an application program accesses intrapartition or extrapartition transient

data queues on a remote system, the queue definition that is in the remote system

specifies whether the queue is protected, and whether it has a trigger level and

associated terminal.

If a transient data destination has an associated transaction, the named transaction

must be defined to be executed in the system that owns the queue; it cannot be

defined as remote. If a terminal is associated with the transaction, it can be

connected to another CICS system, and used through the transaction routing

facility of CICS.

Local and remote names

Any type of remote resource can be defined with a local name that is different

from its name in its owning system. This is useful when resources in different

systems have the same name. For example, a program can send data to the CICS

service destinations, such as CSMT, in both local and remote systems.

Synchronization

The CICS recovery and restart facilities ensure that when the requesting transaction

reaches a sync point, any mirror transactions that are updating protected resources

also take a sync point, so that changes to protected resources in remote and local

systems are consistent. The CICS control region receives notification of any failures

in this process, so that suitable corrective action can be taken. This action can be

taken manually or by user-written code.

When a transaction issues a sync point request, or terminates successfully, the

intercommunication component sends a message to the mirror transaction that

causes it also to issue a sync point request and terminate. The successful sync point

by the mirror transaction is indicated in a response sent back to the requesting

system, which then completes its sync point processing, so committing changes to

any protected resources.

Data security and integrity

Protection of data that is accessed by function shipping is the responsibility of the

data-owning system.

258 TXSeries for Multiplatforms: CICS Intercommunication Guide

A resource update that is caused by a function shipping request is committed

when the request-issuing program issues a sync point request or terminates

successfully. However, a risk occurs when shipping to more than one CICS region

with synchronization level 1.

Application programming for function shipping

You write a program to access resources in a remote region, in much the same way

as if the resources were on the local region.

The commands that you can use to access remote resources are:

v File control commands

v Temporary storage commands

v Transient data commands

Interval control commands are deliberately left out of this list. For information

about this subject, see “Application programming for asynchronous processing” on

page 277.

Your application can run in the CICS intercommunication environment, and use

the intercommunication facilities, without being aware of the location of the

resource that is being accessed. You define the resource location in the Remote

SysId attribute of the appropriate CICS definition. Optionally, you can use the

SYSID option on EXEC commands to select the region on which the command is to

run. In this case, CICS does not reference the resource definitions on the local

region unless the SYSID option names the local SYSID that is configured in the

Region Definitions (RD) attribute localSysId.

When your application issues a command against a remote resource, CICS ships

the request to the remote region, where a mirror transaction is initiated. The mirror

transaction runs the request on your behalf, and returns any output to your

application program. The mirror transaction is therefore, in effect, a remote

extension of your application program.

Although the same commands are used to access local resources and remote

resources, several restrictions apply when the resource is remote. For details of

these restrictions, see “Exceptional conditions” on page 260.

Some errors that do not occur in single regions can occur when function shipping.

For these reasons, you should always know whether resources that your program

accesses can possibly be remote.

Long-running function shipping transactions that start multiple application servers

can cause a degradation in performance when EXEC CICS SYNCPOINT is

frequently used. Therefore, when coding EXEC CICS SYNCPOINT in your

applications, decide the frequency with which you call it, by balancing your need

for data integrity with the requirement for efficient use of machine performance.

File control

Function shipping allows you to access Structured File Server (SFS) or Virtual

Sequential Access Method (VSAM) files that are on a remote region.

If you use the SYSID option to access a remote region directly, you must observe

the following rules.

Chapter 11. Function shipping 259

v For a file that is referencing a keyed file, you must specify KEYLENGTH if you

specify RIDFLD, unless you are using Relative Byte Addresses (RBA) or Relative

Record Numbers (RRN).

v If the file has fixed length records, you must specify the record length

(LENGTH).

These rules also apply if the File Definitions (FD) entry for the file does not define

the appropriate values.

Temporary storage

Function shipping allows you to send data to, or receive data from, temporary

storage queues that are on remote regions. You can define remote temporary

storage queues in the Temporary Storage Definitions (TSD). You can, however, use

the SYSID option on the EXEC CICS WRITEQ TS, EXEC CICS READQ TS, and

EXEC CICS DELETEQ TS commands, to specify the region on which the request is

to run.

Transient data

Function shipping allows you to access intrapartition or extrapartition transient

data queues that are on remote regions. You can define remote transient data

queues in the Transient Data Definitions (TDD). You can, however, use the SYSID

option on the EXEC CICS WRITEQ TD, EXEC CICS READQ TD, and EXEC CICS

DELETEQ TD commands, to specify the region on which the request is to run.

If the remote transient data queue has fixed length records, you must supply the

record length in the LENGTH option:

v If you do not specify the record length in the TDD entry for the transient data

queue

v If you use the SYSID option

Exceptional conditions

Requests that are shipped to a remote region can raise any of the exceptional

conditions for the command that can occur for a local resource. In addition, some

conditions are possible that apply only when the resource is remote.

Remote region not available

At the time that CICS issues a function shipping request, a link to the remote

region might not be available. If this is the case, CICS raises the SYSIDERR

condition in the application program.

CICS also raises this condition if the named region is undefined, but this error

should not occur in a production system unless the application obtains the name of

the remote region from a terminal user.

The default action for the SYSIDERR condition is to abnormally terminate the task.

Invalid request

The ISCINVREQ condition occurs when the remote region indicates an error that

does not correspond to a known condition. The default action is to terminate the

task abnormally.

260 TXSeries for Multiplatforms: CICS Intercommunication Guide

Mirror transaction abnormal termination

An application request against a remote resource can cause an abnormal

termination in the mirror transaction (for example, the requested TDD might have

been disabled).

In these conditions, CICS also abnormally terminates the application program, but

with an abnormal termination code of ATNI.

Note: The ATNI abnormal termination, which is caused by a mirror transaction

abnormal termination, is not related to a terminal control command, and,

therefore, CICS does not raise the TERMERR condition.

Long-running mirror transactions

Mirror transactions normally terminate when they expect no more work from the

requesting system. This is usually when the requesting transaction executes a sync

point or terminates. The longevity of a mirror task is a compromise between the

overhead of using resources (such as an application server and, possibly, an SNA

session), while waiting for work, and the overhead of starting a mirror transaction

in an application server and possibly allocating an SNA session.

For this reason, a mirror transaction that is started on a TCP/IP connected system

at synchronization level 2 always waits for the requesting application to either

terminate, or perform a sync point before terminating itself.

A mirror transaction that is started on an SNA-connected system at

synchronization level 1 always terminates after each shipped request is completed,

or when the requesting application terminates. The exception to this is when the

mirror transaction has done recoverable work, or has a browse active, or when it

has executed a DPL command.

When designing applications that use function shipping, you should be aware of

the effects that long or short running mirror transactions have on system resource

use in the resource owning region, and on the performance of your application. In

this case, the mirror transaction terminates when the requesting transaction

executes a sync point, or terminates.

Timeout on function shipped requests

When CICS receives a function shipped request, the started transaction is the

mirror transaction. The CICS supplied definitions of the mirror transaction (CPMI,

CVMI, and CSM*) all specify DeadLockTimeout=0. This means that the function

shipped request does not timeout if the resource that it is attempting to access is

locked. If you require function shipped requests to timeout in such a condition,

change the DeadLockTimeout value for the mirror transactions accordingly.

Chapter 11. Function shipping 261

262 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 12. Transaction routing

Transaction routing allows terminals that are connected to one CICS region, to run

with transactions that are in another connected CICS region. This means that you

can distribute terminals and transactions among your CICS regions and still have

the ability to run any transaction with any terminal.

In transaction routing, the two regions that are involved are referred to as:

The terminal-owning region

The CICS system on which the terminal is locally defined.

The application-owning region

The CICS system on which the application is locally defined.

 For more information about transaction routing, see the CICS Family: Interproduct

Communication

Initiating a transaction from a terminal

Generally, the ability to perform transaction routing is implemented by the way

that the involved resources are defined to CICS. Those resources are:

v The initiating terminal

v The initiated transaction

The initiating terminal

How you define the terminal depends on whether or not the terminal definitions

are shipped from the terminal-owning region to the application-owning region. If a

terminal definition is shipped, enough data is passed with a transaction routing

request to enable the remote system to install dynamically (autoinstall) the

necessary remote terminal definitions. The benefit of shipping terminal definitions

is that you do not need to define the terminal on the application-owning region.

If the terminal definitions are not shipped, the terminal definitions that are on the

application-owning region require the following information to implement

transaction routing. (See also “Defining terminals to the application-owning

region” on page 118 for details).

v The local name of the terminal

v The name of the connection to the terminal-owning region

v The name of the terminal in the terminal-owning region

v The network name of the terminal

When terminals are defined on the application-owning region, take care to ensure

that each terminal name is unique for that terminal wherever it is defined across

the network. If the terminal names cannot be unique, you can use the Terminal

Definitions (WD) RemoteName attribute to specify an alias, as described in the

TXSeries for Multiplatforms Administration Reference.

The initiated transaction

The terminal-owning region requires a Transaction Definitions (TD) entry for the

remote transaction. This definition entry need only specify the information that is

needed to implement transaction routing, as follows:

© Copyright IBM Corp. 1999, 2005 263

v The local name of the transaction

v The name of the connection to the application-owning region

v The name of the transaction in the application-owning region

v The transaction is dynamically routed with the dynamic transaction routing user

exit. Refer to “Dynamic transaction routing” on page 267.

All other transaction characteristics are defined in the local definition of the

transaction in the application-owning region. See “Defining remote transactions for

transaction routing” on page 119 for details.

Application programming for transaction routing

If you are writing a transaction that might be used in a transaction routing

environment, you can design and code that transaction as you would for a single

region. You must, however, be aware of several restrictions, which are described in

this topic. The same considerations apply if you are migrating an existing

transaction to the transaction routing environment.

Any Basic Mapping Support (BMS) maps that your program uses must reside in

the application owning region. If you run a transaction from an EBCDIC system,

you must not use square bracket characters in maps. For more information, see the

TXSeries for Multiplatforms Application Programming Guide.

Pseudo-conversational transactions

A routed transaction requires the use of an intersystem (LU 6.2) conversation for as

long as the transaction is running. For this reason, you should duplicate

long-running conversational transactions in the two regions, or you should design

the transactions as pseudo-conversational transactions.

Pseudo-conversational transactions are used in CICS application programs that

consist, internally, of multiple tasks that are designed to appear to the operator as a

continuous conversation. The program issues an EXEC CICS RETURN request with

the TRANSID option. The next input from the terminal causes the specified

transaction to be initiated unless the IMMEDIATE option is specified. If the

IMMEDIATE option is specified, the transaction is initiated without waiting for

any input from the terminal.

Take care when naming and defining the individual transactions that make up a

pseudo-conversational transaction, because CICS returns a TRANSID, which is

specified in an EXEC CICS RETURN command, to the terminal-owning region,

where the TRANSID might be a local transaction.

You can design a pseudo-conversational transaction that is made up of local and

remote transactions. However, if these transactions share a COMMAREA or

TCTUA, you might need to code a DFHTRUC program to convert the data

between the code pages that the two systems use. Refer to “Data conversion for

transaction routing” on page 164 for more details.

The terminal in the application-owning region

The terminal with which your transaction runs, is represented by a Terminal

Definitions (WD) entry, which is in many ways a copy of the real terminal

definition entry that is in the terminal-owning region. This copy is known as the

surrogate terminal definition entry. See “Shipping terminal definitions” on page

117.

264 TXSeries for Multiplatforms: CICS Intercommunication Guide

Using the assign command in the application-owning region

The EXEC CICS ASSIGN command might perform differently in a transaction

routing environment, from how it does in a single region. Therefore, you might

need to include different processing to reflect this.

You might find that three of the options to the EXEC CICS ASSIGN command

cause an unexpected reaction, or return unexpected values. A closer look at these

helps you to understand why:

PRINSYSID

This option returns the SYSID of the principal facility to the transaction.

This option requires that this facility be an LU 6.2 conversation. The

principal facility for a routed transaction is represented by the surrogate

terminal definition entry, which does not meet the requirement. Therefore,

CICS raises the INVREQ condition.

Note: You cannot use an EXEC CICS ASSIGN PRINSYSID command to

find the name of the terminal-owning region.

USERID

This option returns the user ID that is associated with the task. For a

routed transaction, the user ID that is returned is based on:

v Whether security for inbound requests is “local” or “trusted”. In CICS,

this would be specified with the Communications Definitions (CD)

RemoteSysSecurity attribute in the application-owning region.

v Whether or not a user ID is sent from the terminal-owning region to the

application-owning region. If the terminal-owning region is CICS, this is

specified in the terminal-owning region with the CD OutboundUserIds

attribute.

v Whether or not a link user ID is locally defined for the connection

between the terminal-owning region and the application-owning region.

In CICS, a link user ID is specified with the LinkUserId attribute.

v The value of the local default user ID (in those conditions when a user

ID is not available; for example, when a user ID is not flowed and a link

user is not defined.) In CICS, the default user ID is specified with the

Region Definitions (RD) DefaultUserId attribute.

See “Link security and user security compared” on page 136 for

information about how a user ID is determined for inbound requests. See

also “Using CRTE and CESN to sign on from a remote system” on page

142.

OPERKEYS

This option returns a 64-bit mask that represents the TSL keys assigned to

the remote user. The TSL keys assigned are based on the local definitions

of the link keys for the connection in addition to the keys that are locally

defined for the user ID that the user is logged on as.

 If the remote user is signed on locally (for example, if the user uses CRTE

to route to the remote system, then uses CESN to sign on to a local user

ID), the returned mask represents the keys that are defined for the user in

the definition entry and are also defined for the link.

 In some conditions, the user might be given public access only.

 See “Link security and user security compared” on page 136 for

information about how security keys are assigned. See also “Using CRTE

and CESN to sign on from a remote system” on page 142.

Chapter 12. Transaction routing 265

Automatic transaction initiation (ATI)

Automatic Transaction Initiation (ATI) is a process in which a transaction can

request that another transaction be started automatically on a named terminal,

when the named terminal becomes available.

Transaction routing allows ATI requests to be made that name terminals that are

attached to a remote region. When the ATI transaction is ready to be run, it is

shipped from the application-owning region to the terminal-owning region,

naming the transaction that is to be started and the terminal on which it is to be

started.

Terminal definitions for ATI

A definition of the remote terminal that names the remote terminal-owning region

must be available so that the application-owning region can ship the ATI request. If

the ATI started transaction becomes ready to run after the terminal definition has

been deleted, CICS cannot find the terminal-owning region, and therefore cannot

ship the ATI request to it. To solve this problem, either create a local Terminal

Definitions (WD) entry of the remote terminal, or ensure that the ATI started

transaction becomes ready to run before any autoinstalled WD is deleted. Refer to

“Shipping terminal definitions” on page 117.

TXSeries for Multiplatforms does not support terminal not found user exit programs.

Note: Shipped terminal definitions exist from the time that the definition is

received until a request is sent from the terminal-owning region to delete it.

See “Shipping terminal definitions” on page 117 for more information.

Transaction definitions for ATI

In the terminal-owning region, a definition for the remote transaction must exist

and, with the exception of dynamically routed transactions, the transaction

definition must name the region on which the ATI request is to be initiated. (In

TXSeries for Multiplatforms, this region is named with the Transaction Definitions

(TD) RemoteSysId attribute.) In particular, the same ATI transaction name cannot

be specified to run on two or more different systems. If this is required, you can do

one of the following:

1. Create a TD entry for each ATI transaction, giving each a different name. If you

create separate TD entries for each ATI transaction, the RemoteName and

RemoteSysId attributes should then be used to distinguish between the two

transactions.

2. Use the dynamic transaction routing User Exit. For information about using

dynamic transaction routing, see “Dynamic transaction routing” on page 267.

Indirect links for transaction routing

Because CICS does not support indirect links for transaction routing, each region in

a chain of three or more regions must contain a WD entry and TD entry for the

ATI started transaction and the terminal against which it is to be started. These

definitions must name the neighboring system, such that the terminal and

transaction can be found. For example, consider the following three regions:

REGIONA, REGIONB, and REGIONC. REGIONA is the terminal-owning region

and REGIONC is the application-owning region. A terminal that is attached to

REGIONA is starting a transaction called XXXA, which results in REGIONC trying

to start a transaction on REGIONC called XXXC, as shown in Table 45 on page

267:

266 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 45. Indirect links for transaction routing

REGIONA REGIONB REGIONC

RD: LocalSysId="REGA"

CD: REGB

WD: RemoteSysId=""

NetName="TERM0001"

TD: Entry for transaction\

 "XXXA"

RemoteName="XXXB"

RemoteSysId="REGB"

RD: LocalSysId="REGB"

CD: REGA

CD: REGC

WD: RemoteSysId= \

 "REGIONA"

NetName="TERM0001"

TD: Entry for transaction\

 "XXXB"

RemoteName="XXXC"

RemoteSysId="REGC"

RD: LocalSysId="REGC"

CD: REGB

WD: RemoteSysId="REGB"

NetName="TERM0001"

TD: Entry for transaction\

 "XXXC"

RemoteName=""

RemoteSysId=""

In this table:

v REGA, REGB, and REGC are the entries for REGIONA, REGIONB, and REGIONC

respectively.

v The RemoteName defaults to transaction entry name if not specified.

Dynamic transaction routing

Transaction routing can be either static or dynamic:

v With static transaction routing, the transaction is routed to the system that is

named with the RemoteSysId attribute in the Transaction Definitions (TD) for

that transaction. In this case, the value of the TD Dynamic attribute is no in the

local definition for that transaction.

v With Dynamic transaction routing, the transaction can be dynamically routed to

any available system, either remote or local, when the transaction is started. In

this case, the value of the TD Dynamic attribute is yes in the local definition for

that transaction.

Dynamic transaction routing enables you to define how a transaction is to be

routed depending on such factors as:

v Input to the transaction

v Available CICS systems

v Relative loading of the available systems

Also, a routing program can perform other functions besides redirecting

transaction requests, such as:

v Balancing of workload. For example, in a multiple-CICS environment, your

program could make intelligent choices between equivalent transactions on

parallel systems.

v Handling transactions that cannot be routed, such as when no remote CICS

regions are available.

v Handling abends in the routed-to transaction.

v Monitoring the number of requests that are routed to particular systems.

Dynamic transaction routing cannot be used to reroute remote ATI requests.

CICS manages dynamic transaction routing through the use of the CICS-supplied

dynamic transaction routing user exit. This user exit is invoked:

v Before routing a transaction that is defined as Dynamic=yes

v If an error occurs in route selection

Chapter 12. Transaction routing 267

v At the end of a routed transaction if the initial invocation requests reinvocation

at termination

v If a routed transaction abends and the initial invocation requests reinvocation at

termination

Parameters are passed in a structure between CICS and the dynamic routing

program. The program might change some of these parameters to influence

subsequent CICS action. The parameters include:

v The reason for the current invocation.

v Error information.

v The name of the target system. Initially, this is the system that is specified with

the TD RemoteSysId attribute. If is system is not specified, the name that is

passed is that of the local system.

v The name of the target transaction. Initially, this is the name that is specified

with the RemoteName attribute. If a target transaction is not specified, the name

that is passed is the name of the local transaction.

v A pointer to the CWA.

v A pointer to the TCTUA.

v A user area.

A dynamic transaction routing program must follow standard user exit rules.

CICS supplies a sample program that can be invoked by the user exit, but you can

replace this with one of your own. To do this, define your program in the PD of

the region and set the UserExitNumber attribute to 25.

Although the RemoteSysId and Remotename attributes are used by the dynamic

transaction routing user exit for routing the transactions, they are ignored when

the transactions are run locally. If you set up the dynamic transaction routing user

exit to allow a transaction to run locally, you need to define the local program.

This user exit is not invoked:

v When the transaction that is defined as dynamic is started in an intermediate

application-owning region. CICS attempts to abend such transactions but cannot

detect all attempts to “daisy chain” dynamic transactions. You must ensure that

your dynamic transaction routing program does not “daisy chain” dynamic

transactions.

v When a problem occurs because of lack of storage while the parameter list or

standard header for the user exit is being built. This causes the transaction to

abend.

v When the dynamic transaction is started in a Terminal-Owning Region by a

command of the following type that is issued in an Application-Owning Region:

EXEC CICS START TERM(yyyy) TRAN(xxxx)

In this case, the user exit is not invoked and the transaction is routed back to the

system where the request was issued.

Writing a dynamic transaction routing user exit

Because of the intercommunication aspects of dynamic transaction routing and the

building of a parameter list for the user exit, a performance overhead is involved

when a dynamic transaction routing user exit is used. However, the benefits of a

well-written dynamic transaction routing user exit to the overall performance of

several connected regions can far outweigh the negative effect.

268 TXSeries for Multiplatforms: CICS Intercommunication Guide

The information below outlines some of the tasks that you might want your

dynamic transaction routing user exit to perform, and describes how to implement

them in your program in the most efficient way.

Note: Programs that are to be used for a CICS user exit are subject to some rules

and conditions. These are described in the CICS Administration Guide.

How information is passed between CICS and the user exit

CICS passes information to the dynamic transaction routing exit by means of a

parameter list. The parameter list contains both a standard header structure

(cics_UE_Header_t), which is passed to all user exits, and a structure that is

specific to dynamic transaction routing called (cics_UE014025_t). Both these

structures are included in the header file (cicsue.h). Some of the data that is passed

to the dynamic transaction routing program in the parameter list is:

v The system ID of the remote CICS region that is specified in the Transaction

Definitions (TD)

v The name of the remote transaction

v A task-local user data area

You can write a dynamic transaction routing program that accepts these values, or

changes them, or instructs CICS not to continue routing the transaction. The values

that are used depend on the function that is to be performed; that is, some values

might be ignored.

Throughout this section, references are made to the results of setting a parameter

to a null string. A null string is a string that begins with a null character ’\0’. For

example, a null string can be placed into the system ID parameter of the parameter

list of user exit UE014025 as follows:

strcpy (UE_specificptr->UE_Dyrsysid, "");

All other strings that are returned by the user exit must also be terminated with a

null character.

For a complete description of the parameters that are passed between CICS and

the dynamic transaction routing program, see the TXSeries for Multiplatforms

Administration Reference.

Changing the target CICS system

The parameter list that is passed to the dynamic transaction routing user exit

initially contains the system ID of the default CICS region to which the transaction

is to be routed. This is derived from the value of the Remote system ID attribute

of the installed transaction definition. If the transaction definition does not specify

a Remote system ID value, the system ID that is passed is that of the local CICS

region.

The information that is passed to the dynamic transaction routing program in the

user exit specific structure can be changed to have the transaction rerouted.

Changing the program name

When the dynamic transaction routing user exit is invoked, the UE_Dyrprog

parameter contains the program name that is taken from the Progname attribute of

the transactions TD. If no program name is defined in this attribute, a null string is

passed to the user exit in the program name parameter. If you decide to route the

transaction locally, you can use this field to specify an alternative program to be

Chapter 12. Transaction routing 269

run. For example, if all remote CICS systems are unavailable and the transaction

cannot be routed, you might want to run a program in the local CICS system to

send an appropriate message to the user.

Note: If the dynamic transaction routing user exit returns a null string in the

UE_Dyrprog parameter, CICS issues an abend and message, even if it the

dynamic transaction routing user exit has chosen to route to a remote

system.

Telling CICS whether to route or terminate a transaction

If you want a transaction to be routed, whether you have changed any values or

not, you return UE_Normal to CICS with the return code. If you want to terminate

the transaction with a message and an abend, you supply a return code of

UE_Term_Abend. A further option (return code UE_Terminate) tells CICS to

terminate the transaction with a message, but not an abend.

When you return control to CICS with return code UE_Normal, CICS first

compares the returned system ID with the local system ID:

v If the system IDs are the same (or the returned system ID is a null string), CICS

uses the program name that is specified in the parameter UE_Dyrprog, and

executes the transaction locally.

v If the two system IDs are not the same, CICS uses the remote transaction name

and remote system name that are specified by the user exit, and routes the

transaction to the remote CICS system.

The dynamic transaction routing program is invoked again if:

v The routed transaction abends.

v The remote system is unavailable or not known.

v The routed transaction terminates successfully.

If the system is unavailable or not known

The dynamic transaction routing program is invoked again if the remote system

name that you specify on the route selection call is not known or is unavailable,

and you have specified that you want to retry the route request, by setting

UE_Dyrretry to UE_Yes. When this happens, you have a choice of actions:

v You can instruct CICS not to continue trying to route the transaction, by issuing

a return code of UE_Term_Abend. If the reason for the error is that the system

is unavailable, CICS issues message ’ERZ1433E’ and abend ’A149’.

v You can tell CICS to terminate the transaction with only a message by returning

a return code of UE_Terminate.

v You can change the system ID, and issue a return code of UE_Normal to try to

route the transaction again. If you change the system ID, you might also need to

supply a different remote transaction ID. You need to do this if, for example, the

transaction has a different remote transaction name on each system.

v You can choose to run the transaction locally, by supplying the local system ID

(or setting the system ID to a null string) and by supplying a program name.

Note that the program name can be allowed to default to the program name that

has been specified in the Transaction Definitions (TD) for the transaction.

v You can attempt to route to the same system again.

A count of the times that the routing program has been invoked for routing

purposes for this transaction is passed in field UE_Dyrcount. In your program,

you can set a limit on the value of this parameter to enable it to decide when to

stop trying to route a particular transaction instance.

270 TXSeries for Multiplatforms: CICS Intercommunication Guide

Invoking the user exit at the end of routed transactions

If you want your dynamic transaction routing program to be invoked again when

the routed transaction has completed, you must set the UE_Dyropter field in the

parameter list to UE_Yes before returning control to CICS, on the initial invocation

of the user exit. You might want to do this, for example, if you are keeping a count

of the number of transactions that are executing on a particular CICS system.

However, during this reinvocation, the dynamic transaction routing program

should update only its own resources.

Invoking the user exit on abend

If the routed transaction abends, the CICS system that started the transaction

reinvoked the dynamic transaction routing program (if it had been requested by

setting UE_Dyropter to UE_Yes). If a dynamic transaction abends, this exit point is

called, whether it has been routed to a remote region or to a local region.

This exit point cannot retry the route request and should only update its own

resources. This exit point can be used to keep information about the transaction

that abended, which the program can use to influence where future transactions

are routed.

Chapter 12. Transaction routing 271

272 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 13. Asynchronous processing

Asynchronous processing is a special case of function shipping in which the

shipped command starts a remote transaction. Unlike distributed transaction

processing (DTP), the initiating and initiated transactions do not engage in

synchronous communication. Instead, they are executed and terminated

independently.

The interval control commands that can be used for asynchronous processing are:

v EXEC CICS START

v EXEC CICS CANCEL

v EXEC CICS RETRIEVE

For information about how to define remote transactions, see “Defining remote

transactions for asynchronous processing” on page 120.

Security considerations

If you specify the RSLCheck attribute as internal or external in the Transaction

Definitions (TD) entry for a transaction, CICS raises the NOTAUTH condition if

the transaction attempts to issue an EXEC CICS command with the SYSID option

specified. This prevents transactions from bypassing the local security check. Refer

to “Security and function shipping” on page 141 for more information.

How to use asynchronous processing

This section describes how to initiate asynchronous processing and how to start

and cancel remote transactions.

Two ways to initiate asynchronous processing

Asynchronous processing is initiated by the issuing of an EXEC CICS START

command. Like other function shipping commands, the application program can

ignore the location of the started transaction or can explicitly specify the system

name.

v Implicitly specifying the location of the transaction

A program can issue an EXEC CICS START command for a remote transaction

as if the transaction is local; it does not need to specify the location of the

requested resources. CICS resource definitions allow the system programmer to

specify that the transaction is owned by a remote system. The request is routed

to the system that is named by the Transaction Definitions (TD) RemoteSysId

attribute. Refer to the following example:

 EXEC CICS START TRANID(TRN1)

The TD entry for TRN1 would have a RemoteSysId defined if the transaction is

to be run on the remote system. Otherwise, it is run on the local system.

v Explicitly specifying the location of the transaction

In a resource-accessing command, an application program can use the SYSID

parameter to specify the connection to the remote system that owns the

transaction. The advantage is that any system, including the local system, can be

named in the SYSID attribute. The decision whether to access a local or remote

transaction can be taken at execution time, based on initialization parameters

that are passed to the application program. Refer to the following example:

© Copyright IBM Corp. 1999, 2005 273

EXEC CICS START TRANID(TRN1)

 SYSID(SYS1)

CICS routes the start request to the region that is defined by the

Communications Definitions (CD) SYS1. Any local TD for TRN1 is bypassed. It

is assumed that a TD for TRN1 exists on SYS1.

Note: Asynchronous processing can also be initiated by using distributed

transaction processing (DTP), as described in Chapter 14, “Distributed

transaction processing (DTP),” on page 279.

Starting and canceling remote transactions

The EXEC CICS START command is used to queue a transaction initiation request

in a remote CICS system, to which the command is function shipped. In the

remote system, the mirror transaction is invoked to issue the EXEC CICS START

command.

You can include time control information on the shipped EXEC CICS START

command, by using the INTERVAL or TIME parameter. Before a command is

shipped, CICS converts a TIME specification to a time interval that is relative to

the local clock. The interval is the delay from receipt of the command on the

remote system, not from the time of submitting the request.

The time interval, which is specified in the INTERVAL or TIME parameter of an

EXEC CICS START command, is the time at which the remote transaction is to be

initiated, not the time at which the request is to be shipped to the remote system.

An EXEC CICS START command that is shipped to a remote CICS system can be

canceled, before the expiry of the time interval, by shipping an EXEC CICS

CANCEL command to the same system. The EXEC CICS START command that is

to be canceled is uniquely identified by the REQID value that is specified on the

EXEC CICS START command and on the associated EXEC CICS CANCEL

command. Any task can issue the EXEC CICS CANCEL command. It is not

possible to cancel locally queued requests on CICS.

Passing information with the START command

The EXEC CICS START command has several parameters that enable information

to be made available to the remote transaction when it is started. If the remote

transaction is in a CICS system, the information is obtained by using the EXEC

CICS RETRIEVE command. The information that can be specified is summarized

in the following list:

v User data that is specified in the FROM parameter. This is the principal way in

which data can be passed to the remote transaction.

v Temporary storage queue-named in the QUEUE parameter. This is an additional

way of passing data. The queue can be in any CICS system that is accessible to

the system on which the remote transaction is executed.

v A terminal name-specified in the TERMID parameter. This is the name of a

terminal that is to be associated with the remote transaction when it is initiated.

If a terminal is defined in the system that owns the remote transaction but is not

owned by that system, an automatic transaction initiation (ATI) request is sent to

the terminal-owning region (TOR), when the transaction is ready to run.

v A transaction name and an associated terminal name-specified in the RTRANSID

and RTERMID parameters. These parameters enable the local transaction to

specify transaction and terminal names for the remote transaction to use in an

EXEC CICS START command to initiate a transaction in the local system.

274 TXSeries for Multiplatforms: CICS Intercommunication Guide

Passing an APPLID with the EXEC CICS START command

If you have a transaction that can be started from several different systems, it is

worthwhile to know where the transaction was initiated.

You can arrange for each invoking transaction to send its local APPLID as part of

the user data in the EXEC CICS START command. The APPLID is accessed for the

local system by using the EXEC CICS ASSIGN APPLID command. This APPLID is

equivalent to the SNA LU name for the region and should be unique within the

network. This is then known as the RemoteLUName in the remote region.

The SYSID is the local name for a connection. Using the RemoteLUName, the

SYSID can be derived from EXEC CICS INQUIRE CONNECTION. To obtain a

SYSID from a RemoteLUName:

EXEC CICS INQUIRE CONNECTION START;

while not end

 EXEC CICS INQUIRE CONNECTION(SYSID) NETNAME(RemoteLUName) NEXT;

 If NETNAME is the RemoteLUName we are looking for

 Then the CONNECTION value is the applicable SYSID;

 break;

EXEC CICS INQUIRE CONNECTION END;

Improving performance of intersystem START requests

In some inquiry-only applications, sophisticated error checking and recovery

procedures might not be justified. When transactions make inquiries only, the

terminal operator can retry an operation if no reply is received within a specific

time. In such a condition, the number of data flows to and from the remote system

can be substantially reduced by using the NOCHECK option on the EXEC CICS

START command.

Deferred sending of START requests with the NOCHECK

parameter

For EXEC CICS START commands with the NOCHECK parameter, CICS defers

transmission of the request until one of the following events occurs:

v The transaction issues another function shipping request for the same system, or

executes a sync point

v The transaction terminates with an implicit sync point

v An EXEC CICS START NOCHECK with PROTECT was specified for the same

system

v When enough EXEC CICS START NOCHECK requests have accumulated on the

local system to make sending them efficient

The first, or only, start request that is transmitted from a transaction to a remote

system carries the begin-bracket indicator; the last, or only, request carries the

end-bracket indicator. Also, if any of the start requests that are issued by the

transaction specifies PROTECT, sync point coordination occurs after the last

request. The sequence of requests is transmitted within a single SNA bracket and

all the requests are handled by the same mirror task.

The NOCHECK parameter is always required when shipping of the EXEC CICS

START command is queued pending the establishment of links with the remote

system.

Local queuing of EXEC CICS START commands for remote

transactions

When a local transaction is ready to ship an EXEC CICS START command, the

intersystem facilities might be unavailable, either because the remote system is not

Chapter 13. Asynchronous processing 275

active or because a connection cannot be established. The normal CICS action in

these conditions is to raise the SYSIDERR condition.

This can be avoided by using the NOCHECK parameter, and arranging for CICS to

queue the request locally and forward it when the required link is in service. Local

queuing can be attempted for an EXEC CICS START NOCHECK command if the

system name is valid but the system is not available. A system is defined as not

available if the system is out of service when the request is initiated, or an attempt

to initiate a session to the remote system fails. If either of the above conditions

occurs, CICS queues an EXEC CICS START command for a remote transaction only

if the following two conditions are met:

1. The SYSID parameter is not coded in the EXEC CICS START command, and

2. The local TD entry of the transaction specifies LocalQ=yes.

Local queuing should be used only for EXEC CICS START NOCHECK commands

that represent time-independent requests. The delay that is implied by local

queuing affects the time at which the request is actually started.

Including EXEC CICS START request delivery in a logical unit of

work

The delivery of a start request to a remote system can be made part of a logical

unit of work by specifying the PROTECT parameter on the EXEC CICS START

command. The PROTECT parameter indicates that the remote transaction must not

be scheduled until the initiating transaction has successfully sync pointed.

A successful sync point of the transaction guarantees that the start request has

been delivered to the remote system or successfully locally queued. It does not

guarantee that the remote transaction has completed, or even that it has been, or

will be, initiated.

The started transaction

A CICS transaction that is initiated by an EXEC CICS START command can get the

user data and other information that is associated with the request by using the

EXEC CICS RETRIEVE command.

Started transaction satisfying multiple EXEC CICS START

requests

In accordance with the normal rules for interval control, CICS queues a start

request for a transaction that carries both user data and a terminal identifier if the

transaction is already active and associated with the same terminal. During the

waiting period, the active transaction can issue a further EXEC CICS RETRIEVE

command to access the data that is associated with the queued request. Such an

access automatically cancels the queued start request.

Thus, it is possible to design a transaction that can handle the data that is

associated with multiple start requests. A long-running transaction can accept

multiple inquiries from a terminal and ship start requests to a remote system. In

the remote system, the first request causes a transaction to start. From time to time,

the started transaction can issue EXEC CICS RETRIEVE commands to receive the

data that is associated with further requests, the absence of further requests being

indicated by the ENDDATA condition.

Overall application design should ensure that a transaction cannot get into a

permanent wait state because of the absence of further start requests; for example,

the transaction can be defined with a time-out interval.

276 TXSeries for Multiplatforms: CICS Intercommunication Guide

Terminal acquisition by a remotely initiated CICS transaction

When a CICS transaction is started by a start request that names a terminal

(TERMID), CICS makes the terminal available to the transaction as its principal

facility. It makes no difference whether the start request was issued by a user

transaction in the local CICS system or was received from a remote system and

issued by the mirror transaction.

Application programming for asynchronous processing

This section describes application programming for asynchronous processing

between CICS systems. The general information that is given for CICS transactions

that use the EXEC CICS START or EXEC CICS RETRIEVE commands is applicable

to communications between CICS and non-CICS LU 6.2 systems that support

mapped conversations.

Starting a transaction on a remote region

You can start a transaction on a remote region by issuing an EXEC CICS START

command just as though the transaction were a local one.

Generally, the transaction is defined as being remote. You can, however, name a

remote region explicitly in the SYSID option. This use of the EXEC CICS START

command is therefore essentially a special case of CICS function shipping.

Exceptional conditions for the EXEC CICS START command

The exceptional conditions that can occur as a result of issuing an EXEC CICS

START request for a remote transaction, depend on whether or not you specify the

NOCHECK option on the EXEC CICS START command.

If you specify NOCHECK, no conditions are raised as a result of the remote

running of the EXEC CICS START command. SYSIDERR, however, still occurs if

no link to the remote region is available, unless you have arranged for local

queuing of start requests. Also, CICS abnormally terminates the local transaction if

the remote mirror transaction that is associated with the EXEC CICS START

command abnormally terminates.

If you do not specify NOCHECK, the raising of conditions follows the normal

rules for EXEC CICS START.

Retrieving data associated with a remotely issued start

request

You use the EXEC CICS RETRIEVE command to retrieve data that has been stored

for a task as a result of a remotely-issued EXEC CICS START request. This is the

only available method for accessing such data.

For your transaction, no distinction exists between data that is stored by a remote

EXEC CICS START request and data that is stored by a local EXEC CICS START

request, and the normal considerations for use of the EXEC CICS RETRIEVE

command apply.

The CICS Family: Interproduct Communication provides much information about

programming for asynchronous processing

Chapter 13. Asynchronous processing 277

278 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 14. Distributed transaction processing (DTP)

DTP is one of the five ways that CICS allows processing to be split between

intercommunicating systems. Only DTP allows two or more communicating

application programs to run simultaneously in different systems and to pass data

backward and forward between themselves; that is, to perform a synchronous

conversation.

Of the five intercommunication facilities that CICS offers, DTP is the most flexible

and powerful, but also the most complex.

The CICS family TCP/IP network protocol does not support DTP.

Concepts of distributed transaction processing (DTP)

DTP allows two or more partner programs that are in different systems to interact

with each other. DTP enables a CICS transaction to communicate with one or more

transactions that are running in different systems. A group of such connected

transactions is called a distributed process.

The process can best be shown by discussing the operation of DTP between two

CICS systems, CICSA and CICSB, where:

1. A transaction (TRAA) is initiated on CICSA; for example, by a terminal

operator who is keying in a transaction ID and initial data.

2. To fulfill the request, the processing program X begins to execute on CICSA,

probably reading initial data from files, perhaps updating other files and

writing to print queues.

3. Without ending, program X asks CICSA to establish a conversation with

another CICS system, CICSB. CICSA responds to the request.

4. Also without ending, program X sends a message across the conversation and

asks CICSB to start a new transaction, TRBB. CICSB initiates transaction TRBB

by invoking program Y.

5. Program X now sends and receives messages, including data, to and from

program Y. Between sending and receiving messages, both program X and

program Y continue normal processing completely independently. When the

two programs communicate, their messages can consist of:

a. Agreements about how to proceed with conversation or how to end it. For

example, program X can tell program Y when it can transmit messages

across the session. At any time, both programs must know the state of their

conversation, and therfore, what actions are allowed. At any time, either

system might have actual control of the conversation.

b. Agreements to make permanent all changes that have made up to that

point. This allows the two programs to synchronize changes. For example, a

dispatch billing program on CICSA might want to commit delivery and

charging for a stock item, but only when a warehouse program in CICSB

confirms that it has successfully allocated the stock item and adjusted the

inventory file accordingly.

c. Agreements between CICSA and CICSB to cancel, rather than to make

permanent, changes to data that have been made since a given point. Such a

cancelation (or rollback) might occur when customers change their minds,

© Copyright IBM Corp. 1999, 2005 279

for example. Alternatively, it might occur because of uncertainty that has

been caused by failure of the application, the system, the communication

path, or the data source.

Although the two programs X and Y exist as independent units, it is clear that they

are designed to work as one. Of course, DTP is not limited to pairs of programs.

You can chain many programs together to distribute processing more widely. This

is discussed later in the book.

In the overview of the process that is given above, the location of program Y has

not been specified. Program X is a CICS program, but program Y need not be,

because CICS can establish conversations with non-CICS partners. This is

discussed in “Designing distributed processes” on page 283.

Conversations

Although several programs can be involved in a single distributed process,

information transfer within the process is always between self-contained

communication pairs. The exchange of information between a pair of programs is

called a conversation. During a conversation, both programs are active; they send

data to, and receive data from, each other. The conversation is two-sided but at

any moment, each partner in the conversation has more or less control than the

other. According to its level of control (known as its conversation state), a program

has more or less choice in the commands that it can issue.

CICS supports conversations over SNA and CICS PPC TCP/IP. Slight differences

exist between the two protocols. However, DTP programs can be written in such a

way that they can work with both protocols. This is described in Appendix C,

“Migrating DTP applications,” on page 343.

Conversation states

Thirteen conversation states have been defined for CICS DTP. The set of states that

is possible for a particular conversation depends on the synchronization level that

is used. (The concepts of synchronization level are explained in “Maintaining data

integrity” on page 282. The following table shows which conversation states are

defined for each synchronization level. The conversation states YES and NO

indicate whether the state is defined.

 Table 46. Conversation states available for each synchronization level

State number State name Sync level 0 Sync level 1 Sync level 2

1 Allocated Yes Yes Yes

2 Send Yes Yes Yes

3 Pendreceive Yes Yes Yes

4 Pendfree Yes Yes Yes

5 Receive Yes Yes Yes

6 Confreceive No Yes Yes

7 Confsend No Yes Yes

8 Conffree No Yes Yes

9 Syncreceive No No Yes

10 Syncsend No No Yes

11 Syncfree No No Yes

12 Free Yes Yes Yes

280 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 46. Conversation states available for each synchronization level (continued)

State number State name Sync level 0 Sync level 1 Sync level 2

13 Rollback No No Yes

By using a special CICS command (EXTRACT ATTRIBUTES), or the STATE option

on a DTP command, a program can obtain a value that indicates its own

conversation state. CICS places such a value in a variable that is named by the

program; the variable is sometimes referred to as a state variable. Knowing the

current conversation state, the program then knows which commands are allowed.

If, for example, a conversation is in send, the transaction can send data to the

partner. (The transaction can take other actions instead, as indicated in the relevant

state table.)

When a transaction issues a DTP command, that action can cause the conversation

state to change. For example, a transaction can deliberately switch the conversation

from send to receive by issuing a command that invites the partner to send data.

When a conversation changes from one state to another, it is said to undergo a

state transition. The state tables that are given in later chapters show how these

transitions take place.

Not only does the conversation state determine which commands are allowed, but

the state on one side of the conversation reflects the state that is on the other side.

For example, if one side is in send, the other side is in either receive, confreceive,

or syncreceive.

Distributed processes

A transaction can initiate other transactions, and therefore, conversations. In a

complex process, a distinct hierarchy emerges, usually with the terminal-initiated

transaction at the top. Consider the following scenario:

1. Transaction TRAA, in system CICSA, is initiated from a terminal.

2. Transaction TRAA requests a conversation with transaction TRBB to run in

system CICSB.

3. Transaction TRBB in turn requests a conversation with transaction TRCC in

system CICSC and transaction TRDD in system CICSD. Both transactions TRCC

and TRDD request a conversation with the same transaction SUBR in system

CICSE, therefore giving rise to two copies of SUBR.

Notice that each transaction can be invoked only by one partner transaction.

However any transaction can invoke several remote transactions. The conversation

that activates a transaction is called its principal facility. A conversation that is

allocated by a transaction to activate another transaction is called its alternate

facility. Therefore, a transaction can have only one principal facility, but several

alternative facilities.

When a transaction initiates a conversation, it is the front-end transaction on that

conversation. Its conversation partner is the back-end transaction on the same

conversation. It is normally the front-end transaction that dominates, and

determines the way the conversation goes. This style of processing is sometimes

referred to as the client/server model (sometimes referred to as master/slave).

Alternatively, the front-end transaction and back-end transaction might switch

control between themselves. This style of processing is called peer-to-peer. As the

Chapter 14. Distributed transaction processing (DTP) 281

name implies, this model describes communication between equals. You are free to

select whichever model you need when designing your application; CICS supports

both.

Maintaining data integrity

DTP applications must be designed to manage the many error conditions that can

arise when applications run in different systems. For example, one system might

encounter a problem, or the communication link between the system might fail.

CICS provides DTP commands and responses that help you recover from errors,

and ensures that the two systems remain in step with each other. This use of the

conversation is called synchronization.

Synchronization allows you to protect recoverable resources such as transient data

queues and files, whether they are local or remote. Whatever goes wrong during

the running of a transaction should not leave the associated resources in an

inconsistent state.

An application program can cancel all changes that have made to recoverable

resources since the last known consistent state. This process is called rollback. The

physical process of recovering resources is called backout. The condition that exists

when no loss of consistency occurs between distributed resources is called data

integrity.

Sometimes you might need to backout changes to resources, although no error

conditions have arisen. Consider an order entry system. While entering an order

for a customer, an operator is told by the system that the customer’s credit limit

would be exceeded if the order went through. Because it is of no use to continue

until the customer is consulted, the operator presses a PF key to abandon the

order. The transaction is programmed to respond by returning the data resources

to the state that they were in at the start of the order transaction.

The point in a process where resources are declared to be in a known consistent

state is called a synchronization point, often shortened to sync point. Sync points are

implied at the beginning and end of a transaction. A transaction can define other

sync points by program command. All processing between two sync points belongs

to a logical unit of work (LUW). In a distributed process, this is also known as a

distributed unit of work.

When a transaction issues a sync point command, CICS attempts to commit all

changes to recoverable resources that are associated with that transaction. If this is

successful, the transaction can no longer back out changes that have been made

since the previous sync point. They have become irreversible. However, if the

syncpoint command fails, the changes are backed out.

Although CICS can commit and backout changes to local and remote resources for

you, this service must be paid for in performance. If the recovery of resources

throughout a distributed process is not a problem (for example, in an inquiry-only

application), you can use simpler methods of synchronization.

CICS defines three levels of synchronization for DTP conversations:

v Level 0: None

v Level 1: Confirm

v Level 2: Sync point

282 TXSeries for Multiplatforms: CICS Intercommunication Guide

At synchronization level 0, no CICS support exists for synchronization of remote

resources on connected systems. But it is still possible, under the control of the

application to achieve some degree of synchronization by interchanging data, by

using the SEND and RECEIVE commands.

At synchronization level 1, you can use special commands for communication

between the two conversation partners. One transaction can confirm the continued

presence and readiness of the other. Both transactions are responsible for

preserving the data integrity of recoverable resources by issuing sync point

requests at the appropriate times.

At synchronization level 2, all sync point requests are automatically propagated

across multiple systems. CICS implies a sync point when it starts a transaction;

that is, it initiates logging of changes to recoverable resources, but no control flows

take place. CICS takes a sync point when one of the transactions terminates

normally. One abending transaction causes all to rollback. The transactions

themselves can initiate sync point or rollback requests. However, a sync point or

rollback request is propagated to another transaction only when the originating

transaction is in conversation with the other transaction, and synchronization level

2 has been selected.

Remember that sync point and rollback are not limited to any one conversation

within a transaction. They are propagated on every conversation that is currently

active at synchronization level 2.

For more information, see “Safeguarding data integrity” on page 296.

Designing distributed processes

This section discusses the issues that you must consider when designing

distributed processes to run under APPC. These issues include structuring

distributed processes and designing conversations.

It is assumed that you are already familiar with the issues that are involved in

designing applications in single CICS systems. For guidance information, see the

TXSeries for Multiplatforms Application Programming Guide.

Structuring distributed transactions

As with many design problems, designing a DTP application involves that

handling of several conflicting objectives that must be carefully balanced against

each other. These include performance, ease of maintenance, reliability, security,

connectivity to existing functions, and recovery.

Avoiding performance problems

If performance is the highest priority, design your application so that data is

processed as close to its source as possible. This avoids unnecessary transmission

of data across the network. Alternatively, if processing can be deferred, you might

want to consider batching data locally before transmitting.

To maintain performance across the intersystem connection, the conversation

should be freed as soon as possible so that the session can be used by other

transactions. In particular, avoid holding a conversation across a terminal wait.

Facilitating maintenance

To correct errors or to adapt to the evolving needs of an organization, distributed

processes always need to be modified. Whether these changes are made by the

Chapter 14. Distributed transaction processing (DTP) 283

original developers or by others, this task is likely to be easier if the distributed

processes are relatively simple. So consider minimizing the number of transactions

that are involved in a distributed process.

Going for reliability

If you are particularly concerned with reliability, consider minimizing the number

of transactions in the distributed process.

Protecting sensitive data

If the distributed process is to handle security-sensitive data, you could place this

data onto a single system. This means that only one of the transactions needs

knowledge of how or where the sensitive data is stored.

Data conversion

For communication with non-TXSeries for Multiplatforms systems, data conversion

might be required. When using DTP, it is the responsibility of the application to

perform these data conversions.

Safeguarding data integrity

If it is important for you to be able to recover your data when things go wrong,

design conversations for synchronization level 2, and keep the LUWs as small as

possible. However, this is not always possible, because the size of an LUW is

determined largely by the function that is being performed. Remember that CICS

sync point processing has no information about the structure and purpose of your

application. As an application designer, you must ensure that sync points are taken

at the correct time and place, and to good purpose. If you do, error conditions are

unlikely to lead to inconsistencies in recoverable data resources.

Figure 90 shows a temporary storage queue being transferred from system A to

system B through a conversation at synchronization level 2. The numbers mark

points at which you might consider taking a sync point.

Here are the relative advantages of taking a sync point at each of these points:

CICS SYSTEM A

Transaction TRAA

(1)

Loop until TS queue empty:

- Read a record

- Send the record

-Receive the response

(2)

- Delete the record

(3)

End loop.

Send last record indicator

Receive the response

(4)

CICS SYSTEM B

Transaction TRBB

(1)

Loop until last record

indicator is received:

- Receive the record

- Process the record

- Send a response

(2)

End loop.

Figure 90. Transferring a temporary storage queue

284 TXSeries for Multiplatforms: CICS Intercommunication Guide

1. Because an LUW starts at point (1), a sync point has no effect. If TRBB tries to

take a sync point without having first issued a command to receive data, it will

be abended because it is not valid to perform sync point with a synchronization

level 2 conversation in receive state.

2. A sync point at point (2) causes CICS to commit a record in system B before it

has been deleted from system A. If either system (or the connection between

them) fails before the distributed process is completed, data might be

duplicated.

3. Because minimum processing is needed before resources are committed, point

(3) might be a safe place to take a sync point if the queue is long or the records

are large. However, performance might be poor because many sync points are

likely to be taken.

4. If you take a sync point only at point (4), a failure before this point means that

all data that is sent will have to be retransmitted. A distributed process that

sync points only at this stage completes more quickly than one that sync points

at point (3), provided that no failure occurs. However, it takes longer to

recover. If more than two systems are involved in the process, this problem is

made worse.

Remember that having too many conversations within one distributed transaction

complicates error recovery. A complex structure might sometimes be unavoidable,

but usually it means that the design could be improved by simplifying the

structure of the distributed transaction.

An LUW must be recoverable for the whole process of which it forms a part. All

changes that are made by both partners in every conversation must be backed out

if the LUW does not complete successfully. Sync points are not arbitrary divisions,

but must reflect the functions of the application. LUWs must be designed to

preserve consistent resources so that when a transaction fails, all resources are

restored to their correct state.

Designing conversations

When the overall structure of the distributed process has been decided, you can

then start to design individual conversations. Designing a conversation involves

deciding which functions to put into the front-end transaction and into the

back-end transaction, and deciding what should be in a distributed unit of work.

So you have to make decisions about how to subdivide the work that is to be done

for your application.

Because a conversation involves transferring data between two transactions, to

function correctly, each transaction must know what the other intends. For

example, little advantage is gained by the front-end transaction’s sending data if all

the back-end transaction is designed to do is print the weekly sales report. You

must therefore consider each front-end and back-end transaction pair as one

software unit.

The sequences of commands that you can issue on a conversation are governed by

a protocol that is designed to ensure that commands are not issued in

inappropriate conditions. The protocol is based on the concept of several

conversation states. A conversation state applies only to one side of a single

conversation and not to a transaction as a whole. In each state, are several

commands that might reasonably be issued. The command itself, together with its

outcome, might cause the conversation to change from one state to another.

Chapter 14. Distributed transaction processing (DTP) 285

To determine the conversation state, you can use either the STATE option on a

command, or the EXTRACT ATTRIBUTES command. For the state values that are

returned by different commands, see the TXSeries for Multiplatforms Application

Programming Guide.

Note: You can also determine the state of a conversation by examining the EIB

values after each DTP command. However, it is more efficient to use explicit

STATE values.

When a conversation changes state, it is said to have undergone a state transition,

which generally makes a different set of commands available. The available

commands and state transitions are shown in a series of state tables. Which state

table you use depends on the synchronization level chosen.

For more information, see “How to use the state tables” on page 331.

Writing programs for CICS DTP

CICS enables DTP by using the LU 6.2 APPC mapped conversations commands.

The following sections describe how to code a simple DTP program:

v “Conversation initiation and the front-end transaction”

v “Back-end transaction initiation” on page 289

v “Transferring data on the conversation” on page 291

v “Communicating errors across a conversation” on page 295

v “Safeguarding data integrity” on page 296

v “Ending the conversation” on page 298

v “Checking the outcome of a DTP command” on page 300

You need to manage the changing conversation states of your program. A

description of how you test the state, and a complete list of all the conversation

states, is given in:

v “Testing the conversation state” on page 303

v Appendix B, “The conversation state tables,” on page 331

The APPC commands are summarized in:

v “Summary of CICS commands for APPC mapped conversations” on page 304

Conversation initiation and the front-end transaction

The front-end transaction is responsible for acquiring a conversation, specifying the

conversation characteristics, and requesting the startup of the back-end transaction

in the remote system.

This section describes the following topics:

v Allocating a conversation

v Using ATI to allocate a conversation identifier (CONVID)

v Connecting the partner transaction

v Initial data for the back-end transaction

Allocating a conversation

Initially, no conversation occurs, and therefore no conversation state. By issuing an

EXEC CICS ALLOCATE command, the front-end transaction acquires a conversation

identifier (CONVID) for a new conversation.

The RESP value that is returned from ALLOCATE should be checked to ensure

that a CONVID has been allocated. If the CONVID is successfully allocated,

286 TXSeries for Multiplatforms: CICS Intercommunication Guide

(DFHRESP(NORMAL)), the conversation is in allocated state (state 1) and the

CONVID in EIBRSRCE must be saved immediately. The SYSID option contains the

name of the Communications Definitions (CD) entry for the remote system.

The CONVID must be used in subsequent commands for this conversation.

A full description of the EXEC CICS ALLOCATE command can be found in the

TXSeries for Multiplatforms Application Programming Reference. Figure 91 shows an

example of an EXEC CICS ALLOCATE command:

Using ATI to allocate a conversation identifier (CONVID)

Front-end transactions are often initiated from terminals, but they can be started by

automatic transaction initiation (ATI). ATI can start a transaction with a

conversation as its principal facility.

A transaction can be started automatically either by an EXEC CICS START

command, or by a transient-data trigger. For an EXEC CICS START request, the

TERMID option is used. If a SYSID is specified in the TERMID option, the

transaction is started with a conversation as its principal facility.

For a transient-data trigger, the following Transient Data Definition (TDD)

attributes are used:

v A FacilityType of system is specified

v The FacilityId specifies the SYSID of the remote system

 * ...

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * ...

 01 FILLER.

 02 WS-CONV PIC X(4).

 02 WS-RESP PIC S9(8) COMP.

 02 WS-STATE PIC S9(8) COMP.

 02 WS-SYSID PIC X(4) VALUE ’SYSB’.

 02 WS-PROC PIC X(32) VALUE ’DTP2’

 02 WS-LEN-PROCN PIC S9(5) COMP VALUE +4.

 02 WS-SYNC-LVL PIC S9(5) COMP VALUE +2.

 * ...

 PROCEDURE DIVISION.

 * ...

 EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP) END-EXEC.

 IF WS-RESP = DFHRESP(NORMAL)

 THEN MOVE EIBRSRCE TO WS-CONVID

 ELSE

 * ... No session allocated. Examine RESP code.

 END-IF.

 * ...

 EXEC CICS CONNECT PROCESS CONVID(WS-CONV) STATE(WS-STATE)

 RESP(WS-RESP) PROCNAME(WS-PROC)

 PROCLENGTH(WS-LEN-PROCN)

 SYNCLEVEL(WS-SYNC-LVL)

 END-EXEC.

 IF WS-RESP = DFHRESP(NORMAL)

 THEN

 * ... No errors. Check EIB flags.

 ELSE

 * ... Conversation not started. Examine RESP code.

 END-IF.

Figure 91. Starting a conversation at synchronization level 2

Chapter 14. Distributed transaction processing (DTP) 287

A transaction that is started in either of these two ways already has an

conversation allocated. Although this conversation is the principal facility of the

started transaction, it is handled in the same way as a terminal-attached

transaction handles a secondary facility. The started transaction completes the

initiation of a conversation by issuing the EXEC CICS CONNECT PROCESS

command, as described below.

Connecting the partner transaction

When the front-end transaction has acquired a CONVID, the next step is to initiate

the partner transaction. The state tables show that, in the allocated state (state 1),

one of the commands that is available is EXEC CICS CONNECT PROCESS. This

command allows the conversation characteristics to be specified and attaches the

required back-end transaction. It should be noted that the results of the EXEC

CICS CONNECT PROCESS are placed into the send buffer and are not sent

immediately to the partner system. Transmission occurs later, when the

conversation is used. If the remote system failed to start, the TERMERR condition

is returned on a later verb.

A successful EXEC CICS CONNECT PROCESS causes the conversation to switch

to send state (state 2). The following program fragment shows an example of an

EXEC CICS CONNECT PROCESS command. The PROCNAME option contains

what is referred to in SNA terminology as the transaction program name (TPN). If

the remote system is CICS, PROCNAME should be the four-character transaction

identifier that is configured in the remote system for the back-end program.

 * ...

 EXEC CICS CONNECT PROCESS CONVID(WS-CONV) STATE(WS-STATE)

 RESP(WS-RESP) PROCNAME(WS-PROC)

 PROCLENGTH(WS-LEN-PROCN)

 SYNCLEVEL(WS-SYNC-LVL)

 END-EXEC.

For a full description of the EXEC CICS CONNECT PROCESS command, refer to

the TXSeries for Multiplatforms Application Programming Reference.

Initial data for the back-end transaction

While connecting the back-end transaction, the front-end transaction can send

initial data to it. This type of data, called program initialization parameters (PIPs), is

placed into specially formatted structures and is specified on the EXEC CICS

CONNECT PROCESS command. The PIPLIST (along with PIPLENGTH) option of

the EXEC CICS CONNECT PROCESS command is used to send PIPs to the

back-end transaction.

When using Communications Server for AIX

Note: Current AIX SNA limitations specify that only 16 fields of 64 characters

each of PIP data can be transmitted. That data must not contain space

characters. If the data that is transmitted does not conform to this, the

CONNECT PROCESS command apparently succeeds, but the next DTP

command returns TERMERR.

 To examine any PIPs that are received, the back-end transaction uses the EXEC

CICS EXTRACT PROCESS command.

288 TXSeries for Multiplatforms: CICS Intercommunication Guide

PIP data is used only by the two connected transactions and not by the CICS

systems. The support of PIP data is optional for APPC systems. If PIP data is not

supported by the partner system, the TERMERR is returned on a later verb with

EIBERRCD set to 10086032.

The PIP data must be formatted into one or more subfields in accordance with the

CICS-architected rules. The content of each subfield is defined by the application

developer. You should format PIP data as follows:

L1 rr PIP1 L2 rr PIP2 Ln rr PIPn

where Ln is a halfword binary integer that specifies the length of the subfield, and

rr represents a reserved halfword. The length includes the length field itself and

the length of the reserved field; that is, Ln = (length of PIPn + 4).

The PIPLENGTH option must specify the total length of the PIP list and must be

in the range 4 through 32763.

Back-end transaction initiation

The back-end transaction is initiated as a result of the front end transaction’s EXEC

CICS CONNECT PROCESS command. Initially, the back-end transaction should

determine the CONVID. This is not strictly necessary because the conversation is

the back-end transaction’s principal facility. Therefore, the CONVID parameter is

optional for DTP commands on this conversation. However, the CONVID is useful

for audit trails. Also, if the back-end transaction is involved in more than one

conversation, by always specifying the CONVID option, you improve program

readability and problem determination.

Figure 92 on page 290shows a fragment of a back-end transaction that does obtain

the conversation identifier. Although the example uses the EXEC CICS ASSIGN

command for this purpose, a simpler way would be to access the information in

EIBTRMID.

Chapter 14. Distributed transaction processing (DTP) 289

The back-end transaction can also retrieve its transaction name by issuing the

EXEC CICS EXTRACT PROCESS command. In the example that is shown in

Figure 92, CICS places the transaction name in WS-PROC and the length of the

name in WS-LEN-PROCN.

Note: The APPC architecture, which is described in Transaction Programmer’s

Reference for LUTYPE6.2, GC30-3084, states that the maximum length for the

PROCNAME field is 64 bytes and that implementation might limit this field

to less than 64 bytes. TXSeries for Multiplatforms supports up to 32 bytes of

data for PROCNAMEs. The PROCNAME field is space padded to 32 bytes.

With the EXEC CICS EXTRACT PROCESS, the back-end transaction can also

retrieve the synchronization level at which the conversation was started. In the

example, CICS places the synchronization level in WS-SYNC-LVL.

The EXEC CICS ASSIGN and the EXEC CICS EXTRACT PROCESS commands are

discussed here to give you some idea of what you can do in the back-end

transaction. They are not essential.

The back-end transaction starts in receive state (state 5), and must issue an EXEC

CICS RECEIVE command. By doing this, the back-end transaction receives

 * ...

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * ...

 01 FILLER.

 02 WS-CONVID PIC X(4).

 02 WS-STATE PIC S9(7) COMP.

 02 WS-SYSID PIC X(4) VALUE ’SYSB’.

 02 WS-PROC PIC X(32) VALUE ’BBBB’.

 02 WS-LEN-PROCN PIC S9(5) COMP VALUE +4.

 02 WS-SYNC-LVL PIC S9(5) COMP VALUE +2.

 * ...

 01 FILLER.

 02 WS-RECORD PIC X(100).

 02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.

 02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

 * ...

 PROCEDURE DIVISION.

 * ...

 EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.

 * ...

 * Extract the conversation characteristics.

 *

 EXEC CICS EXTRACT PROCESS PROCNAME(WS-PROC)

 PROCLENGTH(WS-LEN-PROCN)

 SYNCLEVEL(WS-SYNC-LVL)

 END-EXEC.

 * ...

 * Receive data from the front-end transaction.

 *

 EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)

 INTO(WS-RECORD) MAXLENGTH(WS-MAX-LEN)

 NOTRUNCATE LENGTH(WS-RCVD-LEN)

 END-EXEC.

 *

 * ... Check outcome of EXEC CICS RECEIVE.

 * ...

Figure 92. Startup of a back-end APPC mapped transaction at synchronization level 2

290 TXSeries for Multiplatforms: CICS Intercommunication Guide

whatever data the front-end transaction has sent and allows CICS to raise EIB flags

and change the conversation state to reflect any request that the front-end

transaction has issued.

The back-end transaction fails to start

It is possible that the back-end transaction fails to start. However, APPC contains a

transmission delay mechanism that informs the front-end transaction of the failure

when the conversation has been active long enough for responses from the

back-end system to have been received. The front-end transaction is informed of

this by way of a TERMERR condition in response to a DTP command. EIBERR,

EIBFREE, and EIBERRCD are set (see “Checking the outcome of a DTP command”

on page 300 for the possible values of EIBERRCD).

Before sending data, the front-end transaction should determine whether the

back-end transaction has started successfully. One way of doing this is to issue an

EXEC CICS SEND CONFIRM command directly after the EXEC CICS CONNECT

PROCESS command. This causes the front-end transaction to suspend until the

back-end transaction has responded or the back-end transaction has sent the failure

notification that is described above. EXEC CICS SEND CONFIRM is discussed in

“Safeguarding data integrity” on page 296.

Transferring data on the conversation

This section discusses how to pass data between the front- and back-end

transactions. In this section:

v “Sending data to the partner transaction” explains how to send data

v “Switching from sending to receiving data” on page 292 describes how to switch

from sending to receiving data

v “Receiving data from the partner transaction” on page 293 explains how to

receive data

Also contained in this section is a program fragment that shows the commands

that are described and the suggested response code checking.

Sending data to the partner transaction

The EXEC CICS SEND command is valid only in send state (state 2). Because a

successful simple EXEC CICS SEND leaves the conversation in send state (state 2),

it is possible to issue several successive sends. The data from the simple EXEC

CICS SEND command is initially stored in a local CICS buffer, which is “flushed”

either when this buffer is full or when the transaction requests transmission. The

transaction can request transmission either by using an EXEC CICS WAIT

CONVID command, or by using the WAIT option on the EXEC CICS SEND

command. The reason why data transmission is deferred is to reduce the number

of calls to the network. Data can be buffered by the network layers between CICS.

Therefore, use of the WAIT command does not guarantee that the partner

transaction immediately receives the data.

An example of a simple EXEC CICS SEND command is shown in Figure 93 on

page 292. For a full description of this command, see the TXSeries for Multiplatforms

Application Programming Reference.

Chapter 14. Distributed transaction processing (DTP) 291

Switching from sending to receiving data

The column for send state (state 2) in the state tables (see Appendix B, “The

conversation state tables,” on page 331) shows that several ways of switching from

send state (state 2) to receive state (state 5) are possible.

One possibility is to use an EXEC CICS RECEIVE command. The state tables show

that CICS supplies the INVITE and WAIT when an EXEC CICS SEND is followed

immediately by an EXEC CICS RECEIVE.

Another possibility is to use an EXEC CICS SEND INVITE command. The state

tables show that after EXEC CICS SEND INVITE, the conversation switches to

pendreceive (state 3). The column for state 3 shows that an EXEC CICS WAIT

CONVID command switches the conversation to receive state (state 5).

Still another possibility is to specify the INVITE and WAIT options on the EXEC

CICS SEND command. The state tables show that after EXEC CICS SEND INVITE

WAIT, the conversation switches to receive state (state 5).

 * ...

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * ...

 01 FILLER.

 02 WS-CONVID PIC X(4).

 02 WS-STATE PIC S9(7) COMP.

 * ...

 01 FILLER.

 02 WS-SEND-AREA PIC X(70).

 02 WS-SEND-LEN PIC S9(5) COMP VALUE +70.

 * ...

 01 FILLER.

 02 WS-RCVD-AREA PIC X(100).

 02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.

 02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

 * ...

 PROCEDURE DIVISION.

 * ...

 EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)

 FROM(WS-SEND-AREA) LENGTH(WS-SEND-LEN)

 END-EXEC.

 * ... Check outcome of SEND.

 * ...

 *

 EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)

 INVITE WAIT

 END-EXEC.

 * ...

 * Receive data from the partner transaction.

 *

 EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)

 INTO(WS-RCVD-AREA) MAXLENGTH(WS-MAX-LEN)

 NOTRUNCATE LENGTH(WS-RCVD-LEN)

 END-EXEC.

 *

 * ... Check outcome of EXEC CICS RECEIVE.

 * ...

Figure 93. Transferring data on a conversation at synchronization level 2

292 TXSeries for Multiplatforms: CICS Intercommunication Guide

Figure 94 shows the response-testing sequence after an EXEC CICS SEND INVITE

WAIT with the STATE option.

For more information about response testing, see “Checking the outcome of a DTP

command” on page 300.

Receiving data from the partner transaction

The EXEC CICS RECEIVE command is used to receive data from the connected

partner. The rows in the state tables for the EXEC CICS RECEIVE command show

the EIB fields that should be tested after an EXEC CICS RECEIVE command is

issued. In addition to showing which field should be tested, the state tables also

show the sequence in which the tests should be made.

As an alternative to testing the EIB fields, it is possible to test the resulting

conversation state; this is shown in the following figure. The conversation state can

be meaningfully tested only after you have issued a command with the STATE

option, or when you use the EXTRACT ATTRIBUTES command. For more

information about response testing, see “Checking the outcome of a DTP

command” on page 300.

For information about testing the conversation state, see “Testing the conversation

state” on page 303.

* ...

 DATA DIVISION.

 WORKING-STORAGE SECTION.

* ...

 01 FILLER.

 02 WS-RESP PIC S9(7) COMP.

 02 WS-STATE PIC S9(7) COMP.

* ...

 PROCEDURE DIVISION.

* ...

* Check return code from SEND INVITE WAIT

 IF WS-RESP = DFHRESP(NORMAL)

 THEN

* ... Request successful

 IF EIBERR = LOW-VALUES

 THEN

* ... No errors, check state

 IF WS-STATE = DFHVALUE(RECEIVE)

 THEN

* ... SEND OK, continue processing

 ELSE

* ... Logic error, should never happen

 END-IF

 ELSE

* ... Error indicated

 EVALUATE WS-STATE

 WHEN DFHVALUE(ROLLBACK)

* ... ROLLBACK received

 WHEN DFHVALUE(RECEIVE)

* ... ISSUE ERROR received, reason in EIBERRCD

 WHEN OTHER

* ... Logic error, should never happen

 END-EVALUATE

 END-IF

 ELSE

* ... Examine RESP code for source of error.

 END-IF.

Figure 94. Checking the outcome of an EXEC CICS SEND INVITE WAIT command

Chapter 14. Distributed transaction processing (DTP) 293

Figure 95 shows the response-testing and state-testing sequence.

Note: In the same way as it is possible to send the INVITE, LAST, and CONFIRM

commands with data, it is also possible to receive them with data. It is also

possible to receive a sync point request with data. However, EXEC CICS

ISSUE ERROR, EXEC CICS ISSUE ABEND, and conversation failure are

never received with data.

For a full description of the EXEC CICS RECEIVE command, refer to the TXSeries

for Multiplatforms Application Programming Reference.

 WORKING-STORAGE SECTION.

* ...

 01 FILLER.

 02 WS-RESP PIC S9(8) COMP.

 02 WS-STATE PIC S9(8) COMP.

* ...

 PROCEDURE DIVISION.

* ...

* Check return code from RECEIVE

 IF WS-RESP = DFHRESP(EOC)

 OR WS-RESP = DFHRESP(NORMAL)

 THEN

* ... Request successful

 IF EIBERR = LOW-VALUES

 THEN

* ... No errors, check state

 EVALUATE WS-STATE

 WHEN DFHVALUE(SYNCFREE)

 * ... Partner issued SYNCPOINT and LAST

 WHEN DFHVALUE(SYNCRECEIVE)

 * ... Partner issued SYNCPOINT

 WHEN DFHVALUE(SYNCSEND)

 * ... Partner issued SYNCPOINT and INVITE

 WHEN DFHVALUE(CONFFREE)

 * ... Partner issued CONFIRM and LAST

 WHEN DFHVALUE(CONFRECEIVE)

 * ... Partner issued CONFIRM

 WHEN DFHVALUE(CONFSEND)

 * ... Partner issued CONFIRM and INVITE

 WHEN DFHVALUE(FREE)

 * ... Partner issued LAST or FREE

 WHEN DFHVALUE(SEND)

 * ... Partner issued INVITE

 WHEN DFHVALUE(RECEIVE)

 * ... No state change. Check EIBCOMPL.

 WHEN OTHER

 * ... Logic error, should never happen

 END-EVALUATE.

 ELSE

 * ... Error indicated

 EVALUATE WS-STATE

 WHEN DFHVALUE(ROLLBACK)

 * ... ROLLBACK received

 WHEN DFHVALUE(RECEIVE)

 * ... ISSUE ERROR received, reason in EIBERRCD

 WHEN OTHER

 * ... Logic error, should never happen

 END-EVALUATE

 END-IF

 ELSE

 * ... Examine RESP code for source of error

 END-IF.

Figure 95. Checking the outcome of an EXEC CICS RECEIVE command

294 TXSeries for Multiplatforms: CICS Intercommunication Guide

The EXEC CICS CONVERSE command

The EXEC CICS CONVERSE command combines the functions EXEC CICS SEND

INVITE WAIT and EXEC CICS RECEIVE. This command is useful when one

transaction needs a response from the partner transaction in order to continue

processing. The use of EXEC CICS CONVERSE instead of EXEC CICS SEND

INVITE WAIT allows CICS to improve network performance.

Refer to the TXSeries for Multiplatforms Application Programming Reference for a full

description of the EXEC CICS CONVERSE command.

Communicating errors across a conversation

The APPC mapped API provides commands to enable transactions to pass error

notification across a conversation. Three coomands are possible, depending on the

severity of the error. The most severe, EXEC CICS ISSUE ABEND, causes the

conversation to terminate abnormally, and is described in “Emergency termination

of a conversation” on page 299. The other two commands are described below.

Requesting invite from the partner transaction

If a transaction is receiving data on a conversation and wants to send, it can use

the EXEC CICS ISSUE SIGNAL command to request that the partner transaction

does an EXEC CICS SEND INVITE. When the EXEC CICS ISSUE SIGNAL request

is received, EIBSIG=X’FF’ and the SIGNAL condition are raised. It should be noted

that on receipt of SIGNAL, a transaction is not obliged to issue EXEC CICS SEND

INVITE. For a full description of the EXEC CICS SEND INVITE command, see the

TXSeries for Multiplatforms Application Programming Reference.

Demanding invite from the partner transaction

If a transaction needs to send an immediate error notification to its partner

program but the conversation is in receive (state 5), it can use the ISSUE ERROR

command to try to switch the conversation state to send (state 2). When the

partner application receives ISSUE ERROR, the EIBERR flag is X’FF’, the

EIBERRCD field begins X’0889’, and the conversation state is set to receive (state

5). This error condition cannot be processed by HANDLE CONDITION (or RESP).

ISSUE ERROR can be called in send (state 2) and can also be used to give an error

response to a SEND CONFIRM request that the partner program has made.

However it should not be used in response to an ISSUE PREPARE, SYNCPOINT or

SYNCPOINT ROLLBACK.

If an ISSUE ERROR command is sent when the conversation is in receive (state 5),

all incoming data from the partner program is purged until either the remote

system acknowledges receipt of the ISSUE ERROR and reports it to the partner

application by setting EIBERR=X’FF’ and EIBERRCD=X’0889’, or the partner

application stops sending data and issues a command such as SYNCPOINT,

SYNCPOINT ROLLBACK, SEND LAST WAIT, FREE, ISSUE ERROR, or ISSUE

ABEND.

Always ensure that the EIB values are checked after ISSUE ERROR is called,

because it is possible to receive a response from the partner program that prevents

the conversation from switching to send (state 2). The response from ISSUE

ERROR can be checked as follows:

 * ...

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * ...

 01 FILLER.

Chapter 14. Distributed transaction processing (DTP) 295

02 WS-RESP PIC S9(7) COMP.

 02 WS-STATE PIC S9(7) COMP.

 * ...

 * Check the response from ISSUE ERROR.

 IF WS-RESP = DFHRESP(NORMAL)

 THEN

 * ... Request successful

 IF EIBERR = LOW-VALUES

 THEN

 * ... No errors, check state

 EVALUATE WS-STATE

 WHEN DFHVALUE(SEND)

 * ... ISSUE ERROR worked. Use CONVERSE to

 * ... send an appropriate error message and

 * ... receive a reply.

 WHEN DFHVALUE(FREE)

 * ... Partner sent SEND LAST (or ISSUE ABEND

 * ... while in send (state 2) and this has been

 * ... partially purged by the local program calling

 * ... ISSUE ERROR in receive (state 5)).

 WHEN OTHER

 * ... Logic error, should never happen.

 END-EVALUATE

 ELSE

 * ... Errors received

 EVALUATE WS-STATE

 WHEN DFHVALUE(RECEIVE)

 * ... ISSUE ERROR received from partner.

 WHEN DFHVALUE(ROLLBACK)

 * ... Partner sent SYNCPOINT ROLLBACK.

 WHEN OTHER

 * ... Logic error, should never happen.

 END-EVALUATE

 ELSE

 * ... RESP indicates a failure. This could be a TERMERR

 * ... caused by the partner abending or calling ISSUE ABEND.

For a full description of the EXEC CICS ISSUE ERROR command, see the TXSeries

for Multiplatforms Application Programming Reference.

Safeguarding data integrity

Use the following CICS synchronization commands to safeguard data integrity

across connected transactions:

 Table 47. CICS synchronization commands for use across transactions

Synchronization level Commands

0 - none None

1 - confirm EXEC CICS SEND CONFIRM

EXEC CICS ISSUE CONFIRMATION

2 - sync point EXEC CICS SEND CONFIRM

EXEC CICS ISSUE CONFIRMATION

EXEC CICS SYNCPOINT

EXEC CICS ISSUE PREPARE

EXEC CICS SYNCPOINT ROLLBACK

How to synchronize a conversation using CONFIRM commands

A confirmation exchange affects a single specified conversation and invokes only

two commands:

296 TXSeries for Multiplatforms: CICS Intercommunication Guide

1. EXEC CICS SEND CONFIRM: The conversation that is in send (state 2) issues

an EXEC CICS SEND CONFIRM command, causing a request for confirmation

to be sent to the partner transaction. The transaction suspends awaiting a

response.

2. EXEC CICS ISSUE CONFIRMATION: The partner transaction receives a request

for confirmation. It can then respond positively by issuing an EXEC CICS

ISSUE CONFIRMATION command. Alternatively, it can respond negatively by

using the EXEC CICS ISSUE ERROR or EXEC CICS ISSUE ABEND commands.

Requesting confirmation

The CONFIRM option of the EXEC CICS SEND command flushes the conversation

send buffer. This causes a transmission to occur. When the conversation is in send

(state 2), you can send data with the EXEC CICS SEND CONFIRM command. You

can also specify either the INVITE or the LAST option.

The send (state 2) column of the synchronization level 1 state table (see

“Synchronization level 1 conversation state table” on page 335) shows what

happens for the possible combinations of the CONFIRM, INVITE, and LAST

options. After an EXEC CICS SEND CONFIRM command, without the INVITE or

LAST options, the conversation remains in a send state. If the INVITE option is

used, the conversation switches to receive (state 5). If the LAST option is used, the

conversation switches to free (state 12).

A similar effect to EXEC CICS SEND LAST CONFIRM can be achieved by using

the following command sequence:

 EXEC CICS SEND LAST EXEC CICS SEND CONFIRM

Note from the state tables that the EXEC CICS SEND LAST command puts the

conversation in pendfree (state 4), so data cannot be sent when an EXEC CICS

SEND CONFIRM command is used as shown in the above example.

The form of command that is used depends on how the conversation is to continue

if the required confirmation is received. However, the response from EXEC CICS

SEND CONFIRM must always be checked.

Receiving and replying to a confirmation request

On receipt of a confirmation request, the EIB and conversation state is set

depending on the request that the partner transaction issues. These, together with

the contents of the EIBCONF, EIBRECV, and EIBFREE fields, are shown in the

following table:

 Table 48. EIB and conversation state request responses

Command issued in reply by

partner transaction

On receipt of

response -

Conversation

State

On receipt

of response

- EIBCONF

On receipt

of response

- EIBRECV

On receipt

of response

- EIBFREE

EXEC CICS SEND CONFIRM confreceive (state

6)

X’FF’ X’FF’ X’00’

EXEC CICS SEND INVITE

CONFIRM

confsend (state 7) X’FF’ X’00’ X’00’

EXEC CICS SEND LAST

CONFIRM

conffree (state 8) X’FF’ X’00’ X’FF’

You can reply in three ways:

Chapter 14. Distributed transaction processing (DTP) 297

1. Reply positively with an EXEC CICS ISSUE CONFIRMATION command.

2. Reply negatively with an EXEC CICS ISSUE ERROR command. This reply puts

the conversation into send state, regardless of the partner transaction request.

3. Abnormally end the conversation with an EXEC CICS ISSUE ABEND

command. This makes the conversation unusable and an EXEC CICS FREE

command must be issued immediately.

Checking the response to EXEC CICS SEND CONFIRM

After issuing EXEC CICS SEND INVITE CONFIRM or EXEC CICS SEND LAST

CONFIRM, it is important to test EIBERR to determine the partner’s response. The

following table shows how the partner’s response is indicated by EIB flags and the

conversation states:

 Table 49. Indications of partner response

Command issued in reply by

partner transaction

On receipt of

response -

Conversation State

On receipt of

response -

EIBERR

On receipt of

response -

EIBFREE

EXEC CICS ISSUE

CONFIRMATION

Dependent on the

original EXEC CICS

SEND INVITE

CONFIRM or EXEC

CICS SEND LAST

CONFIRM request

X’00 X’00

EXEC CICS ISSUE ERROR Receive (state 5) X’FF’ X’00

EXEC CICS ISSUE ABEND Free (state 12) X’FF’ X’FF’

If EIBERR=00, the partner has replied EXEC CICS ISSUE CONFIRMATION.

If EIBERR=X’FF’ and the first two bytes of EIBERRCD=X’0889’, the partner replied

EXEC CICS ISSUE ERROR. When the partner replies EXEC CICS ISSUE ERROR in

response to EXEC CICS SEND LAST CONFIRM, the LAST option is ignored and

the conversation is not terminated. The conversation state is switched to receive.

If the partner replies EXEC CICS ISSUE ABEND, the TERMERR condition is raised.

In addition, EIBERR and EIBFREE are set and the first two bytes of

EIBERRDC=0864. The conversation is switched to free state.

How to synchronize conversations using EXEC CICS

SYNCPOINT commands

Data synchronization (the EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT

ROLLBACK commands) affects all connected conversations at synchronization

level 2. The use of these commands is described in Chapter 15, “Sync pointing a

distributed process,” on page 307.

Ending the conversation

The following information describes the different ways a conversation can end,

either unexpectedly or under transaction control. To end a transaction, one

transaction issues a request for termination and the other receives this request.

When this has happened, the conversation is unusable and both transactions must

issue an EXEC CICS FREE command to release the session. Conversations are

implicitly freed when a transaction ends.

298 TXSeries for Multiplatforms: CICS Intercommunication Guide

Normal termination of a conversation

The EXEC CICS SEND LAST command is used to terminate a conversation. It

should be used in conjunction with either the WAIT or CONFIRM options, the

EXEC CICS SYNCPOINT command, or the EXEC CICS WAIT CONVID command

(depending on the conversation synchronization level). This is described in the

following table:

 Table 50. Command sequence for synchronization levels

Synchronization level Command sequence

0 EXEC CICS SEND LAST WAIT

EXEC CICS FREE

1 EXEC CICS SEND LAST CONFIRM

EXEC CICS FREE

2 EXEC CICS SEND LAST (see note)

EXEC CICS SYNCPOINT

EXEC CICS FREE

Note: It is important that the EXEC CICS SEND LAST command for

synchronization level 2 is not accompanied by WAIT. This sequence of

commands (with or without the implicit EXEC CICS FREE) is the only way

in which CICS synchronization level 2 conversations can normally be

terminated.

From the state tables it can be seen that it is possible to end a synchronization level

0 or 1 conversation by issuing the EXEC CICS FREE command, provided the

conversation is in send (state 2). This generates an implicit EXEC CICS SEND

LAST WAIT command before the EXEC CICS FREE is executed.

Emergency termination of a conversation

The EXEC CICS ISSUE ABEND command provides a way to abnormally end the

conversation. It is valid for all levels of synchronization.

EXEC CICS ISSUE ABEND can be issued by either transaction, irrespective of

whether it is in send or receive state, at any time after the conversation has

started. For a conversation in send state (state 2), any deferred data that is waiting

for transmission is flushed before the EXEC CICS ISSUE ABEND command is

transmitted.

The transaction that issues the EXEC CICS ISSUE ABEND command is not itself

abended. It must, however, issue an EXEC CICS FREE command for the

conversation unless it is designed to terminate immediately.

If an EXEC CICS ISSUE ABEND command is issued in receive (state 5), CICS

purges all incoming data until an INVITE, sync point request, or LAST indicator is

received. If LAST is received, no abend indication is sent to the partner transaction.

If an EXEC CICS ISSUE ABEND is received, CICS raises the TERMERR condition,

sets on EIBERR (=X’FF’), EIBFREE (=X’FF’), and places X’0864’ in the first two

bytes of EIBERRCD. The only command that can be subsequently issued for the

conversation is EXEC CICS FREE.

When a synchronization level 2 conversation receives EXEC CICS ISSUE ABEND

or when you call EXEC CICS ISSUE ABEND of a synchronization level 2

conversation, all other conversations go into backout-required state.

Chapter 14. Distributed transaction processing (DTP) 299

For a complete description of the EXEC CICS ISSUE ABEND command, see the

TXSeries for Multiplatforms Application Programming Reference.

Unexpected termination of a conversation

If a partner system fails, or a session goes out of service in the middle of a DTP

conversation, the conversation is terminated abnormally, and the TERMERR

condition is raised on the next command that accesses the conversation. In

addition EIBERR and EIBFREE are set on (X’FF’), and EIBERRCD contains a value

that represents the reason for the error. Refer to the table in “Checking the

outcome of a DTP command.”

More information can be found in the following tables:

v “Synchronization level 0 conversation state table” on page 333

v “Synchronization level 1 conversation state table” on page 335

v “Synchronization level 2 conversation state table” on page 338

Checking the outcome of a DTP command

Checking the response from a DTP command can be separated into three stages:

1. Testing for a request failure

2. Testing for indicators that are received on the conversation

3. Testing the conversation state

Testing for request failure is the same as for other EXEC CICS commands in that

conditions are raised and can be handled by use of EXEC CICS HANDLE

CONDITION or RESP. EIBRCODE will also contain an error code.

If the request has not failed, it is then possible to test for indicators that are

received on the conversation. These are returned to the application in the EIB. The

following EIB fields are relevant to all DTP commands:

EIBERR

When set to X'FF', indicates that an error has occurred on the conversation.

The reason is in EIBERRCD. This could be as a result of an EXEC CICS

ISSUE ERROR, EXEC CICS ISSUE ABEND, or EXEC CICS SYNCPOINT

ROLLBACK command that the partner transaction issued. EIBERR can be

set as a result of any command that can be issued while the conversation is

in receive (state 5), or following any command that causes a transmission

to the partner system. It is safest to test EIBERR in conjunction with

EIBFREE and EIBSYNRB after every DTP command.

EIBERRCD

Contains the error code that is associated with EIBERR. If EIBERR is not

set, this field is not used.

EIBFREE

When set to X'FF', indicates that the partner transaction had ended the

conversation. It should be tested along with EIBERR and EIBSYNC to find

out exactly how to end the conversation.

EIBSYNRB

When set to X'FF', indicates that the partner transaction or system has

issued an EXEC CICS SYNCPOINT ROLLBACK command. (This is

relevant only for conversations at synchronization level 2.)

EIBSIG

When set to X'FF', indicates that the partner transaction or system has

issued an EXEC CICS ISSUE SIGNAL command.

300 TXSeries for Multiplatforms: CICS Intercommunication Guide

The following table shows how these EIB fields interact.

 Table 51. Interaction between some EIB fields

EIBERR EIBFREE EIBSYNRB EIBERRCD Description

X'FF' X'FF' X'00' 08640000 The remote application or system has sent

ISSUE ABEND.

X'FF' X'FF' X'00' 08640001 The remote system has sent ISSUE ABEND.

X'FF' X'FF' X'00' 08640002 A remote resource has timed out.

X'FF' X'00' X'00' 08890000 The partner transaction has sent EXEC CICS

ISSUE ERROR

X'FF' X'FF' X'00' 10086032 The PIP data that was sent with the EXEC

CICS CONNECT PROCESS was incorrectly

specified.

X'FF' X'FF' X'00' 10086034 The partner system does not support mapped

conversations.

X'FF' X'FF' X'00' 080f6051 The partner transaction failed security check.

X'FF' X'FF' X'00' 10086041 The partner transaction does not support the

synchronization level that is requested on the

EXEC CICS CONNECT PROCESS.

X'FF' X'FF' X'00' 10086021 The partner transactions name is not

recognized by the partner system.

X'FF' X'FF' X'00' 084c0000 The partner system cannot start the partner

transaction.

X'FF' X'FF' X'00' 084b6031 The partner system temporarily cannot start

the partner transaction.

X'FF' X'00' X'FF' 08240000 The partner transaction or system has issued

EXEC CICS SYNCPOINT ROLLBACK.

X'FF' X'FF' X'00' a0000100 The session to the remote system has failed.

X'00' X'00' -- -- The command completed successfully.

Refer to the EIB flags that are described below.

In addition, the following EIB fields are relevant only to the EXEC CICS RECEIVE

and EXEC CICS CONVERSE commands:

EIBCOMPL

When set to X'FF', indicates that all the data that was sent at one time has

been received. This field is used in conjunction with the EXEC CICS

RECEIVE NOTRUNCATE command.

EIBEOC

When set to X'FF', indicates that an end-of-chain indicator has been

received. This field is normally associated with a successful EXEC CICS

RECEIVE command. Because, CICS supports only mapped conversations,

this field is provided only for compatibility with old CICS programs.

EIBNODAT

When set to X'FF', indicates that no application data has been received.

EIBRECV

Is used only when EIBERR is not set. When EIBRECV is on (X'FF'), another

EXEC CICS RECEIVE is required.

Chapter 14. Distributed transaction processing (DTP) 301

EIBSYNC

When set to X'FF', indicates that the partner transaction or system has

requested a sync point. (This is relevant only for conversations at

synchronization level 2.)

EIBCONF

When set to X'FF', indicates that the partner transaction has issued an

EXEC CICS SEND CONFIRM command and requires a response.

 Table 52. RECEIVE and CONFIRM flags

EIBERR EIBFREE EIBRECV EIBSYNC EIBCONF Description

X'00' X'00' X'00' X'00' X'00' The partner transaction or system issued

EXEC CICS SEND INVITE WAIT. The

local program is now in send state.

X'00' X'00' X'00' X'FF' X'00' The partner transaction or system issued

EXEC CICS SEND INVITE followed by

an EXEC CICS SYNCPOINT. The local

program is now in syncsend state.

X'00' X'00' X'00' X'00' X'FF' The partner transaction or system issued

EXEC CICS SEND INVITE CONFIRM.

The local program is now in confsend

state.

X'00' X'00' X'FF' X'00' X'00' The partner transaction or system issued

EXEC CICS SEND or EXEC CICS SEND

WAIT. The local program is in receive

state.

X'00' X'00' X'FF' X'FF' X'00' The partner transaction or system issued

an EXEC CICS SYNCPOINT. The local

program is now in syncreceive state.

X'00' X'00' X'FF' X'00' X'FF' The partner transaction or system issued

EXEC CICS SEND CONFIRM. The local

program is now in confreceive state.

X'00' X'FF' X'00' X'00' X'00' The partner transaction or system issued

EXEC CICS SEND LAST WAIT. The

local program is now in free state.

X'00' X'FF' X'00' X'FF' X'00' The partner transaction or system issued

EXEC CICS SEND LAST followed by an

EXEC CICS SYNCPOINT. The local

program is now in syncfree state.

X'00' X'FF' X'00' X'00' X'FF' The partner transaction or system issued

EXEC CICS SEND LAST CONFIRM.

The local program is now in conffree

state.

After analyzing the EIB fields, you can test the conversation state to determine

which DTP commands you can issue next. See “Testing the conversation state” on

page 303.

Checking EIB fields and the conversation state

Most of the information that is supplied by EIB indicator fields can also be

obtained from the conversation state. However, although the conversation state is

easier to test, you cannot ignore EIBERR (and EIBERRCD).

For example, if after an EXEC CICS SEND INVITE WAIT or an EXEC CICS

RECEIVE command has been issued, the conversation is in receive (state 5), only

302 TXSeries for Multiplatforms: CICS Intercommunication Guide

EIBERR indicates that the partner transaction has sent an ISSUE ERROR. This is

shown in “Switching from sending to receiving data” on page 292 and “Receiving

data from the partner transaction” on page 293.

It should be noted that the state tables provided contain not only states and

commands that are issued, but also relevant EIB field settings. The sequence in

which these EIB fields are shown provides a sensible sequence of checks for an

application.

Testing the conversation state

A transaction can inquire about the current state of one of its conversations in two

ways:

v The first is to use the EXEC CICS EXTRACT ATTRIBUTES command.

v The second is to use the STATE parameter on the DTP commands.

In both cases, the current state is returned to the application in a CICS value data

area (cvda). The following table shows how the cvda codes relate to the

conversation state. The table also shows the symbolic names that are defined for

these cvda values.

 Table 53. Relationship of cvda codes to conversation states

State name of conversation

states

State

number

Symbolic name of states that

are used in DTP programs

cvda code

Allocated 1 DFHVALUE (ALLOCATED) 81

Send 2 DFHVALUE (SEND) 90

Pendreceive 3 DFHVALUE (PENDRECEIVE) 87

Pendfree 4 DFHVALUE (PENDFREE) 86

Receive 5 DFHVALUE (RECEIVE) 88

Confreceive 6 DFHVALUE (CONFRECEIVE) 83

Confsend 7 DFHVALUE (CONFSEND) 84

Conffree 8 DFHVALUE (CONFFREE) 82

Syncreceive 9 DFHVALUE (SYNCRECEIVE) 92

Syncsend 10 DFHVALUE (SYNCSEND) 93

Syncfree 11 DFHVALUE (SYNCFREE) 91

Free 12 DFHVALUE (FREE) 85

Rollback 13 DFHVALUE (ROLLBACK) 89

Initial states

A front-end transaction in a conversation must issue an ALLOCATE command to

acquire a conversation. If the conversation is successfully allocated, the front-end

transaction’s side of the conversation goes into allocated (state 1).

A back-end transaction is initially in receive (state 5).

Appendix B, “The conversation state tables,” on page 331 tabulates the

conversation states, and shows which commands you can issue from any state, and

what the effect of those commands will be.

Chapter 14. Distributed transaction processing (DTP) 303

Summary of CICS commands for APPC mapped conversations

This table shows the CICS commands that are used in APPC mapped

conversations:

 Table 54. CICS commands used in APPC mapped conversations

CICS API command Use to ... Sync-

levels

EXEC CICS ALLOCATE Acquire a session. 0, 1, 2

EXEC CICS CONNECT

PROCESS

Initiate a conversation. 0, 1, 2

EXEC CICS EXTRACT

PROCESS

Access session-related information. 0, 1, 2

EXEC CICS SEND Send data and control information to the

conversation partner.

0, 1, 2

EXEC CICS RECEIVE Receive data from the conversation partner. 0, 1, 2

EXEC CICS CONVERSE Send and receive data on the conversation. 0, 1, 2

EXEC CICS WAIT CONVID Transmit any deferred data or control indicators. 0, 1, 2

EXEC CICS ISSUE

CONFIRMATION

Reply positively to EXEC CICS SEND

CONFIRM.

1, 2

EXEC CICS ISSUE PREPARE Prepare a conversation partner for sync pointing. 2

EXEC CICS ISSUE ERROR Inform the conversation partner of a

program-detected error.

0, 1, 2

EXEC CICS ISSUE SIGNAL Signal an unusual condition to the conversation

partner, usually against the flow of data.

0, 1, 2

EXEC CICS ISSUE ABEND Inform the conversation partner that the

conversation should be abandoned.

0, 1, 2

EXEC CICS FREE Free the session. 0, 1, 2

EXEC CICS SYNCPOINT Inform all conversation partners of readiness to

commit changes to recoverable resources.

2

EXEC CICS SYNCPOINT

ROLLBACK

Inform conversation partners of the need to back

out changes to recoverable resources.

2

Using DTP to check the availability of the remote system

TXSeries for Multiplatforms does not establish long term sessions with the systems

with which it is communicating, in the same way that IBM mainframe-based CICS

does. This makes it difficult to determine from TXSeries for Multiplatforms

whether a remote system is available. Similarly, it is not possible to determine from

a IBM mainframe-based CICS system whether a TXSeries for Multiplatforms region

is available. CEMT INQUIRE CONNECTION shows whether any sessions are

bound between the local IBM mainframe-based CICS system and SNA. However,

this does not mean that the PPC Gateway server, or the TXSeries for

Multiplatforms region that is behind i, is available.

You can use a pair of distributed transaction processing (DTP) programs to check

whether a remote system is available. All that these programs do is establish

whether it is possible to schedule a transaction on the remote system. This is the

conversation in which the two programs take part:

 Front-end program Back-end Program

 running on local system running on remote system

304 TXSeries for Multiplatforms: CICS Intercommunication Guide

ALLOCATE SYSID(conn-name)

 CONNECT PROCESS SYNCLEVEL(1)

 SEND LAST CONFIRM ---------> RECEIVE

 RESP=NORMAL <--------- ISSUE CONFIRMATION

 FREE FREE

The front-end program requests that the back-end program is started on the remote

system, then waits for a reply from the back-end program by using the EXEC CICS

SEND LAST CONFIRM command. This command will return a NORMAL

response only if the back-end program successfully starts and replies.

The front-end program can be enhanced to check the availability of all its remote

systems by using the EXEC CICS INQUIRE CONNECTION (Browse) capability.

Therefore, the front-end program can extract the name of each connection and

attempt the DTP conversation with the corresponding remote system. Here is an

outline of the possible front-end program logic:

 EXEC CICS INQUIRE CONNECTION START

 while RET-CODE = DFHRESP(NORMAL)

 : EXEC CICS INQUIRE CONNECTION(CONN-NAME)

 : NETNAME(NET-NAME)

 : RESP(RET-CODE)

 : if RET-CODE = DFHRESP(NORMAL)

 : : EXEC CICS ALLOCATE SYSID(CONN-NAME)

 : : RESP(DTP-RET-CODE)

 : : if DTP-RET-CODE = DFHRESP(NORMAL)

 : : : CONV-ID = EIBRSRCE

 : : : EXEC CICS CONNECT PROCESS CONVID(CONV-ID)

 : : : PROCNAME(tranid)

 : : : PROCLENGTH(4)

 : : : SYNCLEVEL(1)

 : : : RESP(DTP-RET-CODE)

 : : : if DTP-RET-CODE = DFHRESP(NORMAL)

 : : : : EXEC CICS SEND CONVID(CONV-ID)

 : : : : LAST

 : : : : WAIT

 : : : : RESP(DTP-RET-CODE)

 : : : : if DTP-RET-CODE = DFHRESP(NORMAL)

 : : : : : EXEC CICS FREE CONVID(CONV-ID)

 : : : : : WAIT

 : : : : : RESP(DTP-RET-CODE)

 : : Write out results

 EXEC CICS INQUIRE CONNECTION END

 EXEC CICS RETURN

Note: These programs should work on any type of CICS system.

Chapter 14. Distributed transaction processing (DTP) 305

306 TXSeries for Multiplatforms: CICS Intercommunication Guide

Chapter 15. Sync pointing a distributed process

This chapter discusses how to include sync pointing in a distributed process. The

information concentrates on the programming aspects of using the EXEC CICS

SYNCPOINT [ROLLBACK] command across conversations.

The following are described:

v “The EXEC CICS SYNCPOINT command”

v “The EXEC CICS ISSUE PREPARE command” on page 308

v “The EXEC CICS SYNCPOINT ROLLBACK command” on page 308

v “When a backout is required” on page 309

v “Synchronizing two CICS systems” on page 309

v “Synchronizing three or more CICS systems” on page 314

The EXEC CICS SYNCPOINT command

The EXEC CICS SYNCPOINT command is used to commit recoverable resources.

In a DTP environment, the effect of the EXEC CICS SYNCPOINT command is

propagated across all conversations that are using synchronization level 2. So, no

matter how many DTP transactions are connected by conversations at

synchronization level 2, the distributed process should be designed such that only

one of the transactions initiates sync point activity for the distributed unit of work.

When issuing the SYNCPOINT command, this transaction, known as the sync point

initiator must be in send state (state 2), pendreceive state (state 3), or pendfree state

(state 4) on all its conversations at synchronization level 2. Any transaction that

receives the sync point request becomes a sync point agent.

A sync point agent is in receive state on its conversation with the sync point

initiator and becomes aware of the sync point request by testing EIBSYNC after

issuing an EXEC CICS RECEIVE command. If it decides to respond positively by

issuing EXEC CICS SYNCPOINT, it must be in an appropriate state on all the

conversations with its own agents, for which it has become sync point initiator. If

an agent transaction responds negatively to a sync point request by issuing EXEC

CICS SYNCPOINT ROLLBACK, the initiator sees EIBRLDBK set (FF), which must

be tested on return from the EXEC CICS SYNCPOINT command.

Your transaction design should ensure that all transactions are in the correct

conversation state before an EXEC CICS SYNCPOINT command is issued.

When a sync point agent receives the sync point request, it is given the

opportunity to respond positively (to commit recoverable resources) with an EXEC

CICS SYNCPOINT command or negatively (to back out recoverable resources)

with an EXEC CICS SYNCPOINT ROLLBACK command.

For information about backing out recoverable resources, see “The EXEC CICS

SYNCPOINT ROLLBACK command” on page 308

Examples of these commands are given in “Synchronizing two CICS systems” on

page 309 and “Synchronizing three or more CICS systems” on page 314

© Copyright IBM Corp. 1999, 2005 307

The EXEC CICS ISSUE PREPARE command

The EXEC CICS ISSUE PREPARE command is used to send the initial sync point

flow to a selected partner on an APPC conversation at synchronization level 2.

Depending on the partner’s response, this command can then be followed by an

EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK command.

The reasons for using EXEC CICS ISSUE PREPARE are as follows:

1. In complex DTP that involves several conversing transactions, an ISSUE

ERROR command from one of the transactions might not reach the sync point

initiator in time to prevent it from issuing an EXEC CICS SYNCPOINT

command. This can lead to complex backout procedures for the distributed unit

of work.

Use EXEC CICS ISSUE PREPARE as a way of flushing any error responses

from the network.

2. If one or more sync point agents are not completely ″reliable″, use EXEC CICS

ISSUE PREPARE to check the status of these agents before proceeding with a

general distributed sync point.

Receiving EXEC CICS ISSUE PREPARE is exactly the same as receiving EXEC

CICS SYNCPOINT. The sync point agent program cannot detect any difference.

The EXEC CICS SYNCPOINT ROLLBACK command

The EXEC CICS SYNCPOINT ROLLBACK command is used to back out changes

to recoverable resources. In a DTP environment, the effect of the EXEC CICS

SYNCPOINT ROLLBACK command is propagated across all conversations that are

using synchronization level 2. An EXEC CICS SYNCPOINT ROLLBACK command

can be issued in any conversation state. If the command is issued when a

conversation is in receive (state 5), incoming data on that conversation is purged

as described for the EXEC CICS ISSUE ERROR and EXEC CICS ISSUE ABEND

commands.

When a transaction receives an EXEC CICS SYNCPOINT ROLLBACK in response

to a sync point request, the EIBRLDBK indicator is set. If EXEC CICS SYNCPOINT

ROLLBACK is received in response to any other request, the EIBERR and

EIBSYNRB indicators are set.

The rules for determining the state after EXEC CICS SYNCPOINT ROLLBACK

depend on the CICS release of the remote partner system. CICS follows APPC

architecture. Therefore, following an EXEC CICS SYNCPOINT ROLLBACK

command, conversations revert to the state that they were in at the start of the

LUW.

If a session failure or notification of a deallocate abend occurs during EXEC CICS

SYNCPOINT ROLLBACK processing, the command still completes successfully. If

the same thing happens during EXEC CICS SYNCPOINT processing, the command

can complete successfully with EIBRLDBK set. In such conditions, the conversation

on which the failure or abend occurred is in free state (state 12).

To avoid potential state checks, it is therefore advisable to check the conversation

state, by using the EXEC CICS EXTRACT ATTRIBUTES command before issuing

further DTP commands.

308 TXSeries for Multiplatforms: CICS Intercommunication Guide

When a backout is required

A backout is required in the following conditions:

v When EXEC CICS SYNCPOINT ROLLBACK is received

v After EXEC CICS ISSUE ABEND is sent

v After EIBERR and EIBFREE are returned together

The conversation state does not always reflect the requirement to back out.

However, CICS is aware of this requirement and converts the next EXEC CICS

SYNCPOINT request to an EXEC CICS SYNCPOINT ROLLBACK request. If no

EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK request is

issued before the end of the task, the task is abended, and all recoverable resources

are backed out.

Synchronizing two CICS systems

This information gives examples of how to commit and back out changes to

recoverable resources that are made by two DTP transactions connected on a

conversation that is using synchronization level 2.

The examples show the following scenarios:

v “SYNCPOINT in response to SYNCPOINT”

v “SYNCPOINT in response to ISSUE PREPARE” on page 310

v “SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK” on page

311

v “SYNCPOINT ROLLBACK in response to SYNCPOINT” on page 311

v “SYNCPOINT ROLLBACK in response to ISSUE PREPARE” on page 312

v “ISSUE ERROR in response to SYNCPOINT” on page 312

v “ISSUE ERROR in response to ISSUE PREPARE” on page 313

v “ISSUE ABEND in response to SYNCPOINT” on page 313

v “ISSUE ABEND in response to ISSUE PREPARE” on page 314

SYNCPOINT in response to SYNCPOINT

Figure 96, Figure 97 on page 310, and Figure 98 on page 310 show the effect of

EXEC CICS SEND, EXEC CICS SEND INVITE, or EXEC CICS SEND LAST

preceding EXEC CICS SYNCPOINT on an APPC mapped conversation. These

figures also show the conversation state before each command and the state and

EIB fields that are set after each command.

TRANSACTION A

...

state:send

SEND CONVID (AB)

state:send

SYNCPOINT

state:send

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

SYNCPOINT

state:receive

Figure 96. EXEC CICS SYNCPOINT in response to EXEC CICS SEND followed by EXEC

CICS SYNCPOINT on a conversation

Chapter 15. Sync pointing a distributed process 309

SYNCPOINT in response to ISSUE PREPARE

Figure 99 on page 311 shows an EXEC CICS SYNCPOINT command being used in

response to EXEC CICS ISSUE PREPARE on a conversation. This figure also shows

the conversation state before each command and the state and EIB fields that are

set after each command.

Note that you can use also an EXEC CICS ISSUE PREPARE command in

pendreceive state (state 3) and pendfree state (state 4).

Note also that, although the EXEC CICS ISSUE PREPARE command in the figure

returns with the conversation in syncsend state (state 10), the only commands that

are available for use on that conversation are EXEC CICS SYNCPOINT and EXEC

CICS SYNCPOINT ROLLBACK. All other commands abend ATCV.

TRANSACTION A

...

state:send

SEND INVITE CONVID (AB)

state:pendreceive

SYNCPOINT

state:receive

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncsend, EIBSYNC

SYNCPOINT

state:send

Figure 97. EXEC CICS SYNCPOINT in response to EXEC CICS SEND INVITE followed by

EXEC CICS SYNCPOINT on a conversation

TRANSACTIONA

. . .

state: send

SEND LASTCONVID (AB)

state: pendfree

SYNCPOINT

state: free

TRANSACTION B

. . .

state: receive

RECEIVE CONVID (AB)

state: syncfree, EIBSYNC, EIBFREE

SYNCPOINT

state: free

Figure 98. EXEC CICS SYNCPOINT in response to EXEC CICS SEND LAST followed by

EXEC CICS SYNCPOINT on a conversation

310 TXSeries for Multiplatforms: CICS Intercommunication Guide

SYNCPOINT ROLLBACK in response to SYNCPOINT

ROLLBACK

Figure 100 shows an EXEC CICS SYNCPOINT ROLLBACK command being used

in response to EXEC CICS SYNCPOINT ROLLBACK on a conversation. This figure

also shows the conversation state before each command and the state and EIB

fields that are set after each command.

SYNCPOINT ROLLBACK in response to SYNCPOINT

Figure 101 on page 312 shows an EXEC CICS SYNCPOINT ROLLBACK command

being used in response to EXEC CICS SYNCPOINT on a conversation. This figure

also shows the conversation state before each command and the state and EIB

fields that are set after each command.

TRANSACTION A

...

state:send

ISSUE PREPARE CONVID (AB)

state:syncsend

SYNCPOINT

state:send

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

SYNCPOINT

state:receive

Figure 99. EXEC CICS SYNCPOINT in response to EXEC CICS ISSUE PREPARE on a

conversation

TRANSACTION A

...

state:send

SYNCPOINT ROLLBACK

state:same as when unit of work began

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:rollback, EIBERR, EIBSYNRB

SYNCPOINT ROLLBACK

state:same as when unit of work began

Figure 100. EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT

ROLLBACK on a conversation

Chapter 15. Sync pointing a distributed process 311

SYNCPOINT ROLLBACK in response to ISSUE PREPARE

Figure 102 shows an EXEC CICS SYNCPOINT ROLLBACK command being used

in response to EXEC CICS ISSUE PREPARE on a conversation. This figure also

shows the conversation state before each command and the state and EIB fields

that are set after each command.

ISSUE ERROR in response to SYNCPOINT

Figure 103 on page 313 shows an EXEC CICS ISSUE ERROR command being used

in response to EXEC CICS SYNCPOINT on a conversation. The figure also shows

the conversation state before each command and the state and EIB fields that are

set after each command. You can also send EXEC CICS ISSUE ERROR before

receiving EXEC CICS SYNCPOINT, but this is not shown because the results are

the same.

It is pointless to use EXEC CICS ISSUE ERROR as a response to EXEC CICS

SYNCPOINT, because this causes the sync point initiator to discard all data that

was transmitted with the EXEC CICS ISSUE ERROR by the sync point agent. To

safeguard integrity, the sync point agent has to issue a EXEC CICS SYNCPOINT

ROLLBACK command.

TRANSACTION A

...

state:send

SYNCPOINT

state:same as when unit of work began, EIBRLDBK

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

SYNCPOINT ROLLBACK

state:same as when unit of work began

Figure 101. EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS SYNCPOINT

on a conversation

TRANSACTION A

...

state:send

ISSUE PREPARE CONVID (AB)

state:rollback, EIBERR, EIBSYNRB

SYNCPOINT ROLLBACK

state:same as when unit of work began

TRANSACTION A

...

state:send

ISSUE PREPARE CONVID (AB)

state:rollback, EIBERR, EIBSYNRB

SYNCPOINT ROLLBACK

state:same as when unit of work began

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

SYNCPOINT ROLLBACK

state:same as when unit of work began

Figure 102. EXEC CICS SYNCPOINT ROLLBACK in response to EXEC CICS ISSUE

PREPARE on a conversation

312 TXSeries for Multiplatforms: CICS Intercommunication Guide

ISSUE ERROR in response to ISSUE PREPARE

Figure 104 shows an EXEC CICS ISSUE ERROR command being used in response

to EXEC CICS ISSUE PREPARE on an APPC mapped conversation. This figure also

shows the conversation state before each command and the state and EIB fields

that are set after each command. You can also send EXEC CICS ISSUE ERROR

before receiving EXEC CICS ISSUE PREPARE, but this is not shown, because the

results are the same.

ISSUE ABEND in response to SYNCPOINT

Figure 105 on page 314 shows an EXEC CICS ISSUE ABEND command being used

in response to EXEC CICS SYNCPOINT on a conversation. The figure also shows

the conversation state before each command and the state and EIB fields that are

set after each command. You can also send EXEC CICS ISSUE ABEND before

receiving EXEC CICS SYNCPOINT, but this is not shown because the results are

the same.

TRANSACTION A

...

state:send

SYNCPOINT

state:same as when unit of work began, EIBRLDBK

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

ISSUE ERROR CONVID (AB)

state:send

SEND INVITEWAIT CONVID (AB)

state:receive

RECEIVE CONVID (AB)

state:rollback EIBERR, EIBSYNRB

SYNCPOINT ROLLBACK

state:same as when unit of work began

Figure 103. EXEC CICS ISSUE ERROR in response to EXEC CICS SYNCPOINT on a

conversation

TRANSACTION A

...

state:send

ISSUE PREPARE CONVID (AB)

state:receive, EIBERR

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

ISSUE ERROR CONVID (AB)

Figure 104. EXEC CICS ISSUE ERROR in response to EXEC CICS ISSUE PREPARE on a

conversation

Chapter 15. Sync pointing a distributed process 313

ISSUE ABEND in response to ISSUE PREPARE

The following figure shows an EXEC CICS ISSUE ABEND command being used in

response to EXEC CICS ISSUE PREPARE on a conversation. The figure also shows

the conversation state before each command and the state and EIB fields that are

set after each command. You can also send EXEC CICS ISSUE ABEND before

receiving EXEC CICS ISSUE PREPARE, but this is not shown because the results

are the same.

Synchronizing three or more CICS systems

This section gives examples of how to commit and back out recoverable resources

that are affected by three or more DTP transactions that are connected on

conversations at synchronization level 2.

Sync point in response to EXEC CICS SYNCPOINT

Figure 107 on page 315 shows the sequence of events for a successful sync point

involving six conversing transactions. It illustrates the states and actions that occur

when transactions issue EXEC CICS SYNCPOINT requests. To write successful

distributed applications, you do not need to understand all the data flows that

occur during a distributed sync point. In this example, the programmer is

concerned only with issuing EXEC CICS SYNCPOINT in response to finding a

conversation in syncreceive (state 9).

TRANSACTION A

...

state:send

SYNCPOINT

state:same as when unit of work began, EIBRLDBK

TRANSACTION B

...

state:receive

RECEIVE CONVID (AB)

state:syncreceive, EIBSYNC, EIBRECV

ISSUE ABEND CONVID (AB)

state: free

FREE CONVID (AB)

SYNCPOINT ROLLBACK

Figure 105. EXEC CICS ISSUE ABEND in response to EXEC CICS SYNCPOINT on a

conversation

Figure 106. EXEC CICS ISSUE ABEND in response to EXEC CICS ISSUE PREPARE on a

conversation

314 TXSeries for Multiplatforms: CICS Intercommunication Guide

1. Transaction A, which is in send state (state 2) on its conversations with

transactions B and D, decides to end the distributed unit of work, and therefore

issues an EXEC CICS SYNCPOINT command.

2. Transaction B sees that its half of its conversation with transaction A is in

syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

Transaction B is responding to a request from transaction A, but it also becomes

the sync point initiator for transactions C and E, and must ensure that its

conversations with these transactions are in a valid state for issuing an EXEC

CICS SYNCPOINT command. In this example, they are both in send state (state

2).

3. Transaction C sees that its half of its conversation with transaction B is in

syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

4. Transaction E sees that its half of its conversation with transaction B is in

syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

5. Transaction D sees that its half of its conversation with transaction A is in

syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

Transaction D is responding to a request from transaction A, but it also

becomes the sync point initiator for transaction F, and must ensure that its

conversation with this transaction is in a valid state for issuing an EXEC CICS

SYNCPOINT command. In this example, it is in send state (state 2).

TRANSACTION A
INITIATOR
for B and D

(states:
on AB send
on AD send)

SYNCPOINT

(states:
on AB send
on AD send)

TRANSACTION B
AGENT of A
INITIATOR
for C and E

(states:
on AB receive
on BC send
on BE send)

RECEIVE
(states:
on AB syncreceive
on BC send
on BE send)

SYNCPOINT
(states:
on AB receive
on BC send
on BE send

TRANSACTION D
LAST AGENT of A
INITIATOR for F

(states:
on AD receive
on DF send)

RECEIVE
on AD syncreceive
on DF send)

SYNCPOINT
(states:
on AD receive
on DF send)

TRANSACTION C
AGENT of B

(state:receive)
RECEIVE
(state:syncreceive)
SYNCPOINT
(state:receive)

TRANSACTION E
AGENT of B

(state:receive)
RECEIVE
(state:syncreceive)
SYNCPOINT
(state:receive)

TRANSACTION F
ONLY AGENT of D

(state:receive)
RECEIVE
(state:syncreceive)
SYNCPOINT
(state:receive)

Figure 107. A distributed sync point with all partners running on CICS

Chapter 15. Sync pointing a distributed process 315

6. Transaction F sees that its half of its conversation with transaction D is in

syncreceive state (state 9), so it issues an EXEC CICS SYNCPOINT command.

7. All the transactions have now indicated, by issuing EXEC CICS SYNCPOINT

commands, that they are ready to commit their changes. This process begins

with transaction F, which has no agents and has responded to request commit

by issuing an EXEC CICS SYNCPOINT command.

8. The distributed sync point is complete and control returns to transaction A

following the EXEC CICS SYNCPOINT command.

The previous discussion of the EXEC CICS SYNCPOINT command assumed that

all the agent transactions were ready to take a sync point by issuing EXEC CICS

SYNCPOINT when their conversation entered syncreceive state (state 9).

If, however, an agent has detected an error, it can reject the sync point request with

one of the following commands:

v EXEC CICS SYNCPOINT ROLLBACK (preferred response)

v EXEC CICS ISSUE ERROR

v EXEC CICS ISSUE ABEND

The EXEC CICS SYNCPOINT ROLLBACK command enables a transaction to

initiate a backout operation across the whole distributed unit of work. When it is

issued in response to a sync point request, it has the following effects:

1. Any changes that are made to recoverable resources by the transaction that

issues the rollback request are backed out.

2. The sync point initiator is also backed out (EIBRLDBK set).

This causes the sync point initiator to initiate a backout operation across the

distributed unit of work.

Sync point rollback in response to EXEC CICS SYNCPOINT

Figure 108 on page 317 shows the same distributed processes as the those that are

shown in Figure 107 on page 315. Six transactions are engaged in related

conversations. Transaction A (the first initiator) has two conversations: one with

transaction B, and the other with transaction D. Transaction B has three

conversations: one on its principal facility (with transaction A), another with

transaction C, and another with transaction E. Transactions C and E each have one

conversation: on their principal facility (with transaction B). Transaction D has two

conversations: one on its principal facility (with transaction A), and the other with

transaction F. Transaction F has one conversation: on its principal facility (with

transaction D).

316 TXSeries for Multiplatforms: CICS Intercommunication Guide

As is shown in Figure 107 on page 315, transaction A, while in send state (state 2),

issues the EXEC CICS SYNCPOINT command, and CICS initiates a chain of

events. Here, however, transaction E has detected an error that makes it unable to

commit, and it issues EXEC CICS SYNCPOINT ROLLBACK when it detects that

the conversation on its principal facility is in syncreceive state (state 9, EIBSYNC is

also set). This causes any changes that transaction E has made to be backed out,

and initiates a distributed rollback.

Transaction D senses that the conversation on its principal facility is in rollback

state (state 13), and that transactions B, C and A are rolled back (EIBRLDBK is also

set). Transaction D therefore issues an EXEC CICS SYNCPOINT ROLLBACK

command. Transaction F too senses that the conversation on its principal facility is

in rollback state, and issues an EXEC CICS SYNCPOINT ROLLBACK command.

The distributed rollback is now complete.

Conversation failure and the indoubt period

During the period between the sending of the sync point request to the partner

system and the receipt of the reply, the local system does not know whether the

partner system has committed the change. This is known as the indoubt period. If

the intersystem session fails during this period, the local CICS system cannot tell

whether the partner system has committed or backed out its resource changes.

TRANSACTION A
INITIATOR
for B and D

(states:
on AB send
on AD send)

SYNCPOINT

(states:
on AB send
on AD send)
EIBRLDBK)

TRANSACTION B
AGENT of A
INITIATOR
for C and E

(states:
on AB receive
on BC send
on BE send)

RECEIVE
(states:
on AB syncreceive
on BC send
on BE send)

SYNCPOINT
(states:
on AB receive
on BC send
on BE send
EIBRLDBK set)

TRANSACTION D
LAST AGENT of A
INITIATOR for F

(states:
on AD receive
on DF send)

RECEIVE
on AD rollback
on DF send)

SYNCPOINT ROLLBACK
(states:
on AD receive
on DF send)

TRANSACTION C
AGENT of B

(state:receive)
RECEIVE
(state:syncreceive)
SYNCPOINT
(state:receive
EIBRLDBK set)

TRANSACTION E
AGENT of B

(state:receive)
RECEIVE
(state:syncreceive)
SYNCPOINT ROLLBACK
(state:receive)

TRANSACTION F
ONLY AGENT of D

(state:receive)
RECEIVE
(state:syncreceive)
SYNCPOINT ROLLBACK
(state:receive)

Figure 108. Rollback during distributed sync pointing

Chapter 15. Sync pointing a distributed process 317

318 TXSeries for Multiplatforms: CICS Intercommunication Guide

Part 5. Appendixes

© Copyright IBM Corp. 1999, 2005 319

320 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix A. DFHCNV - The data conversion macros

This reference section describes the macros that are used for data conversion.

Using the DFHCNV macros

Note: DFHCNV macros are generally portable between CICS systems. Some minor

changes might be required. See “When TXSeries for Multiplatforms does not

convert the data” on page 157 for information about the differences between

CICS systems.

The following descriptions provide overview information for using the macros:

DFHCNV TYPE=INITIAL

Establishes the beginning of the macro source conversion table. INITIAL is

used to set up the control section for the table. It is also used to specify the

default code page that represents how data is stored for all resources on

your system. (This can be overridden at the resource level.) A shortcode

can be used.

 Refer to Table 32 on page 153 for a list of the shortcode and code pages

that are supported by the TXSeries for Multiplatforms systems.

 This macro can also be used to specify a code page for the incoming

request. The TYPE=ENTRY macro overrides this.

Note: TXSeries for Multiplatforms flows a code page in the PIP data.

When a code page is flowed to TXSeries for Multiplatforms, the

flowed code page is used instead of the code page that is specified

with the TYPE=INITIAL macro. See “When TXSeries for

Multiplatforms does not convert the data” on page 157 for

information about which CICS systems flow code pages.

DFHCNV TYPE=ENTRY

Specifies how data conversion is to occur for a specific resource. Code page

information that is specified with the TYPE=ENTRY macro overrides code

page information that is specified with the TYPE=INITIAL macro.

 The TYPE=ENTRY macro is also used to indicate whether or not a

standard or nonstandard conversion is required. If a standard conversion

can be used, the TYPE=SELECT and TYPE=FIELD macros are used to

specify the field lengths and the type of data that is contained in the fields,

such as character, binary, MBCS (graphic), or packed decimal. If a

nonstandard conversion is required, the TYPE=ENTRY macro is used to

specify that a user exit is required (described in “Non-standard data

conversion (DFHUCNV) for function shipping, DPL and asynchronous

processing” on page 160). Standard conversions can be used when:

1. The field contains data that can be converted with a type that is

specified with DFHCNV TYPE=FIELD DATATYP.

2. The fields are fixed length.

DFHCNV TYPE=KEY

Indicates the start of conversions to be applied to a key. This is applicable

only when the resource is a file with key (KSDS file).

© Copyright IBM Corp. 1999, 2005 321

DFHCNV TYPE=SELECT

Declares the selection criteria for a particular conversion. SELECT cannot

be used if a nonstandard conversion is specified.

DFHCNV TYPE=FIELD

Specifies field offsets and the type of conversions that are required. FIELD

cannot be used if a nonstandard conversion is specified.

DFHCNV TYPE=FINAL

Concludes the macro source conversion table definition. This must occur

only once, as the last definition.

Examples of DFHCNV macros

An example macro source conversion table is shown in Figure 109:

Rules for character placement in the source are:

v The statement area extends between positions 2 through 71.

v DFHCNV must begin in column 10.

v TYPE= must begin in column 20.

v The continuation character field occupies position 72 and can be any nonblank

character.

v The continued source statement must begin on the next line in position 16.

v Positions 73 and beyond are ignored and can be used for identification sequence

numbers.

In this example, the TYPE=INITIAL macro specifies that code page IBM-037 be

assumed as the default code page when a function shipping request either does

not specify a code page, or the code page specified is invalid. This macro also

states that resources that are defined in this table are encoded with IBM-850.

 DFHCNV TYPE=INITIAL,CLINTCP=037,SRVERCP=850

 **

 * CONVERSION MACROS FOR TEMPORARY DATA QUEUE "TDQ1" - *

 **

 DFHCNV TYPE=ENTRY,RTYPE=TD,RNAME=TDQ1

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER, X

 DATALEN=98,LAST=YES

 **

 * CONVERSION MACROS FOR TEMPORARY STORAGE QUEUE "TSQ1" - *

 **

 DFHCNV TYPE=ENTRY,RTYPE=TS,RNAME=TSQ1

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER, x

 DATALEN=98,LAST=YES

 **

 * CONVERSION MACROS FOR DPL COMMAREA - VSAMSFS APPLICATION *

 **

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=VSAMSFS

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER, x

 DATALEN=2

 DFHCNV TYPE=FIELD,OFFSET=2,DATATYP=BINARY, x

 DATALEN=2

 DFHCNV TYPE=FIELD,OFFSET=4,DATATYP=CHARACTER, x

 DATALEN=129,LAST=YES

 **

 DFHCNV TYPE=FINAL

Figure 109. Sample macro source for data conversion

322 TXSeries for Multiplatforms: CICS Intercommunication Guide

TDQ1, in this example, contains one field. That field contains 98 bytes of character

data.

TSQ1 also contains one field of character data.

VSAMSFS defines three fields. The first field is two bytes long and consists of

character data. The second field is two bytes long and consists of binary data. The

last field is 129 bytes long and consists of character data. Only the character data is

converted.

When your conversion table is coded, you can use cicscvt to build the conversion

templates

Figure 110 shows a record layout for a file named VSAM99. Figure 111 shows a set

of conversion macros for the record layout in Figure 110.

02 FILEREC.

 03 STAT PIC X.

 03 NUMB PIC X(6).

 03 NAME PIC X(20).

 03 ADDRX PIC X(20).

 03 PHONE PIC X(8).

 03 DATEX PIC X(8).

 03 AMOUNT PIC X(8).

 03 COMMENT PIC X(9).

 03 VARINF1.

 03 COUNTER1 PIC 9999 USAGE COMP-4.

 03 COUNTER2 PIC 9999 USAGE COMP-4.

 03 ADDLCMT PIC X(30).

 03 VARINF2 REDEFINES VARINF1.

 03 COUNTER1 PIC 9999 USAGE COMP-4.

 03 COUNTER2 PIC 9999 USAGE COMP-4.

 03 COUNTER3 PIC 9999 USAGE COMP-4.

 03 COUNTER4 PIC 9999 USAGE COMP-4.

 03 ADDLCMT2 PIC X(26).

Figure 110. Record layout for VSAM99

 DFHCNV TYPE=INITIAL

 DFHCNV TYPE=ENTRY,RTYPE=FC,RNAME=VSAM99

 DFHCNV TYPE=KEY

 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=6,LAST=YES

*

* If offset 0 is a character ’X’ use the following

* conversion definitions:

*

 DFHCNV TYPE=SELECT,OPTION=COMPARE,OFFSET=00,DATA=’X’

 DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80

 DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=4

 DFHCNV TYPE=FIELD,OFFSET=84,DATATYP=CHARACTER,DATALEN=30,LAST=YES

*

* Otherwise use the following (default)

* conversion definitions

*

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=00,DATATYP=CHARACTER,DATALEN=80

 DFHCNV TYPE=FIELD,OFFSET=80,DATATYP=BINARY,DATALEN=8

 DFHCNV TYPE=FIELD,OFFSET=88,DATATYP=CHARACTER,DATALEN=26,LAST=YES

 DFHCNV TYPE=FINAL

Figure 111. Description for record layout for VSAM99

Appendix A. DFHCNV - The data conversion macros 323

Flow of DFHCNV macro sequence

Refer to Figure 112 that shows an example of the DFHCNV macro sequence.

The DFHCNV TYPE=INITIAL macro

The DFHCNV TYPE=INITIAL macro establishes the beginning of the conversion

table. It sets up the control section for the table. The macro must occur only once

as the first definition.

Syntax

DFHCNV TYPE=INITIAL

,CLINTCP={037|codepage},SRVERCP={850|codepage} [,XA={YES|NO}]

[,CDEPAGE={codepage}]

 The options are defined as follows:

DFHCNVTYPE=INITIAL

DFHCNVTYPE=ENTRY,RTYPE=FC

DFHCNVTYPE=KEY

DFHCNVTYPE=FIELD

DFHCNVTYPE=SELECT,OPTION=COMPARE

DFHCNVTYPE=FIELD

DFHCNVTYPE=FIELD

DFHCNVTYPE=SELECT,OPTION=COMPARE

DFHCNVTYPE=FIELD

DFHCNVTYPE=FIELD

DFHCNVTYPE=FIELD

DFHCNVTYPE=FIELD

DFHCNVTYPE=SELECT,OPTION=DEFAULT

DFHCNVTYPE=FIELD

DFHCNVTYPE=ENTRY,RTYPE=TS

DFHCNVTYPE=SELECT,OPTION=COMPARE

DFHCNVTYPE=FIELD

DFHCNVTYPE=FIELD

DFHCNVTYPE=SELECT,OPTION=DEFAULT

DFHCNVTYPE=FIELD

DFHCNVTYPE=ENTRY,RTYPE=TD

DFHCNVTYPE=SELECT,OPTION=DEFAULT

DFHCNVTYPE=FIELD

DFHCNVTYPE=FIELD

DFHCNVTYPE=FINAL

Key

conversion

Conversion

template

Conversion

template

Conversion

template

Conversion

template

Conversion

template

Conversion

template

Entry

for

FC

resource

Entry

for

TS

resource

Entry

for

TD

resource

DFHCNV

conversion

table

Figure 112. Example of DFHCNV macro sequence

324 TXSeries for Multiplatforms: CICS Intercommunication Guide

CLINTCP

Use CLINTCP to specify the code page of the remote system that is

sending the incoming function shipping request. (This code page can be

overridden if the requesting region sends a code page with the request that

is supported by the local operating system). The TYPE=ENTRY CLINTCP

operand overrides the TYPE=INITIAL CLINTCP operand.

 The code page can be expressed as a shortcode.

 In addition to these shortcodes, you can specify any code page that iconv

supports, provided that you have on your operating system the translation

tables with which to do it. Refer to “Introduction to data conversion” on

page 147 for more information.

SRVERCP

Defines the code page that indicates how the resource is encoded. The

TYPE=ENTRY SRVERCP operand overrides the TYPE=INITIAL SRVERCP

operand.

 The code page can be expressed as a shortcode.

 In addition to these shortcodes, you can specify any code page that iconv

supports, provided that you have on your operating system the translation

tables with which to do it. Refer to “Introduction to data conversion” on

page 147 for more information.

CDEPAGE

Is retained for compatibility with other CICS family members, but is

ignored by CICS on Open Systems and CICS for Windows. On other CICS

family members, it establishes a client/server code page pair by means of a

single number. For example, 437 means CLINTCP=437, SRVERCP=037 and

932 means CLINTCP=932, SRVERCP=930.

XA={YES|NO}

Specifies whether CICS should use extended addressing. CICS on Open

Systems and CICS for Windows supports this option for compatibility with

other CICS products.

The DFHCNV TYPE=ENTRY macro

The TYPE=ENTRY macro is used for specifying how data conversion is to take

place for a specific resource. One TYPE=ENTRY macro must exist for each resource

name and type for which conversion is required. If a resource type and name is

not present, CICS does not convert the data. The entry for one resource name and

type is concluded by the next TYPE=ENTRY statement, or by the end of the table.

Syntax

DFHCNV TYPE=ENTRY ,RTYPE={FC|TD|TS|IC|PC}

,{RNAME=resourcename | XRNAME=xxxxxxxxxxxxxxxx} [,USREXIT={YES |

NO}] [,CLINTCP=codepage] [,SRVERCP=codepage] [,CDEPAGE=codepage]

 The options are defined as follows:

RTYPE

States the type of resource. RTYPE must be one of the following:

FC A file.

TD A transient data queue.

TS A temporary storage queue.

Appendix A. DFHCNV - The data conversion macros 325

IC An interval control start with a from area.

PC A distributed link with COMMAREA.

RNAME

The eight-character resource name. CICS pads shorter names with blanks,

and truncates longer names. The resource is one of the following:

v A file name (up to eight characters)

v A transient data queue name (up to eight characters)

v A temporary storage queue name (up to eight characters)

v An interval control start transaction identifier (up to four characters)

v A program name (up to eight characters)

XRNAME

TS and IC only. A 16-digit hexadecimal resource name. CICS pads shorter

names with blanks, and truncates longer names.

USREXIT

Allows you to decide whether CICS is to call the user conversion exit. If

you need the user conversion exit to convert some data for this resource,

select YES, otherwise, select NO. Selecting NO eliminates the overheads

that are related to calling the exit unnecessarily. See “Non-standard data

conversion (DFHUCNV) for function shipping, DPL and asynchronous

processing” on page 160 for more information.

CLINTCP

Use CLINTCP to specify the code page that you want used if the incoming

function shipping request either does not specify a code page, or a code

page is specified but is not valid for this operating system. The

TYPE=ENTRY CLINTCP operand overrides the TYPE=INITIAL CLINTCP

operand.

 The code page can be expressed as a shortcode. See “Using the DFHCNV

macros” on page 321 for a list of shortcodes and their equivalent code

pages.

 In addition to these shortcodes, you can specify any code page that iconv

supports, provided that you have on your operating system the translation

tables with which to do it. Refer to “Introduction to data conversion” on

page 147 for more information.

SRVERCP

Specifies the code page that indicates how the resource is encoded. The

TYPE=ENTRY SRVERCP operand overrides the TYPE=INITIAL SRVERCP

operand.

 The code page can be expressed as a shortcode. See “Using the DFHCNV

macros” on page 321 for a list of shortcodes and their equivalent code

pages.

 In addition to these shortcodes, you can specify any code page that iconv

supports, provided that you have on your operating system the translation

tables with which to do it. See “Introduction to data conversion” on page

147 for more information.

CDEPAGE

Is retained for compatibility with other CICS family members, but is

ignored by CICS on Open Systems and CICS for Windows. On other CICS

family members, it establishes a client/server code page pair by means of a

single number.

326 TXSeries for Multiplatforms: CICS Intercommunication Guide

The DFHCNV TYPE=KEY macro

The DFHCNV TYPE=KEY macro indicates the start of conversions that are to be

applied to a key. It is applicable only to an FC entry. You do not require this macro

if access is only by RRN or RBA. If access is by key but no TYPE=KEY statement is

present, CICS does not convert the key. You must also provide matching

conversion details for the key as part of each SELECT that applies to this file.

Otherwise, CICS might return an INVREQ condition on the file control EXEC

request. When used, this should be the first statement in an ENTRY, and must be

followed by one or more TYPE=FIELD statements.

Syntax

DFHCNV TYPE=KEY

The DFHCNV TYPE=SELECT macro

This macro is used to declare the selection criteria for a particular conversation.

Following each TYPE=SELECT instruction, is a set of TYPE=FIELD instructions

that define the fields that are to be converted. Every TYPE=SELECT macro must be

followed by at least one TYPE=FIELD macro.

Each SELECT statement compares the data with a given value to see whether it

should be subject to a subsequent field conversion. You can have as many such

comparisons as are necessary for each resource type and name.

If the data specification does not match the data that is in the record, the program

skips to the next TYPE=SELECT, either until it finds one that does match and no

further user data is converted; or until it gets to the OPTION=DEFAULT.

A default conversion must be available to be applied when no other is; this must

be the last definition for each ENTRY.

Syntax

DFHCNV TYPE=SELECT ,OPTION={DEFAULT | COMPARE }

[,OFFSET=nnn] [,DATA=’dd...dd’] [,XDATA=’xx...xx’]

 The options are defined as follows:

OPTION

States the basic selection options. CICS expects one of the following:

COMPARE

Indicates that the data should be converted by using the following

field definitions only if it satisfies the defined comparison.

DEFAULT

Indicates that the data should all be converted by using the

following fields if the previous SELECT COMPARE has not been

chosen. Every resource must have an OPTION=DEFAULT entry as

the last TYPE=SELECT option for that resource type and name; so

you should have one TYPE=SELECT, OPTION=DEFAULT for each

TYPE=ENTRY instruction.

Appendix A. DFHCNV - The data conversion macros 327

OFFSET

You specify this option with COMPARE only, to define the byte offset in

the record at which CICS should make the comparison. The maximum

value is 65535. You should specify this for all fields.

DATA You specify this option with COMPARE only, to define the data against

which a comparison is to be made. This can be up to 254 contiguous SBCS

character fields; not binary fields. The data that you specify for comparison

here must belong to the code page that you specify in this entry’s

SRVERCP. If not, CICS makes unpredictable conversions. CICS converts

this data from the SRVERCP code page to the CLINTCP code page before

comparison (because the incoming data is in the code page of CLINTCP).

XDATA

You specify this option with COMPARE only, to define the hexadecimal

data against which a comparison is to be made. This can be up to 254

hexadecimal digits (127 bytes). The length must be a whole number of

bytes. CICS compares the incoming request against this hexadecimal field

without conversion.

The DFHCNV TYPE=FIELD macro

The TYPE=FIELD macro specifies the position of a field, and the type and length

of the data that it contains. One such macro must exist for each field that is in a

resource record.

Syntax

DFHCNV TYPE=FIELD ,OFFSET=nnnn ,DATATYP={CHARACTER | PD |

BINARY | USERDATA | GRAPHIC | NUMERIC} [,USRTYPE=xx]

,DATALEN=nnnn [,SOSI=YES | NO] [,LAST=YES]

 The options are defined as follows:

OFFSET=nnnn

You specify the byte offset in the record at which the conversion should

start, up to a maximum value of 65535.

Note: For TYPE=KEY conversions, this is the byte offset from the start of

the key, not from the start of the record.

DATATYP

The type of conversion that is to be done. CICS expects one of the

following:

CHARACTER

Character fields are converted from SRVRCP to CLINTCP or from

CLINTCP to SRVRCP, as required.

PD CICS does not convert packed decimal fields.

BINARY

No conversion occurs for binary fields.

USERDATA

The data conversion is done by user replaceable conversion

program DFHUCNV. The USRTYPE option that is shown below

allows you to pass a number to DFHUCNV that indicates how the

data is to be converted.

328 TXSeries for Multiplatforms: CICS Intercommunication Guide

GRAPHIC

Graphic fields contain Multi-Byte Character Set (MBCS) characters

only. CICS adds a shift-out (SO) character (X’0E’) to the start of the

data, and a shift-in (SI) character (’0F’) to the end of the data

before passing it to iconv to be converted.

NUMERIC

CICS converts these fields between the local byte ordering and the

byte order of the requesting system. Byte order information of the

requesting system flows with the function shipping request if the

requesting system is CICS on Open Systems or CICS for Windows.

Otherwise the local region assumes the remote system is little

endian and swaps the bytes as required. For more information

about byte ordering, refer to “Numeric data conversion

considerations” on page 149.

USRTYPE

The value given here is made available to the user-replaceable conversion

program DFHUCNV. The values that you provide can be in the range 80

through 128 (X’50’ through X’80’). The default value is 80 (X’50’). If more

than one type of user-defined conversation is possible, you can use this

value to specify to DFHUCNV what conversion is needed for each field.

 The option is ignored if DATATYP=USERDATA is not specified.

DATALEN

The length of the data field that is to be converted, in bytes, up to a

maximum value of 65535. For variable length fields, specify the maximum

possible length. For NUMERIC fields, only lengths 2 and 4 are valid.

SOSI This option is supported only for compatibility with other CICS products.

LAST=YES

Indicates that this definition is the last field for this TYPE=SELECT or

TYPE=KEY statement.

The TYPE=ENTRY CLINTCP operand overrides the TYPE=INITIAL CLINTCP

operand.

The DFHCNV TYPE=FINAL macro

The purpose of this macro is to conclude the conversion table definition. It must

occur only once, as the last definition.

Appendix A. DFHCNV - The data conversion macros 329

330 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix B. The conversation state tables

The state tables provide information for writing a DTP program. They show which

commands can be issued from each conversation state and the state transitions that

can occur and the EIB fields that can be set as a result of issuing a command.

How to use the state tables

The commands that you can issue, coupled with the EIB flags that can be set after

execution, are shown in column 1 of each table. The possible conversation states

are shown across the top of the table. The states correspond to the columns of the

table. The intersection of row (command and EIB flag) and column (state)

represents the state transition, if any, that occurs when that command returning a

particular EIB flag is issued in that state.

A number at an intersection indicates the state number of the next state. Other

symbols represent other conditions, as follows:

/ This state change cannot occur.

EIB* The EIB flag is any one that has not been covered in earlier rows, or it is

irrelevant (but see the note on EIBSIG if you want to use ISSUE SIGNAL).

ab The command is not valid in this state. Issuing a command in a state in

which it is not valid usually causes an ATCV abend.

= Remains in current state.

E End of conversation.

The state numbers

The state numbers are defined as follows:

 State 1: Allocated

 State 2: Send

 State 3: Pendreceive

 State 4: Pendfree

 State 5: Receive

 State 6: Confreceive

 State 7: Confsend

 State 8: Conffree

 State 9: Syncreceive

 State 10: Syncsend

 State 11: Syncfree

 State 12: Free

 State 13: Rollback

The state conversation table notes

The following notes apply to all three state tables:

1 EIBSIG has been omitted. This is because its use is optional and is entirely

a matter of agreement between the two conversation partners. In the worst

case, it can occur at any time after every command that affects the EIB

flags. However, when used for the purpose for which it was intended, it

usually occurs after a SEND command. Its priority in the sequence of

testing depends on the role that you give it in the application.

© Copyright IBM Corp. 1999, 2005 331

2 RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate

that the user buffer was too small to contain all the data that was received

from the partner transaction. Normally, you would continue to issue

RECEIVE NOTRUNCATE commands until the last information of data is

passed to you, which is indicated by EIBCOMPL EIB* FF. If

NOTRUNCATE is not specified, and the data area that is specified by the

RECEIVE command is too small to contain all the data received, CICS

truncates the data and sets the LENGERR condition.

3 Equivalent to SEND INVITE WAIT followed by RECEIVE.

4 Equivalent to SEND INVITE WAIT [FROM] followed by RECEIVE.

5 Equivalent to SEND LAST WAIT followed by FREE.

6 Equivalent to WAIT followed by RECEIVE.

7 Before a CONVID is allocated, no conversation occurs, therefore no

conversation state exists. The EXEC CICS ALLOCATE command is not

shown in the tables. After ALLOCATE is successful, the front-end

transaction starts the new conversation in allocated.

8 ISSUE SIGNAL sets the partner’s EIBSIG flag unless it is entering the free

state. ISSUE SIGNAL when sent in other states can also set the partner’s

EIBSIG flag, the behavior being determined by the underlying SNA

implementation.

9 The back-end transaction starts in receive after the front-end transaction

has issued CONNECT PROCESS.

10 No data can be included with SEND CONFIRM.

11 These commands cause CICS to return the INVREQ condition. This is to

conform to the APPC architecture.

12 The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate

to any particular conversation. They are propagated on all the

synchronization level 2 conversations that are currently active for the task.

13 The state of each conversation after rollback depends on several factors:

v The system with which you are communicating. Some earlier versions of

CICS handle rollback differently from how CICS handles it now.

v The conversation state at the beginning of the current distributed unit of

work. This state is the one that is adopted in accordance with the APPC

architecture. CICS follows the architecture.

A conversation might be in free after rollback if it has been terminated

abnormally because of conversation failure or deallocate abend being

received.

 After a sync point or rollback, it is advisable to determine the conversation

state before issuing any further commands against the conversation.

14 This results, not in an ATCV abend, but in an INVREQ return code.

15 This causes an A30A abend, not an ATCV.

16 Although ISSUE PREPARE can return with the conversation in either

syncsend, syncreceive, or syncfree, the only commands that are allowed

on that conversation following an ISSUE PREPARE are SYNCPOINT and

SYNCPOINT ROLLBACK. All other commands abend ATCV.

17 Following an ISSUE ABEND of a synchronization level 2 conversation, all

other synchronization level 2 conversations become state 13.

332 TXSeries for Multiplatforms: CICS Intercommunication Guide

For more information, see:

v “Writing programs for CICS DTP” on page 286

v “Synchronization level 0 conversation state table”

v “Synchronization level 1 conversation state table” on page 335

v “Synchronization level 2 conversation state table” on page 338

v The TXSeries for Multiplatforms Application Programming Reference

Synchronization level 0 conversation state table

 Table 55. Synchronization level 0 conversation state table (states 1 to 8)

Command issued, EIB

flag returned1

State

1

State

2

State

3

State

4

State

5

State

6

Satet

7

State

8

CONNECT PROCESS,

EIBERR + EIBFREE

12 ab ab ab ab / / /

CONNECT PROCESS9,

EIB*

2 ab ab ab ab / / /

SEND (any valid form),

EIBERR + EIBFREE

ab 12 ab ab ab / / /

SEND (any valid form),

EIBERR

ab 5 ab ab ab / / /

SEND INVITE WAIT, EIB* ab 5 ab ab ab / / /

SEND INVITE, EIB* ab 5 ab ab ab / / /

SEND LAST WAIT, EIB* ab 12 ab ab ab / / /

SEND LAST, EIB* ab 4 ab ab ab / / /

SEND WAIT, EIB* ab = ab ab ab / / /

SEND, EIB* ab = ab ab ab / / /

RECEIVE, EIBERR +

EIBFREE

ab 123 126 ab 12 / / /

RECEIVE, EIBERR ab 53 56 ab = / / /

RECEIVE, EIBFREE ab 123 126 ab 12 / / /

RECEIVE, EIBRECV ab 53 56 ab = / / /

RECEIVE, EIB* ab =3 26 ab 2 / / /

CONVERSE, EIBERR +

EIBFREE

ab 123 126 ab 12 / / /

CONVERSE, EIBERR ab 53 56 ab = / / /

CONVERSE, EIBFREE ab 123 126 ab 12 / / /

CONVERSE, EIBRECV ab 53 56 ab = / / /

CONVERSE

NOTRUNCATE,

EIBCOMPL2

ab 53 56 ab = / / /

CONVERSE, EIB* ab =3 26 ab 2 / / /

ISSUE ERROR, EIBFREE ab 12 12 ab 12 / / /

ISSUE ERROR, EIBERR ab 5 5 ab 5 / / /

ISSUE ERROR, EIB* ab 2 2 ab 2 / / /

ISSUE ABEND, EIB* ab 12 12 12 12 / / /

ISSUE SIGNAL8, EIB* ab = = ab = / / /

WAIT CONVID, EIB* ab = 5 12 ab / / /

FREE, EIB* E E5 ab E ab / / /

Appendix B. The conversation state tables 333

Table 55. Synchronization level 0 conversation state table (states 1 to 8) (continued)

Command issued, EIB

flag returned1

State

1

State

2

State

3

State

4

State

5

State

6

Satet

7

State

8

Key to states:

 State 1: Allocated

 State 2: Send

 State 3: Pendreceive

 State 4: Pendfree

 State 5: Receive

 State 6: Confreceive

 State 7: Confsend

 State 8: Conffree

Footnotes are given in “The state conversation table notes” on page 331.

 Table 56. Synchronization level 0 conversation state table (states 9 to 13)

Command issued, EIB flag

returned1

State 9

State

10

State

11

State

12

State

13

Command returns

CONNECT PROCESS,

EIBERR + EIBFREE

/ / / ab / Immediately

CONNECT PROCESS9,

EIB*

/ / / = / Immediately

SEND (any valid form),

EIBERR + EIBFREE

/ / / ab / After error detected

SEND (any valid form),

EIBERR

/ / / ab / After error detected

SEND INVITE WAIT, EIB* / / / ab / After data flows

SEND INVITE, EIB* / / / ab / After data buffered

SEND LAST WAIT, EIB* / / / ab / After data flows

SEND LAST, EIB* / / / ab / After data buffered

SEND WAIT, EIB* / / / ab / After data flows

SEND, EIB* / / / ab / After data buffered

RECEIVE, EIBERR +

EIBFREE

/ / / ab / After error detected

RECEIVE, EIBERR / / / ab / After error detected

RECEIVE, EIBFREE / / / ab / After error detected

RECEIVE, EIBRECV / / / ab / When data available

RECEIVE, EIB* / / / ab / When data available

CONVERSE, EIBERR +

EIBFREE

/ / / ab / After error detected

CONVERSE, EIBERR / / / ab / After error detected

CONVERSE, EIBFREE / / / ab / After error detected

CONVERSE, EIBRECV / / / ab / When data available

CONVERSE

NOTRUNCATE,

EIBCOMPL2

/ / / ab / When data available

CONVERSE, EIB* / / / ab / When data available

ISSUE ERROR, EIBFREE / / / ab /

After response from

partner

ISSUE ERROR, EIBERR / / / ab /

After response from

partner

ISSUE ERROR, EIB* / / / ab /

After response from

partner

ISSUE ABEND, EIB* / / / ab / Immediately

ISSUE SIGNAL8, EIB* / / / ab / Immediately

334 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 56. Synchronization level 0 conversation state table (states 9 to 13) (continued)

Command issued, EIB flag

returned1

State 9

State

10

State

11

State

12

State

13

Command returns

WAIT CONVID, EIB* / / / ab / Immediately

FREE, EIB* / / / E / Immediately

Key to states:

 State 9: Syncreceive

 State 10: Syncsend

 State 11: Syncfree

 State 12: Free

 State 13: Rollback

Footnotes are given in “The state conversation table notes” on page 331.

Synchronization level 1 conversation state table

 Table 57. Synchronization level 1 conversation state table (states 1 to 8)

Command issued, EIB

flag returned1

State

1

State

2

State

3

State

4

State

5

State

6

State

7

State

8

CONNECT PROCESS,

EIBERR + EIBFREE

12 ab ab ab ab ab ab ab

CONNECT PROCESS9,

EIB*

2 ab ab ab ab ab ab ab

SEND (any valid form),

EIBERR + EIBFREE

ab 12 12 12 ab ab ab /

SEND (any valid form),

EIBERR

ab 5 5 5 ab ab ab ab

SEND INVITE WAIT, EIB* ab 5 ab ab ab ab ab ab

SEND INVITE CONFIRM,

EIB*

ab 5 ab ab ab ab ab ab

SEND INVITE, EIB* ab 3 ab ab ab ab ab ab

SEND LAST WAIT, EIB* ab 12 ab ab ab ab ab ab

SEND LAST CONFIRM,

EIB*

ab 12 ab ab ab ab ab ab

SEND LAST, EIB* ab 4 ab ab ab ab ab ab

SEND WAIT, EIB* ab = ab ab ab ab ab ab

SEND CONFIRM, EIB* ab = 5 1210 ab ab ab ab

SEND, EIB* ab = ab ab ab ab ab ab

RECEIVE, EIBERR +

EIBFREE

ab 123 126 ab 12 ab ab ab

RECEIVE, EIBERR ab 53 56 ab = ab ab ab

RECEIVE, EIBCONF +

EIBFREE

ab 83 86 ab 8 ab ab ab

RECEIVE, EIBCONF +

EIBRECV

ab 63 66 ab 6 ab ab ab

RECEIVE, EIBCONF ab 73 76 ab 7 ab ab ab

RECEIVE, EIBFREE ab 123 126 ab 12 ab ab ab

RECEIVE, EIBRECV ab 53 56 ab 5 ab ab ab

RECEIVE, EIB* ab =3 26 ab 2 ab ab ab

CONVERSE4, EIBERR +

EIBFREE

ab 123 126 ab 12 ab ab ab

CONVERSE4, EIBERR ab 53 56 ab = ab ab ab

Appendix B. The conversation state tables 335

Table 57. Synchronization level 1 conversation state table (states 1 to 8) (continued)

Command issued, EIB

flag returned1

State

1

State

2

State

3

State

4

State

5

State

6

State

7

State

8

CONVERSE4, EIBCONF +

EIBFREE

ab 83 86 ab 8 ab ab ab

CONVERSE4, EIBCONF +

EIBRECV

ab 63 66 ab 6 ab ab ab

CONVERSE4, EIBCONF ab 73 76 ab 7 ab ab ab

CONVERSE4, EIBFREE ab 123 126 ab 12 ab ab ab

CONVERSE4, EIBRECV ab 53 56 ab 5 ab ab ab

CONVERSE4

NOTRUNCATE,

EIBCOMPL2

ab 53 56 ab 5 ab ab ab

CONVERSE4, EIB* ab =3 26 ab 2 ab ab ab

ISSUE CONFIRMATION,

EIB*

ab ab ab ab ab 5 2 12

ISSUE ERROR, EIBFREE ab 12 12 ab 12 12 12 12

ISSUE ERROR, EIBERR ab 5 5 ab 5 5 5 5

ISSUE ERROR, EIB* ab 2 2 ab 2 2 2 2

ISSUE ABEND, EIB* ab 12 12 12 12 12 12 12

ISSUE SIGNAL8, EIB* ab = = ab = = = =

WAIT CONVID, EIB* ab = 5 12 ab ab ab ab

FREE, EIB* E E5 ab E ab ab ab ab

Key to states:

 State 1: Allocated

 State 2: Send

 State 3: Pendreceive

 State 4: Pendfree

 State 5: Receive

 State 6: Confreceive

 State 7: Confsend

 State 8: Conffree

Footnotes are given in “The state conversation table notes” on page 331.

 Table 58. Synchronization level 1 conversation state table (states 9 to 13)

Command issued, EIB flag

returned1

State 9

State

10

State

11

Satte

12

State

13

Command returns

CONNECT PROCESS,

EIBERR + EIBFREE

/ / / ab / Immediately

CONNECT PROCESS9,

EIB*

/ / / ab / Immediately

SEND (any valid form),

EIBERR + EIBFREE

/ / / ab /

After error flow

detected

SEND (any valid form),

EIBERR

/ / / ab /

After error flow

detected

SEND INVITE WAIT, EIB* / / / ab / After data flows

SEND INVITE CONFIRM,

EIB*

/ / / ab /

After response from

partner

SEND INVITE, EIB* / / / ab / After data buffered

SEND LAST WAIT, EIB* / / / ab / After data flows

SEND LAST CONFIRM,

EIB*

/ / / ab /

After response from

partner

SEND LAST, EIB* / / / ab / After data buffered

336 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 58. Synchronization level 1 conversation state table (states 9 to 13) (continued)

Command issued, EIB flag

returned1

State 9

State

10

State

11

Satte

12

State

13

Command returns

SEND WAIT, EIB* / / / ab / After data flows

SEND CONFIRM, EIB* / / / ab /

After response from

partner

SEND, EIB* / / / ab / After data buffered

RECEIVE, EIBERR +

EIBFREE

/ / / ab / After error detected

RECEIVE, EIBERR / / / ab / After error detected

RECEIVE, EIBCONF +

EIBFREE

/ / / ab /

After confirm flow

detected

RECEIVE, EIBCONF +

EIBRECV

/ / / ab /

After confirm flow

detected

RECEIVE, EIBCONF / / / ab /

After confirm flow

detected

RECEIVE, EIBFREE / / / ab / After error detected

RECEIVE, EIBRECV / / / ab / When data available

RECEIVE, EIB* / / / ab / When data available

CONVERSE4, EIBERR +

EIBFREE

/ / / ab / After error detected

CONVERSE4, EIBERR / / / ab / After error detected

CONVERSE4, EIBCONF +

EIBFREE

/ / / ab /

After confirm flow

detected

CONVERSE4, EIBCONF +

EIBRECV

/ / / ab /

After confirm flow

detected

CONVERSE4, EIBCONF / / / ab /

After confirm flow

detected

CONVERSE4, EIBFREE / / / ab / After error detected

CONVERSE4, EIBRECV / / / ab / When data available

CONVERSE4

NOTRUNCATE,

EIBCOMPL2

/ / / ab / When data available

CONVERSE4, EIB* / / / ab / When data available

ISSUE CONFIRMATION,

EIB*

/ / / ab / Immediately

ISSUE ERROR, EIBFREE / / / ab /

After response from

partner

ISSUE ERROR, EIBERR / / / ab /

After response from

partner

ISSUE ERROR, EIB* / / / ab /

After response from

partner

ISSUE ABEND, EIB* / / / ab / Immediately

ISSUE SIGNAL8, EIB* / / / ab / Immediately

WAIT CONVID, EIB* / / / ab / Immediately

FREE, EIB* / / / E / Immediately

Key to states:

 State 9: Syncreceive

 State 10: Syncsend

 State 11: Syncfree

 State 12: Free

 State 13: Rollback

Footnotes are given in “The state conversation table notes” on page 331.

Appendix B. The conversation state tables 337

Synchronization level 2 conversation state table

 Table 59. Part 1 of Synchronization level 2 conversation state table (states 1 to 8)

Command issued, EIB

flag returned1

1 2 3 4 5 6 7 8

CONNECT PROCESS,

EIBERR + EIBFREE

12 ab ab ab ab ab ab ab

CONNECT PROCESS9,

EIB*

2 ab ab ab ab ab ab ab

SEND (any valid form),

EIBERR + EIBSYNRB

ab 13 13 ab ab ab ab ab

SEND (any valid form),

EIBERR + EIBFREE

ab 12 12 ab ab ab ab ab

SEND (any valid form),

EIBERR

ab 5 5 ab ab ab ab ab

SEND INVITE WAIT, EIB* ab 5 ab ab ab ab ab ab

SEND INVITE CONFIRM,

EIB*

ab 5 ab ab ab ab ab ab

SEND INVITE, EIB* ab 3 ab ab ab ab ab ab

SEND LAST WAIT11, EIB* ab ab11 ab11 ab ab ab ab ab

SEND LAST CONFIRM11,

EIB*

ab ab ab ab ab ab ab ab

SEND LAST, EIB* ab 4 ab ab ab ab ab ab

SEND WAIT, EIB* ab = ab ab ab ab ab ab

SEND CONFIRM, EIB* ab = 510 ab11 ab ab ab ab

SEND, EIB* ab = ab ab ab ab ab ab

RECEIVE, EIBERR +

EIBSYNRB

ab 133 136 ab 13 ab ab ab

RECEIVE, EIBERR +

EIBFREE

ab 123 126 ab 12 ab ab ab

RECEIVE, EIBERR ab 53 56 ab = ab ab ab

RECEIVE, EIBSYNC +

EIBFREE

ab 113 116 ab 11 ab ab ab

RECEIVE, EIBSYNC +

EIBRECV

ab 93 96 ab 9 ab ab ab

RECEIVE, EIBSYNC ab 103 106 ab 10 ab ab ab

RECEIVE, EIBCONF +

EIBFREE

ab 83 86 ab 8 ab ab ab

RECEIVE, EIBCONF +

EIBRECV

ab 63 66 ab 6 ab ab ab

RECEIVE, EIBCONF ab 73 76 ab 7 ab ab ab

RECEIVE, EIBFREE ab 123 126 ab 12 ab ab ab

RECEIVE, EIBRECV ab 53 56 ab = ab ab ab

RECEIVE, EIB* ab =3 26 ab 2 ab ab ab

CONVERSE4, EIBERR +

EIBSYNRB

ab 133 136 ab 13 ab ab ab

CONVERSE4, EIBERR +

EIBFREE

ab 123 126 ab 12 ab ab ab

CONVERSE4, EIBERR ab 53 56 ab = ab ab ab

CONVERSE4, EIBSYNC +

EIBFREE

ab 113 116 ab 11 ab ab ab

CONVERSE4, EIBSYNC +

EIBRECV

ab 93 96 ab 9 ab ab ab

CONVERSE4, EIBSYNC ab 103 106 ab 10 ab ab ab

CONVERSE4, EIBCONF +

EIBFREE

ab 83 86 ab 8 ab ab ab

338 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 59. Part 1 of Synchronization level 2 conversation state table (states 1 to

8) (continued)

Command issued, EIB

flag returned1

1 2 3 4 5 6 7 8

CONVERSE4, EIBCONF +

EIBRECV

ab 63 66 ab 6 ab ab ab

CONVERSE4, EIBCONF ab 73 76 ab 7 ab ab ab

CONVERSE4, EIBFREE ab 123 126 ab 12 ab ab ab

CONVERSE4, EIBRECV ab 53 56 ab = ab ab ab

Key to states:

 State 1: Allocated

 State 2: Send

 State 3: Pendreceive

 State 4: Pendfree

 State 5: Receive

 State 6: Confreceive

 State 7: Confsend

 State 8: Conffree

Footnotes are given in “The state conversation table notes” on page 331.

 Table 60. Part 1 of Synchronization level 2 conversation state table (states 9 to 13)

Command issued, EIB flag

returned1

State 9

State

10

State

11

State

12

State

13

Command returns

CONNECT PROCESS,

EIBERR + EIBFREE

ab ab ab ab ab Immediately

CONNECT PROCESS9,

EIB*

ab ab ab ab ab Immediately

SEND (any valid form),

EIBERR + EIBSYNRB

ab ab ab ab ab

After error flow

detected

SEND (any valid form),

EIBERR + EIBFREE

ab ab ab ab ab

After error flow

detected

SEND (any valid form),

EIBERR

ab ab ab ab ab

After error flow

detected

SEND INVITE WAIT, EIB* ab ab ab ab ab After data flow

SEND INVITE CONFIRM,

EIB*

ab ab ab ab ab

After response from

partner

SEND INVITE, EIB* ab ab ab ab ab After data buffered

SEND LAST WAIT11, EIB* ab ab ab ab ab After data flows

SEND LAST CONFIRM11,

EIB*

ab ab ab ab ab

After response from

partner

SEND LAST, EIB* ab ab ab ab ab After data buffered

SEND WAIT, EIB* ab ab ab ab ab After data flows

SEND CONFIRM, EIB* ab ab ab ab ab

After response from

partner

SEND, EIB* ab ab ab ab ab After data buffered

RECEIVE, EIBERR +

EIBSYNRB

ab ab ab ab ab After data flows

RECEIVE, EIBERR +

EIBFREE

ab ab ab ab ab After error detected

RECEIVE, EIBERR ab ab ab ab ab After error detected

RECEIVE, EIBSYNC +

EIBFREE

ab ab ab ab ab

After sync flow

detected

Appendix B. The conversation state tables 339

Table 60. Part 1 of Synchronization level 2 conversation state table (states 9 to

13) (continued)

Command issued, EIB flag

returned1

State 9

State

10

State

11

State

12

State

13

Command returns

RECEIVE, EIBSYNC +

EIBRECV

ab ab ab ab ab

After sync flow

detected

RECEIVE, EIBSYNC ab ab ab ab ab

After sync flow

detected

RECEIVE, EIBCONF +

EIBFREE

ab ab ab ab ab

After confirm flow

detected

RECEIVE, EIBCONF +

EIBRECV

ab ab ab ab ab

After confirm flow

detected

RECEIVE, EIBCONF ab ab ab ab ab

After confirm flow

detected

RECEIVE, EIBFREE ab ab ab ab ab

After error flow

detected

RECEIVE, EIBRECV ab ab ab ab ab When data available

RECEIVE, EIB* ab ab ab ab ab When data available

CONVERSE4, EIBERR +

EIBSYNRB

ab ab ab ab ab After data flows

CONVERSE4, EIBERR +

EIBFREE

ab ab ab ab ab After error detected

CONVERSE4, EIBERR ab ab ab ab ab After error detected

CONVERSE4, EIBSYNC +

EIBFREE

ab ab ab ab ab

After sync flow

detected

CONVERSE4, EIBSYNC +

EIBRECV

ab ab ab ab ab

After sync flow

detected

CONVERSE4, EIBSYNC ab ab ab ab ab

After sync flow

detected

CONVERSE4, EIBCONF +

EIBFREE

ab ab ab ab ab

After confirm flow

detected

CONVERSE4, EIBCONF +

EIBRECV

ab ab ab ab ab

After confirm flow

detected

CONVERSE4, EIBCONF ab ab ab ab ab

After confirm flow

detected

CONVERSE4, EIBFREE ab ab ab ab ab

After error flow

detected

CONVERSE4, EIBRECV ab ab ab ab ab When data available

Key to states:

 State 9: Syncreceive

 State 10: Syncsend

 State 11: Syncfree

 State 12: Free

 State 13: Rollback

Footnotes are given in “The state conversation table notes” on page 331.

340 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 61. Part 2 of Synchronization level 2 conversation state table (states 1 to 8)

Command issued, EIB

flag returned1

State

1

State

2

State

3

State

4

State

5

State

6

State

7

State

8

ISSUE CONFIRMATION,

EIB*

ab ab ab ab ab 5 2 12

ISSUE ERROR, EIBFREE ab 12 12 ab 12 12 12 12

ISSUE ERROR, EIBERR +

EIBSYNRB

ab 13 13 ab 13 13 13 13

ISSUE ERROR, EIBERR ab 5 5 ab 5 5 5 5

ISSUE ERROR, EIB* ab 2 2 ab 2 2 2 2

ISSUE ABEND17, EIB* ab 12 12 12 12 12 12 12

ISSUE SIGNAL8, EIB* ab = = ab = = = =

ISSUE PREPARE, EIBERR

+ EIBSYNRB

ab14 13 13 13 ab14 ab14 ab14 ab14

ISSUE PREPARE, EIBERR

+ EIBFREE

ab14 12 12 12 ab14 ab14 ab14 ab14

ISSUE PREPARE, EIBERR ab14 5 5 5 ab14 ab14 ab14 ab14

ISSUE PREPARE, EIB* ab14 1016 916 1116 ab14 ab14 ab14 ab14

SYNCPOINT12,

EIBRLDBK

=

2 or

513

2 or

513

2 or

513

ab15 ab15 ab15 ab15

SYNCPOINT12, EIB* = = 5 12 ab15 ab15 ab15 ab15

SYNCPOINT

ROLLBACK12, EIB

=

2 or

513

2 or

513

2 or

513

2 or

513

2 or

513

2 or

513

2 or

513

WAIT CONVID, EIB* ab = 5 = ab ab ab ab

FREE, EIB* E =11 =11 = ab ab ab ab

CONVERSE4

NOTRUNCATE,

EIBCOMPL (5)

ab 53 56 ab = ab ab ab

CONVERSE4, EIB* ab =3 26 ab 2 ab ab ab

Key to states:

 State 1: Allocated

 State 2: Send

 State 3: Pendreceive

 State 4: Pendfree

 State 5: Receive

 State 6: Confreceive

 State 7: Confsend

 State 8: Conffree

Footnotes are given in “The state conversation table notes” on page 331.

Appendix B. The conversation state tables 341

Table 62. Part 2 of Synchronization level 2 conversation state table (states 9 to 13)

Command issued, EIB flag

returned1

State 9

State

10

State

11

State

12

State

13

Command returns

ISSUE CONFIRMATION,

EIB*

ab ab ab ab ab Immediately

ISSUE ERROR, EIBFREE 12 12 12 ab ab

After response from

partner

ISSUE ERROR, EIBERR +

EIBSYNRB

13 13 13 ab ab

After response from

partner

ISSUE ERROR, EIBERR 5 5 5 ab ab

After response from

partner

ISSUE ERROR, EIB* 2 2 2 ab ab

After response from

partner

ISSUE ABEND17, EIB* 12 12 12 ab ab Immediately

ISSUE SIGNAL8, EIB* = = = ab ab Immediately

ISSUE PREPARE, EIBERR

+ EIBSYNRB

ab14 ab14 ab14 ab14 ab14

After response from

partner

ISSUE PREPARE, EIBERR

+ EIBFREE

ab14 ab14 ab14 ab14 ab14

After response from

partner

ISSUE PREPARE, EIBERR ab14 ab14 ab14 ab14 ab14 After error detected

ISSUE PREPARE, EIB* ab14 ab14 ab14 ab14 ab14

After response from

partner

SYNCPOINT12, EIBRLDBK

2 or

513

2 or

513

2 or

513

= ab15

After response from

partner

SYNCPOINT12, EIB* 5 2 12 = ab15

After response from

partner

SYNCPOINT

ROLLBACK12, EIB

2 or

513

2 or

513

2 or

513

=

2 or

513

After rollback across

LUW

WAIT CONVID, EIB* ab ab ab ab ab Immediately

FREE, EIB* ab ab ab E ab Immediately

CONVERSE4

NOTRUNCATE,

EIBCOMPL (5)

ab ab ab ab ab When data available

CONVERSE4, EIB* ab ab ab ab ab When data available

Key to states:

 State 9: Syncreceive

 State 10: Syncsend

 State 11: Syncfree

 State 12: Free

 State 13: Rollback

Footnotes are given in “The state conversation table notes” on page 331.

342 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix C. Migrating DTP applications

Two areas are discussed in this chapter:

1. The differences between TXSeries for Multiplatforms application programming

and CICS/MVS 2.1 application programming. These differences are discussed

to allow you to modify non-TXSeries for Multiplatforms applications so that

they can run in TXSeries for Multiplatforms. This is referred to as migration.

2. Writing applications in such a way as to allow them to run in TXSeries for

Multiplatforms and in other CICS products. This is referred to as portability.

Migration and portability of DTP applications can be easily achieved through

careful analysis of the differences between some of the CICS commands and

network protocol. Those differences are discussed in the following sections.

Migrating to LU 6.2 APPC mapped conversations

TXSeries for Multiplatforms uses functions to implement APPC (LU 6.2) mapped

conversations. If the application that you are converting was not written for LU 6.2

mapped conversations (for example, LU 6.1), you will need to convert it to LU 6.2

mapped conversations before migrating. Most of the CICS intercommunications

documentation tell you how to convert for LU 6.2 conversations.

If you are converting MVS LU 6.1 DTP applications to run in TXSeries for

Multiplatforms, you must first refer to the MVS books to convert to LU 6.2 before

you convert that application for TXSeries for Multiplatforms.

Differences between SNA and TCP/IP for DTP

Apart from configuration, few differences exist between TXSeries for

Multiplatforms and IBM mainframe-based CICS. Those differences are:

1. The EXEC CICS ALLOCATE command PROFILE(name) option.

PROFILE(name) specifies the name (maximum of eight characters) of a mode

that is defined to the SNA software on the local machine. This mode contains a

set of session-processing options that CICS uses during the running of mapped

commands for the remote region that is specified in the SYSID option. If the

mode contains the name of a group of APPC sessions from which the

conversation is to be allocated, a particular class of service can be selected.

The PROFILE option is ignored over TCP/IP connections and by some versions

of SNA.

2. The NOQUEUE and NOSUSPEND options have no effect on TCP/IP

conversations because TCP/IP is not session based. Therefore, you will never

get the SYSBUSY condition when using TCP/IP. When using TCP/IP, if a

remote system is not available, SYSIDERR is returned by the CONNECT

PROCESS command.

3. The network exchanges might be slightly different and you should not assume

that state changes will occur. Always test the state of a conversation (use the

STATE option, EXEC CICS EXTRACT ATTRIBUTES, or the EIB) before

performing the next command.

© Copyright IBM Corp. 1999, 2005 343

Allocating a conversation

Allocating conversations works in two different ways, depending on which CICS

platform you are using. In some CICS platforms, a session is allocated by the

EXEC CICS ALLOCATE command and the remote transaction is attached by an

EXEC CICS CONNECT PROCESS command. In other CICS platforms, including

TXSeries for Multiplatforms:

1. The EXEC CICS ALLOCATE command only provides a conversation identifier

(CONVID); it does not allocate a session.

2. The SNA MC_ALLOCATE verb is called from the EXEC CICS CONNECT

PROCESS command instead of the EXEC CICS ALLOCATE command.

3. The SYSBUSY condition is returned by the EXEC CICS CONNECT PROCESS

command rather than by the EXEC CICS ALLOCATE command.

This should be taken into consideration when the NOQUEUE or NOSUSPEND

options are used with the EXEC CICS ALLOCATE command because sessions are

not requested until the EXEC CICS CONNECT PROCESS command is used.

Use of conversation identifiers (CONVIDs)

In TXSeries for Multiplatforms, the CONVID that is returned by EXEC CICS

ALLOCATE (or the back-end principal facility) is used for DTP only. You must not

use the CONVID for any other purpose (such as naming Temporary Storage

queues). The CONVID is valid only for the life of a transaction and bears no

relationship to the SNA session that is in use.

State after backout

Following an EXEC CICS SYNCPOINT ROLLBACK, TXSeries for Multiplatforms

returns synchronization level 2 conversations to the state that they were in at the

start of the logical unit of work (LUW). Because of this, you cannot assume in

which state a conversation will be after EXEC CICS SYNCPOINT ROLLBACK is

used. In this case, use the EXEC CICS EXTRACT ATTRIBUTES command to

determine the state of the conversation before performing the next command.

Terminating a synchronization level 2 conversation

A synchronization level 2 DTP application that is running on TXSeries for

Multiplatforms, or the partner application of a TXSeries for Multiplatforms

application that might be running on a different platform, must not issue any of

the following commands:

v EXEC CICS FREE (from send or pendfree state)

v EXEC CICS SEND LAST WAIT

v EXEC CICS SEND CONFIRM (from pendfree state)

v EXEC CICS SEND LAST CONFIRM

v EXEC CICS WAIT (from pendfree state)

The correct way to terminate normally a synchronization level 2 conversation is to

use the following sequence of commands:

v EXEC CICS SEND LAST

v EXEC CICS SYNCPOINT

v EXEC CICS FREE

The correct way to terminate abnormally a synchronization level 2 conversation is

to use the following sequence of commands:

344 TXSeries for Multiplatforms: CICS Intercommunication Guide

v EXEC CICS ISSUE ABEND

v EXEC CICS SYNCPOINT ROLLBACK

v EXEC CICS FREE

If you are migrating a synchronization level 2 application from another CICS

platform, verify that it follows these rules.

Ensure also that the partner applications, which may not be TXSeries for

Multiplatforms applications, also follow these rules.

The EXEC CICS WAIT and EXEC CICS SEND WAIT commands

Data is buffered in APPC systems to improve network efficiency. Buffered data is

not received immediately by the partner transaction and the EXEC CICS WAIT and

EXEC CICS SEND WAIT commands are used to flush this data.

Although the use of the WAIT command might cause a state change, it does not

guarantee that the partner transaction is going to receive the data immediately. The

reason for this is that data might still be buffered by the underlying network

layers.

If a pair of transactions need to ensure timing considerations, you must use

another mechanism besides WAIT.

Transaction identifiers

For outbound requests, up to 32 bytes are allowed, although it is expected that

requests that are sent to another TXSeries for Multiplatforms region will be four

bytes or less. The APPC architecture allows up to 64 bytes, but leaves each product

free to set its own maximum. TXSeries for Multiplatforms complies by allowing 32

bytes, but this need concern you only if your TXSeries for Multiplatforms region is

connected to a partner system that demands longer transaction identifiers.

For inbound requests, however, the transaction identifiers must be four bytes or

less. TXSeries for Multiplatforms does not support inbound requests for transaction

identifiers that are longer than four characters.

The slight difference between IBM mainframe-based CICS and TXSeries for

Multiplatforms with the use of transaction identifiers, in that IBM mainframe-based

CICS truncates down to four bytes while TXSeries for Multiplatforms does not.

Refer to the description of the PROCNAME attribute in the TXSeries for

Multiplatforms Application Programming Reference to see how this is used.

Migration considerations for function shipping

If you use a transaction to route from one region to another, then use function

shipping to route to another region (or back to the original region), the user ID

that is used to access the remote resources is the user ID from the first region that

initiated the function request. User IDs are considered only if the region that owns

the remote resources has a RemoteSysSecurity value of “trusted” instead of

“local”. For more information, see “Security and function shipping” on page 141.

Appendix C. Migrating DTP applications 345

346 TXSeries for Multiplatforms: CICS Intercommunication Guide

Appendix D. Data conversion tables (CICS on Windows

Systems and CICS for Solaris only)

Table 63 and Table 64 on page 351 show the permissible combinations of code

pages that can be used to translate data from one encoding to another.

Table 65 on page 354 shows the permissible combinations of SBCS and DBCS code

pages that can be used to produce further DBCS code pages.

 Table 63. SBCS data conversion table

Code pages Description

037 to 437 EBCDIC US English to PC-ASCII US

037 to 819 EBCDIC US English to ISO8859-1 Western European

037 to 850 EBCDIC US English to PC-ASCII Western European

037 to 860 EBCDIC US English to PC-ASCII Portuguese

037 to 863 EBCDIC US English to PC-ASCII Canadian French

273 to 437 EBCDIC German to PC-ASCII US

273 to 819 EBCDIC German to ISO8859-1 Western European

273 to 850 EBCDIC German to PC-ASCII Western European

277 to 437 EBCDIC Danish/Norwegian to PC-ASCII US

277 to 819 EBCDIC Danish/Norwegian to ISO8859-1 Western European

277 to 850 EBCDIC Danish/Norwegian to PC-ASCII Western European

277 to 865 EBCDIC Danish/Norwegian to PC-ASCII Scandinavian

278 to 437 EBCDIC Finnish/Swedish to PC-ASCII US

278 to 819 EBCDIC Finnish/Swedish to ISO8859-1 Western European

278 to 850 EBCDIC Finnish/Swedish to PC-ASCII Western European

278 to 865 EBCDIC Finnish/Swedish to PC-ASCII Scandinavian

280 to 437 EBCDIC Italian to PC-ASCII US

280 to 819 EBCDIC Italian to ISO8859-1 Western European

280 to 850 EBCDIC Italian to PC-ASCII Western European

284 to 437 EBCDIC Spanish to PC-ASCII US

284 to 819 EBCDIC Spanish to ISO8859-1 Western European

284 to 850 EBCDIC Spanish to PC-ASCII Western European

285 to 819 EBCDIC UK English to ISO8859-1 Western European

285 to 850 EBCDIC UK English to PC-ASCII Western European

285 to 437 EBCDIC UK English to PC-ASCII US

297 to 437 EBCDIC French to PC-ASCII US

297 to 819 EBCDIC French to ISO8859-1 Western European

297 to 850 EBCDIC French to PC-ASCII Western European

297 to 863 EBCDIC French to PC-ASCII Canadian French

420 to 864 EBCDIC Arabic to PC-ASCII Arabic

420 to 1046 EBCDIC Arabic to PC-ASCII Arabic

© Copyright IBM Corp. 1999, 2005 347

Table 63. SBCS data conversion table (continued)

Code pages Description

420 to 1089 EBCDIC Arabic to ISO8859-6 Arabic

424 to 856 EBCDIC Hebrew to PC-ASCII Hebrew

424 to 862 EBCDIC Hebrew to PC-ASCII Hebrew

424 to 916 EBCDIC Hebrew to ISO8859-8 Hebrew

437 to 37 PC-ASCII US to EBCDIC US English

437 to 273 PC-ASCII US to EBCDIC German

437 to 277 PC-ASCII US to EBCDIC Danish/Norwegian

437 to 278 PC-ASCII US to EBCDIC Finnish/Swedish

437 to 280 PC-ASCII US to EBCDIC Italian

437 to 284 PC-ASCII US to EBCDIC Spanish

437 to 285 PC-ASCII US to EBCDIC UK English

437 to 297 PC-ASCII US to EBCDIC French

437 to 500 PC-ASCII US to EBCDIC International

437 to 819 PC-ASCII US to ISO8859-1 Western European

437 to 850 PC-ASCII US to PC-ASCII Western European

437 to 865 PC-ASCII US to PC-ASCII Scandinavian

437 to 1051 PC-ASCII US to ASCII roman8 for HP Western European

500 to 437 EBCDIC International to PC-ASCII US

500 to 819 EBCDIC International to ISO8859-1 Western European

500 to 850 EBCDIC International to PC-ASCII Western European

500 to 860 EBCDIC International to PC-ASCII Portuguese

500 to 861 EBCDIC International to PC-ASCII Icelandic

500 to 863 EBCDIC International to PC-ASCII Canadian French

500 to 865 EBCDIC International to PC-ASCII Scandinavian

813 to 869 ISO8859-7 Greek to PC-ASCII Greek

813 to 875 ISO8859-7 Greek to EBCDIC Greek

819 to 37 ISO8859-1 Western European to EBCDIC US English

819 to 284 ISO8859-1 Western European to EBCDIC Spanish

819 to 285 ISO8859-1 Western European to EBCDIC UK English

819 to 273 ISO8859-1 Western European to EBCDIC German

819 to 277 ISO8859-1 Western European to EBCDIC Danish/Norwegian

819 to 278 ISO8859-1 Western European to EBCDIC Finnish/Swedish

819 to 280 ISO8859-1 Western European to EBCDIC Italian

819 to 297 ISO8859-1 Western European to EBCDIC French

819 to 437 ISO8859-1 Western European to PC-ASCII US

819 to 500 ISO8859-1 Western European to EBCDIC International

819 to 850 ISO8859-1 Western European to PC-ASCII Western European

819 to 860 ISO8859-1 Western European to PC-ASCII Portuguese

819 to 861 ISO8859-1 Western European to PC-ASCII Icelandic

819 to 863 ISO8859-1 Western European to PC-ASCII Canadian French

348 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 63. SBCS data conversion table (continued)

Code pages Description

819 to 865 ISO8859-1 Western European to PC-ASCII Scandinavian

819 to 871 ISO8859-1 Western European to EBCDIC Icelandic

819 to 1051 ISO8859-1 Western European to ASCII roman8 for HP Western European

838 to 874 EBCDIC Thai SBCS to PC-ASCII Thai SBCS

850 to 37 PC-ASCII Western European to EBCDIC US English

850 to 284 PC-ASCII Western European to EBCDIC Spanish

850 to 285 PC-ASCII Western European to EBCDIC UK English

850 to 273 PC-ASCII Western European to EBCDIC German

850 to 277 PC-ASCII Western European to EBCDIC Danish/Norwegian

850 to 278 PC-ASCII Western European to EBCDIC Finnish/Swedish

850 to 280 PC-ASCII Western European to EBCDIC Italian

850 to 297 PC-ASCII Western European to EBCDIC French

850 to 437 PC-ASCII Western European to PC-ASCII US

850 to 500 PC-ASCII Western European to EBCDIC International

850 to 819 PC-ASCII Western European to ISO8859-1 Western European

850 to 860 PC-ASCII Western European to PC-ASCII Portuguese

850 to 861 PC-ASCII Western European to PC-ASCII Icelandic

850 to 863 PC-ASCII Western European to PC-ASCII Canadian French

850 to 865 PC-ASCII Western European to PC-ASCII Scandinavian

850 to 871 PC-ASCII Western European to EBCDIC Icelandic

850 to 1051 PC-ASCII Western European to ASCII roman8 for HP Western European

852 to 870 PC-ASCII Eastern European to EBCDIC Eastern Europe

852 to 912 PC-ASCII Eastern European to ISO8859-2 Eastern European

855 to 866 PC-ASCII Cyrillic to PC-ASCII Cyrillic # 2

855 to 880 PC-ASCII Cyrillic to EBCDIC Cyrillic

855 to 915 PC-ASCII Cyrillic to ISO8859-5 Cyrillic

855 to 1025 PC-ASCII Cyrillic to EBCDIC Cyrillic

856 to 424 PC-ASCII Hebrew to EBCDIC Hebrew

856 to 862 PC-ASCII Hebrew to PC-ASCII Hebrew

856 to 916 PC-ASCII Hebrew to ISO8859-8 Hebrew

857 to 920 PC-ASCII Turkish to ISO8859-9 Turkish

857 to 1026 PC-ASCII Turkish to EBCDIC Turkish

860 to 037 PC-ASCII Portuguese to EBCDIC US English

860 to 500 PC-ASCII Portuguese to EBCDIC International

860 to 819 PC-ASCII Portuguese to ISO8859-1 Western European

860 to 850 PC-ASCII Portuguese to PC-ASCII Western European

861 to 500 PC-ASCII Icelandic to EBCDIC International

861 to 819 PC-ASCII Icelandic to ISO8859-1 Western European

861 to 850 PC-ASCII Icelandic to PC-ASCII Western European

861 to 871 PC-ASCII Icelandic to EBCDIC Icelandic

Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only) 349

Table 63. SBCS data conversion table (continued)

Code pages Description

862 to 424 PC-ASCII Hebrew to EBCDIC Hebrew

862 to 856 PC-ASCII Hebrew to PC-ASCII Hebrew

862 to 916 PC-ASCII Hebrew to ISO8859-8 Hebrew

863 to 037 PC-ASCII Canadian French to EBCDIC US English

863 to 297 PC-ASCII Canadian French to EBCDIC French

863 to 500 PC-ASCII Canadian French to EBCDIC International

863 to 819 PC-ASCII Canadian French to ISO8859-1 Western European

863 to 850 PC-ASCII Canadian French to PC-ASCII Western European

864 to 420 PC-ASCII Arabic to EBCDIC Arabic

864 to 1046 PC-ASCII Arabic to PC-ASCII Arabic

864 to 1089 PC-ASCII Arabic to ISO8859-6 Arabic

865 to 277 PC-ASCII Scandinavian to EBCDIC Danish/Norwegian

865 to 278 PC-ASCII Scandinavian to EBCDIC Finnish/Swedish

865 to 437 PC-ASCII Scandinavian to PC-ASCII US

865 to 500 PC-ASCII Scandinavian to EBCDIC International

865 to 819 PC-ASCII Scandinavian to ISO8859-1 Western European

865 to 850 PC-ASCII Scandinavian to PC-ASCII Western European

866 to 855 PC-ASCII Cyrillic # 2 to PC-ASCII Cyrillic

866 to 880 PC-ASCII Cyrillic # 2 to EBCDIC Cyrillic

866 to 915 PC-ASCII Cyrillic # 2 to ISO8859-5 Cyrillic

866 to 1025 PC-ASCII Cyrillic # 2 to EBCDIC Cyrillic

869 to 813 PC-ASCII Greek to ISO8859-7 Greek

869 to 875 PC-ASCII Greek to EBCDIC Greek

870 to 852 EBCDIC Eastern Europe to PC-ASCII Eastern European

870 to 912 EBCDIC Eastern Europe to ISO8859-2 Eastern European

871 to 819 EBCDIC Icelandic to ISO8859-1 Western European

871 to 850 EBCDIC Icelandic to PC-ASCII Western European

871 to 861 EBCDIC Icelandic to PC-ASCII Icelandic

874 to 838 PC-ASCII Thai SBCS to EBCDIC Thai SBCS

875 to 813 EBCDIC Greek to ISO8859-7 Greek

875 to 869 EBCDIC Greek to PC-ASCII Greek

880 to 855 EBCDIC Cyrillic to PC-ASCII Cyrillic

880 to 866 EBCDIC Cyrillic to PC-ASCII Cyrillic # 2

880 to 915 EBCDIC Cyrillic to ISO8859-5 Cyrillic

912 to 852 ISO8859-2 Eastern European to PC-ASCII Eastern European

912 to 870 ISO8859-2 Eastern European to EBCDIC Eastern Europe

915 to 855 ISO8859-5 Cyrillic to PC-ASCII Cyrillic

915 to 866 ISO8859-5 Cyrillic to PC-ASCII Cyrillic # 2

915 to 880 ISO8859-5 Cyrillic to EBCDIC Cyrillic

915 to 1025 ISO8859-5 Cyrillic to EBCDIC Cyrillic

350 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 63. SBCS data conversion table (continued)

Code pages Description

916 to 424 ISO8859-8 Hebrew to EBCDIC Hebrew

916 to 856 ISO8859-8 Hebrew to PC-ASCII Hebrew

916 to 862 ISO8859-8 Hebrew to PC-ASCII Hebrew

920 to 857 ISO8859-9 Turkish to PC-ASCII Turkish

920 to 1026 ISO8859-9 Turkish to EBCDIC Turkish

1025 to 855 EBCDIC Cyrillic to PC-ASCII Cyrillic

1025 to 866 EBCDIC Cyrillic to PC-ASCII Cyrillic # 2

1025 to 915 EBCDIC Cyrillic to ISO8859-5 Cyrillic

1026 to 857 EBCDIC Turkish to PC-ASCII Turkish

1026 to 920 EBCDIC Turkish to ISO8859-9 Turkish

1046 to 420 PC-ASCII Arabic to EBCDIC Arabic

1046 to 864 PC-ASCII Arabic to PC-ASCII Arabic

1046 to 108 9PC-ASCII Arabic to ISO8859-6 Arabic

1051 to 437 ASCII roman8 for HP Western European to PC-ASCII US

1051 to 819 ASCII roman8 for HP Western European to ISO8859-1 Western European

1051 to 850 ASCII roman8 for HP Western European to PC-ASCII Western European

1089 to 420 ISO8859-6 Arabic to EBCDIC Arabic

1089 to 864 ISO8859-6 Arabic to PC-ASCII Arabic

1089 to 1046 ISO8859-6 Arabic to PC-ASCII Arabic

 Table 64. DBSC and mixed data conversion table

Code pages Description

37 to 897 SBCS EBCDIC US English to PC-ASCII Japan Data SBCS

37 to 904 SBCS EBCDIC US English to PC Traditional Chinese SBCS

37 to 1041 SBCS EBCDIC US English to PC Japanese - extended SBCS

37 to 1043 SBCS EBCDIC US English to PC Traditional Chinese - extended SBCS

37 to 1114 SBCS EBCDIC US English to PC Traditional Chinese - big 5 SBCS

290 to 897 SBCS EBCDIC Japanese Katakana SBCS to PC-ASCII Japan Data SBCS

290 to 1041 SBCS EBCDIC Japanese Katakana SBCS to PC Japanese - extended SBCS

300 to 301 DBCS EBCDIC Japanese DBCS to PC Japanese DBCS

300 to 941 DBCS EBCDIC Japanese DBCS to PC Japanese for open environment

DBCS

301 to 300 DBCS PC Japanese DBCS to EBCDIC Japanese DBCS

301 to 941 DBCS PC Japanese DBCS to PC Japanese for open environment DBCS

833 to 891 SBCS EBCDIC Korean SBCS extended to PC-ASCII Korean SBCS

833 to 1040 SBCS EBCDIC Korean SBCS extended to PC-ASCII Korean - extended

SBCS

833 to 1088 SBCS EBCDIC Korean SBCS extended to PC Korean SBCS - KS code

834 to 926 DBCS EBCDIC Korean DBCS to PC-ASCII Korean DBCS

834 to 951 DBCS EBCDIC Korean DBCS to PC Korean DBCS - KS code

835 to 927 DBCS EBCDIC Traditional Chinese DBCS to PC Traditional Chinese DBCS

Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only) 351

Table 64. DBSC and mixed data conversion table (continued)

Code pages Description

835 to 947 DBCS EBCDIC Traditional Chinese DBCS to PC Traditional Chinese DBCS

836 to 903 SBCS EBCDIC Simplified Chinese SBCS to PC Simplified Chinese SBCS

836 to 1042 SBCS EBCDIC Simplified Chinese SBCS to PC Simplified Chinese -

extended SBCS

836 to 1115 SBCS EBCDIC Simplified Chinese SBCS to PC Simplified Chinese SBCS

837 to 928 DBCS EBCDIC Simplified Chinese DBCS to PC Simplified Chinese DBCS

837 to 1380 DBCS EBCDIC Simplified Chinese DBCS to PC Simplified Chinese DBCS

891 to 833 SBCS PC-ASCII Korean SBCS to EBCDIC Korean SBCS extended

891 to 1088 SBCS PC-ASCII Korean SBCS to PC Korean SBCS - KS code

897 to 37 SBCS PC-ASCII Japan Data SBCS to EBCDIC US English

897 to 290 SBCS PC-ASCII Japan Data SBCS to EBCDIC Japanese Katakana SBCS

897 to 1027 SBCS PC-ASCII Japan Data SBCS to EBCDIC Japanese Latin - extended

SBCS

897 to 1041 SBCS PC-ASCII Japan Data SBCS to PC Japanese - extended SBCS

903 to 836 SBCS PC Simplified Chinese SBCS to EBCDIC Simplified Chinese SBCS

903 to 1042 SBCS PC Simplified Chinese SBCS to PC Simplified Chinese - extended

SBCS

903 to 1115 SBCS PC Simplified Chinese SBCS to PC Simplified Chinese SBCS

904 to 37 SBCS PC Traditional Chinese SBCS to EBCDIC US English

904 to 1114 SBCS PC Traditional Chinese SBCS to PC Traditional Chinese - big 5 SBCS

926 to 834 DBCS PC-ASCII Korean DBCS to EBCDIC Korean DBCS

926 to 951 DBCS PC-ASCII Korean DBCS to PC Korean DBCS - KS code

927 to 835 DBCS PC Traditional Chinese DBCS to EBCDIC Traditional Chinese DBCS

927 to 947 DBCS PC Traditional Chinese DBCS to PC Traditional Chinese DBCS

928 to 837 DBCS PC Simplified Chinese DBCS to EBCDIC Simplified Chinese DBCS

928 to 1380 DBCS PC Simplified Chinese DBCS to PC Simplified Chinese DBCS

930 to 5050 EUC EBCDIC Japanese Katakana Kanji Mixed to euc Japanese Mixed 954

933 to 970 EUC EBCDIC Korean Mixed to euc Korean Mixed

935 to 1383 EUC EBCDIC Simplified Chinese Mixed to euc Simplified Chinese Mixed

937 to 964 EUC EBCDIC Traditional Chinese Mixed to euc Traditional Chinese Mixed

939 to 5050 EUC EBCDIC Japanese Latin Kanji Mixed to euc Japanese Mixed 954

941 to 300 DBCS PC Japanese for open environment DBCS to EBCDIC Japanese

DBCS

941 to 301 DBCS PC Japanese for open environment DBCS to PC Japanese DBCS

942 to 5050 EUC PC Japanese PC Data Mixed - extended SBCS to euc Japanese Mixed

954

943 to 5050 EUC PC Japanese for open environment mixed to euc Japanese Mixed 954

947 to 835 DBCS PC Traditional Chinese DBCS to EBCDIC Traditional Chinese DBCS

947 to 927 DBCS PC Traditional Chinese DBCS to PC Traditional Chinese DBCS

948 to 964 EUC PC Traditional Chinese Mixed - extended SBCS to euc Traditional

Chinese Mixed

949 to 970 EUC PC Korean Mixed - KS code to euc Korean Mixed

352 TXSeries for Multiplatforms: CICS Intercommunication Guide

Table 64. DBSC and mixed data conversion table (continued)

Code pages Description

950 to 964 EUC PC Traditional Chinese Mixed - big5 to euc Traditional Chinese

Mixed

951 to 834 DBCS PC Korean DBCS - KS code to EBCDIC Korean DBCS

951 to 926 DBCS PC Korean DBCS - KS code to PC-ASCII Korean DBCS

964 to 937 EUC euc Traditional Chinese Mixed to EBCDIC Traditional Chinese Mixed

964 to 948 EUC euc Traditional Chinese Mixed to PC Traditional Chinese Mixed -

extended SBCS

964 to 950 EUC euc Traditional Chinese Mixed to PC Traditional Chinese Mixed -

big5

970 to 933 EUC euc Korean Mixed to EBCDIC Korean Mixed

970 to 949 EUC euc Korean Mixed to PC Korean Mixed - KS code

1027 to 897 SBCS EBCDIC Japanese Latin - extended SBCS to PC-ASCII Japan Data

SBCS

1027 to 1041 SBCS EBCDIC Japanese Latin - extended SBCS to PC Japanese - extended

SBCS

1040 to 833 SBCS PC-ASCII Korean - extended SBCS to EBCDIC Korean SBCS

extended

1040 to 1088 SBCS PC-ASCII Korean - extended SBCS to PC Korean SBCS - KS code

1041 to 37 SBCS PC Japanese - extended SBCS to EBCDIC US English

1041 to 290 SBCS PC Japanese - extended SBCS to EBCDIC Japanese Katakana SBCS

1041 to 897 SBCS PC Japanese - extended SBCS to PC-ASCII Japan Data SBCS

1041 to 1027 SBCS PC Japanese - extended SBCS to EBCDIC Japanese Latin - extended

SBCS

1042 to 836 SBCS PC Simplified Chinese - extended SBCS to EBCDIC Simplified

Chinese SBCS

1042 to 903 SBCS PC Simplified Chinese - extended SBCS to PC Simplified Chinese

SBCS

1043 to 37 SBCS PC Traditional Chinese - extended SBCS to EBCDIC US English

1043 to 1114 SBCS PC Traditional Chinese - extended SBCS to PC Traditional Chinese -

big 5 SBCS

1088 to 833 SBCS PC Korean SBCS - KS code to EBCDIC Korean SBCS extended

1088 to 891 SBCS PC Korean SBCS - KS code to PC-ASCII Korean SBCS

1088 to 1040 SBCS PC Korean SBCS - KS code to PC-ASCII Korean - extended SBCS

1114 to 37 SBCS PC Traditional Chinese - big 5 SBCS to EBCDIC US English

1114 to 904 SBCS PC Traditional Chinese - big 5 SBCS to PC Traditional Chinese SBCS

1114 to 1043 SBCS PC Traditional Chinese - big 5 SBCS to PC Traditional Chinese -

extended SBCS

1115 to 836 SBCS PC Simplified Chinese SBCS to EBCDIC Simplified Chinese SBCS

1115 to 903 SBCS PC Simplified Chinese SBCS to PC Simplified Chinese SBCS

1380 to 837 DBCS PC Simplified Chinese DBCS to EBCDIC Simplified Chinese DBCS

1380 to 928 DBCS PC Simplified Chinese DBCS to PC Simplified Chinese DBCS

1381 to 1383 EUC PC Simplified Chinese Mixed to euc Simplified Chinese Mixed

1383 to 935 EUC euc Simplified Chinese Mixed to EBCDIC Simplified Chinese Mixed

Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only) 353

Table 64. DBSC and mixed data conversion table (continued)

Code pages Description

1383 to 1381 EUC euc Simplified Chinese Mixed to PC Simplified Chinese Mixed

5050 to 930 EUC euc Japanese Mixed 954 to EBCDIC Japanese Katakana Kanji Mixed

5050 to 939 EUC euc Japanese Mixed 954 to EBCDIC Japanese Latin Kanji Mixed

5050 to 942 EUC euc Japanese Mixed 954 to PC Japanese PC Data Mixed - extended

SBCS

5050 to 943 EUC euc Japanese Mixed 954 to PC Japanese for open environment mixed

 Table 65. SBCS and DBCS data conversion table

Mixed SBCS DBCS

930 290 300

931 37 300

932 897 301

933 833 834

934 891 926

935 836 837

936 903 928

937 37 835

938 904 927

9391 027 300

9421 041 301

9431 041 941

9441 040 926

9461 042 928

9481 043 927

9491 088 951

9501 114 947

13811 115 1380

964 euc

970 euc

1383 euc

5050 euc

354 TXSeries for Multiplatforms: CICS Intercommunication Guide

Bibliography

v TXSeries for Multiplatforms Using IBM

Communications Server for AIX with CICS,

SC34-6642

v TXSeries for Multiplatforms Using IBM

Communications Server for Windows Systems with

CICS, SC09-4470

v TXSeries for Multiplatforms Using Microsoft SNA

Server with CICS, SC09-4471

v TXSeries for Multiplatforms Using HP-UX

SNAplus2 with CICS, SC09-4586

v TXSeries for Multiplatforms Using SNAP-IX for

Solaris with CICS, SC09-4472

v CICS Family: Interproduct Communication,

SC33-0824

v CICS Universal Client: Client Administration,

SC33-1792

v CICS Administration Guide

v TXSeries for Multiplatforms Application

Programming Reference, SC34-6640

v CICS Family: API Structure, SC33-1007

v CICS for OS/2 Intercommunication Guide,

SC33-0826

v Communicating from CICS/400, SC33-0828

v TXSeries for Multiplatforms Administration

Reference, SC34-6641

v IBM 3270 Information Display Programmer’s

Reference,

v TXSeries for Multiplatforms Messages and Codes,

SC34-6639

v TXSeries for Multiplatforms SFS Server and PPC

Gateway Server: Advanced Administration,

SC34-6627

v TXSeries for Multiplatforms Concepts and

Planning, SC34-6631

v TXSeries for Multiplatforms Problem

Determination Guide, SC34-6636

v TXSeries for Multiplatforms Application

Programming Guide, SC34-6634

© Copyright IBM Corp. 1999, 2005 355

356 TXSeries for Multiplatforms: CICS Intercommunication Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions,

therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the document. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2005 357

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

ATTN: Software Licensing

11 Stanwix Street

Pittsburgh, PA 15222

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM International Program

License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM

Corporation in the United States, other countries, or both:

 Advanced Peer-to-Peer Networking® AIX

AS/400® CICS

CICS/400 CICS/6000

CICS/ESA CICS/MVS

CICS/VSE CICSPlex®

358 TXSeries for Multiplatforms: CICS Intercommunication Guide

C-ISAM™ Database 2™

DB2 DB2 Universal Database™

GDDM® IBM

IBM Registry™ IMS

Informix® Language Environment®

MVS MVS/ESA

OS/390® OS/2

OS/400® RACF

RETAIN® RISC System/6000®

RS/6000 SOM®

Systems Application Architecture® System/390®

TXSeries TCS

VisualAge® VSE/ESA™

VTAM WebSphere®

z/OS

Domino®, Lotus®, and LotusScript are trademarks or registered trademarks of

Lotus Development Corporation in the United States, other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Visual Studio, Windows,

Windows NT®, and the Windows 95 logo are trademarks or registered trademarks

of Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Acucorp and ACUCOBOL-GT are registered trademarks of Acucorp, Inc. in the

United States, other countries, or both.

Pentium® is a trademark of Intel Corporation in the United States, other countries,

or both.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 359

360 TXSeries for Multiplatforms: CICS Intercommunication Guide

Index

Numerics
15a00001/8890000 Program Error

Purging 223

15a00002/15a00101 Allocate Busy 223

15a00002/15a00102 Allocate Failure 224

15a00003/15a00109 Allocate Timed

Out 224

15a00004/15a00103 Invalid Convid 224

15a00004/15a00104 Invalid Mode/Partner

LU alias 224

15a00004/15a00105 Invalid

Parameter 225

15a00004/15a0010d Synclevel Not

Supported Locally 224

15a00004/15a00110 Exchange log name

failed 225

15a00005/15a00108 State Error 225

15a00005/15a00111 Backout

required 225

15a00006/15a00106 Communications

Protocol Specific Error 226

15a00006/15a0010c Local SNA not

initialized 226

15a00007/10086021 Transaction Unknown

on Remote System 226

15a00007/10086031 PIP Data Not

Supported by the Remote System 226

15a00007/10086032 PIP Data Incorrectly

Specified 226

15a00007/10086034 Conversation Type

Mismatch 226

15a00007/10086041 Sync Not Supported

by Remote Program or System 226

15a00007/80f6051 Security Violation 226

15a00007/84b6031 Remote Transaction

Temporarily Not Available 227

15a00007/84c0000 Remote Transaction

Not Available 227

15a00007/8640000 Conversation

Abnormal Termination 227

15a00007/8640001 Conversation

Abnormal Termination 227

15a00007/8640002 Conversation

Abnormal Termination 227

15a00007/a0000100 Conversation

Failure 226

15a00008/15a00107 Conversation

Terminated Normally 227

15a00009/8240000 Backed Out 228

15a0000a/15a0010a Unsupported 223

A
abend codes

A30A 332

ASP3 314

ATCV 331

ATNI 261

AXFX abend on CICS for

MVS/ESA 219

abnormal termination
APPC mapped conversations 299

ActivateOnStartup attribute (LD) 27

advanced program-to-program

communications (APPC) 3

DTP applications 4

AIX SMIT
changing attributes PPC Gateway

server 199

configuring CD entry 39, 52, 86, 106

configuring GD entry 103

configuring LD entry 31, 82

configuring RD entry 83, 104

creating PPC Gateway server 195

deleting PPC Gateway server 200

PPC Gateway server system

management 195

starting PPC Gateway server 197

stopping PPC Gateway server 198

AIX SNA Server/6000 9

ALLOCATE 304

APPC mapped conversations 286,

332

AllocateTimeout attribute (CD) 34, 47,

96, 99, 106

allocating a session
APPC mapped conversations 287

using ATI 287

already verified 133

alternate facility 281

alternate facility, defined 279

APPC mapped conversations
abnormal termination 295, 299

ALLOCATE command 286, 332

ASSIGN command 289

attaching partner transactions 288

CONNECT PROCESS command 288

CONVERSE command 295, 301

CONVID (acquiring) 286

ending one 298

EXTRACT PROCESS command 288,

289

FREE command 298, 299

front-end transaction 286

ISSUE ABEND command 295, 299

ISSUE ERROR command 295

RECEIVE command 301

SEND command 291

starting 286

state table, synchronization level

0 333

state table, synchronization level

1 335

state table, synchronization level

2 338

synchronization level 0, state

table 333

synchronization level 1, state

table 335

synchronization level 2, state

table 338

application design 282, 283

application programming
APPC mapped conversations 286

asynchronous processing 277

distributed program link (DPL) 247

distributed transaction processing

(DTP) 279

function shipping 259

transaction routing 264

APPLID 25, 68

APPLID passed with START

command 275

ASCII to EBCDIC data conversion 19,

147

ASP3 abend 314

ASSIGN command
APPC mapped conversations 289

APPLID option usage 275

in application owning system 265

asynchronous processing 273, 274, 275,

276, 277

application programming 277

data conversion 156

deferred sending of START

request 275

defining remote transactions 120

definition of 3

description of 20

example application 276

including start request in an

LUW 276

initiating asynchronous

processing 273

passing information with the START

command 274

security considerations 273

single transaction satisfying multiple

start requests 276

START/RETRIEVE interface 273

started transaction 276

attaching partner transactions
APPC mapped conversations 288

attaching secure sessions 125

audit messages 232

authentication 126

authorizing user access to CICS
signing on from a remote system

using CESN 142

auto start PPC Gateway server 191

autoinstall of CD entries 55

automatic transaction initiation

(ATI) 266

APPC mapped conversations 287

defining resources 116

EIBTRMID field 111

EIBTRMID field of 111

FacilityType attribute 111

in asynchronous processing 274

principal facility 111

resource definitions 116

© Copyright IBM Corp. 1999, 2005 361

automatic transaction initiation (ATI)

(continued)
restriction with shipped terminal

definitions 117

transient data trigger level 111

TriggeredTransId attribute 111

autostart PPC Gateway server 183, 186,

197

availability of remote regions 304

AXFX abend on CICS for MVS/ESA 219

B
back-end DTP transaction

availability 109

back-end transaction 285

backing out changes 314, 316

performance effect 282

to recoverable resources 282, 308

backout 16, 308, 314, 316

definition 279

effect on performance 282

of recoverable resources 282

state after 344

backup of remote data 22

balancing work load 116, 267

basic mapping support (BMS)
with transaction routing 264

BDAM files, accessed by DPL 248

BDAM, restriction 257

big-endian machines 147

BIND
password 125

request 125

security, implementing 125

bind-time security
description of 14

planning for 14

byte ordering 149

C
CANCEL command 274

CCIN 55

CECI 214

cell directory services (CDS)
name for CICS region 25

name for PPC Gateway server 176

CESN 142

CGWY 177, 218

checking security 123

checking the conversation state of a

transaction 294

choosing intercommunication

facilities 20

CICS family TCP/IP 5

authenticating systems 124

configuring CD entry 34

configuring connections 26

configuring LD entry 27

functions supported 6

CICS on Open Systems and CICS for

Windows
availability of 304

CICS OS/2 panels 44

CICS OS/2 to TXSeries for

Multiplatforms data conversion 19

CICS region principal 25, 68

CICS_PPCGWY_SERVER 186, 197, 200

CICS_PPCGWY_VG 185

CICS_SNA_DEFAULT_MODE 110

CICS_SNA_THREAD_POOL_SIZE 111

CICS-supplied transactions
CGWY 177

cicsadd 210

cicscp command set 182

cicscp create ppcgwy_server 182

cicscp destroy ppcgwy_server 184

cicscp start ppcgwy_server 183

cicscp stop ppcgwy_server 184

cicscvt 159

cicsdelete 210

cicsget 188

cicsppcgwy 186, 188, 230

cicsppcgwycreate 184, 188

cicsppcgwydestroy 188

cicsppcgwylock 189

cicsppcgwyshut 187

CICSREGION 31, 39, 52, 82, 103

cicsupdate 188, 210

client/server model 281

client/server, defined 279

code page 147, 153, 157, 159, 321

cold start PPC Gateway server 183, 186,

191, 197

commands
ALLOCATE 304

APPC mapped conversations 304

CONNECT PROCESS 304

data integrity 296

FREE 304

INQUIRE CONNECTION 304

RETURN 304

SEND 304

COMMAREA, used with DPL 248

commit 16

commits, defined 279

committing changes
to recoverable resources 307

communication methods 5

CICS family TCP/IP 5

local SNA support 8, 25, 67, 70

PPC Gateway server 9, 25, 67, 89,

175

TCP/IP 5, 25, 47

communication pairs, defined 279

Communications Definitions (CD) 210

autoinstall 55

configuring for CICS family

TCP/IP 34

configuring for CICS family TCP/IP

(SMIT) 39

configuring for CICS PPC TCP/IP 47

configuring for CICS PPC TCP/IP

(SMIT) 52

configuring for local SNA 75, 79, 86

configuring for local SNA (SMIT) 86

configuring for PPC Gateway server

SNA 96, 99, 106

configuring for PPC Gateway server

SNA (SMIT) 106

example 46, 53, 75, 79, 86, 96, 99, 106

Communications Server 8

Communications Server for AIX
tracing 230

configuration problems 144

configuring the PPC Gateway

server 177

confirm 16

confirm, defined 279

confreceive state, defined 279

CONNECT command 304

CONNECT PROCESS command
APPC mapped conversations 288

PIPLENGTH option 288

PIPLIST option 288

connection security 126, 127

connections
local SNA support 70

SNA and a PPC Gateway server 89

TCP/IP 47

ConnectionType attribute (CD) 75, 79,

86, 96, 99, 106

conversation identifiers 344

conversation state 280

conversation state, defined 279

conversation-level security 133

conversation, defined 279, 280

CONVERSE command
APPC mapped conversations 295,

301

CICS conversations 295

conversion of data between systems 19

conversion templates 324

CONVID (acquiring) 286

CONVID option
APPC mapped conversations 289,

291

WAIT command 291

CONVIDs 344

CRTE 142, 214

D
data conversion 19

ASCII to EBCDIC 19

asynchronous processing 152

avoiding data conversion 158

between systems 19

byte ordering 149

byte swapping 150

CICS OS/2 TXSeries for

Multiplatforms 19

code pages 147, 153

conversion table 147

conversion templates 324

DFHTRUC 165

DFHUCNV 160

distributed program link 152

distributed transaction

processing 169

EBCDIC to ASCII 19

function shipping 156

key templates 324

numeric data 149

RemoteCodePageTR attribute 164

SBCS, DBCS, MBCS 148

shortcodes 157

transaction routing 164

362 TXSeries for Multiplatforms: CICS Intercommunication Guide

data conversion (continued)
TXSeries for Multiplatforms to CICS

OS/2 19

data conversion exits
DFHTRUC 164

DFHUNCV 160

function shipping 160

transaction routing 164

data integrity 5, 282, 296

definition 279

function shipping 258

safegaurding 284

DB2, restriction 257

DBCS
double byte character set 148

DefaultSNAModeName attribute

(CD) 34, 47, 75, 79, 86, 96, 99, 106

DefaultUserId attribute 137

DefaultUserId attribute (RD) 265

deferred sending, START

NOCHECK 275

deferred transmission 299

APPC mapped conversations 291

design of intercommunication setup 5

designing for recovery 284

DFHCCINX 55, 58, 62

DFHCNV macro
creating a template from 159

TYPE=ENTRY 321, 325

TYPE=FIELD 321, 328

TYPE=FINAL 321, 329

TYPE=INITIAL 321, 324

TYPE=KEY 321, 327

TYPE=SELECT 321, 327

DFHTRUC 165

DFHUCNV 160

distribued program link (DPL)
dynamic distributed program link

user exit 249

user exit 249

distributed processes 281

defininition 279

designing 283

distributed program link (DPL) 247

BDAM files, accessed by 248

COMMAREA 248

data conversion 156

definition of 3

description of 20

IMS databases, accessed by 248

overview of 247

performance optimization 248

serial connections 248

SQL databases, accessed by 248

subset 249

ways of using DPL 252

distributed transaction processing (DTP)
definition of 3

description of 21

migration of applications 343

distributed unit of work 16, 282

distributed unit of work, defined 279

DL/I databases
accessed by DPL 248

restriction 257

dynamic distributed program link user

exit 249, 252

dynamic transaction routing 116, 266,

267

E
EBCDIC to ASCII data conversion 19,

147

EIB fields 309

EIBCOMPL, APPC mapped

conversations 301

EIBCONF, APPC mapped

conversations 301

EIBEOC, APPC mapped

conversations 301

EIBERR 291, 308

EIBERR, APPC mapped

conversations 295, 300

EIBERR, CICS conversations 293

EIBERRCD 291

EIBERRCD, APPC mapped

conversations 295, 300

EIBERRCD, CICS conversations 293

EIBFREE 291, 309

EIBFREE, APPC mapped

conversations 295, 300

EIBNODAT, APPC mapped

conversations 301

EIBNODAT, CICS conversations 293

EIBRCODE, APPC mapped

conversations 300

EIBRECV, APPC mapped

conversations 301

EIBRLDBK 308, 316, 317

EIBRSRCE 287

EIBSIG, APPC mapped

conversations 295, 300

EIBSYNC 307, 317

EIBSYNC, APPC mapped

conversations 300

EIBSYNRB 308, 317

EIBSYNRB, APPC mapped

conversations 300, 301

EIBCOMPL flag
APPC mapped conversations 301

EIBCONF flag
APPC mapped conversations 301

EIBEOC flag
APPC mapped conversations 301

EIBERR flag 300, 308

APPC mapped conversations 291,

295

CICS conversations 293

EIBERRCD field
APPC mapped conversations 291,

295, 300

CICS conversations 293

EIBFREE flag 309

APPC mapped conversations 291,

295, 300

EIBNODAT flag
APPC mapped conversations 301

CICS conversations 293

EIBRCODE field
APPC mapped conversations 300

EIBRECV flag
APPC mapped conversations 301

EIBRLDBK flag 308, 316, 317

EIBRSRCE field
APPC mapped conversations 287

EIBSIG flag
APPC mapped conversations 295,

300

EIBSYNC flag 307, 317

APPC mapped conversations 300

EIBSYNRB flag 308, 317

APPC mapped conversations 300,

301

EIBTRMID field 111

ending a conversation
APPC mapped session 298

ensuring data integrity 5

environment va riables
CICS_SNA_DEFAULT_MODE 110

environment variables
CICS_PPCGWY_SERVER 186, 197,

200

CICS_PPCGWY_VG 185

CICS_SNA_THREAD_POOL_

SIZE 111

CICSREGION 31, 82, 103

ERZ045006W message occurs 145

exceptional conditions
function shipping 260

exchange log names 180, 204, 205

problems 219

EXEC CICS ALLOCATE 286

EXEC CICS commands
summary 304

EXEC CICS CONNECT PROCESS 288,

289

EXEC CICS CONVERSE 295

EXEC CICS ISSUE ABEND 296, 297, 299

EXEC CICS ISSUE

CONFIRMATION 296, 297

EXEC CICS ISSUE ERROR 295, 296, 297

EXEC CICS ISSUE SIGNAL 295

EXEC CICS RECEIVE 292, 293

EXEC CICS RETRIEVE 277

EXEC CICS RETURN 16

EXEC CICS SEND 291

EXEC CICS SEND CONFIRM 296, 297

EXEC CICS SEND CONFIRM

INVITE 297

EXEC CICS SEND CONFIRM LAST 297

EXEC CICS SEND INVITE 292, 295

EXEC CICS SEND INVITE WAIT 292

EXEC CICS SEND LAST 297, 299

EXEC CICS SEND LAST CONFIRM 299

EXEC CICS SEND LAST WAIT 299

EXEC CICS START 277

EXEC CICS SYNCPOINT 16, 298, 299

EXEC CICS SYNCPOINT

ROLLBACK 16, 298

EXEC CICS WAIT CONVID 292

execution-time choice 257

explicit naming of remote system 257

EXTRACT ATTRIBUTES 344

EXTRACT ATTRIBUTES command 281,

285

EXTRACT PROCESS command
APPC mapped conversations 288,

289

Index 363

F
FacilityId attribute 287

FacilityType attribute 111, 287

failures
back-end transaction 291

intersystem session 279, 284

notification of 291

file control
function shipping 258, 259

files, securing 126, 127

flowing user IDs outbound 130

FREE command
APPC mapped conversations 298,

299

FREE command use of 304

front-end transaction 285

APPC mapped conversations 286

function shipping
application programming 259

BDAM, restriction 257

data conversion 156

DB2, restriction 257

defining remote resources 113

files 113

temporary storage queues 115

transient data queues 114

definition of 3

description of 20

DL/I, restriction 257

exceptional conditions 260

EXEC CICS START 141, 142

execution-time choice 257

explicit naming of remote

system 257

file control 258, 259

IMS, restriction 257

local and remote names 258

migration considerations 345

mirror transaction 142

mirror transaction abnormal

termination 261

overview 257

remote system, naming 257

security 141

START command 141, 142

synchronization 258

SYNCPOINT, use in 259

temporary storage 260

transient data 258, 260

transparent to application 257

Function shipping
execution-time choice 273

explicit naming of remote

system 273

Timeouts 261

function shipping data conversion
DFHUCNV 160

non-standard conversion 160

program parameters 161

standard conversion 159

the supplied program 160

G
gateway

planning for 5

Gateway Definitions (GD) 210

configuring for PPC Gateway server

SNA 95, 98, 103

configuring for PPC Gateway server

SNA (SMIT) 103

example 95, 98, 103

GatewayCDSName attribute (GD) 95,

98, 103

GatewayLUName attribute 68

GatewayLUName attribute (GD) 95, 98,

103

GatewayName attribute (CD) 34, 47, 96,

99, 106

GatewayPrincipal attribute 126

GatewayPrincipal attribute (GD) 95, 98,

103

GDS ISSUE PREPARE command 308

H
help 213

I
IBM mainframe-based CICS

availability of 304

IBM TXSeries Administration Tool
changing attributes PPC Gateway

server 193

creating PPC Gateway server 190

destroying PPC Gateway server 194

PPC Gateway server system

management 190

starting PPC Gateway server 191

stopping PPC Gateway server 193

IMS databases, accessed by DPL 248

IMS, restriction 257

inbound, defined 279

indirect links for transaction routing 266

indoubt condition 109

INQUIRE CONNECTION

command 304

INQUIRE FILE command 258

integrity of data 282

intercommunication design 5

intercommunication security 123

intersystem requests, security of 123

intersystem security
configuring for 136

implementing 136

INVITE option
SEND command (APPC

mapped) 292

ISCINVREQ 260

IsShippable attribute 117

ISSUE ABEND command
APPC mapped conversations 295

ISSUE ERROR command
APPC mapped conversations 295

ISSUE PREPARE command 308

L
LINK command 247

link keys, definition of 127

link security 126

link security (continued)
configuring for 136

description of 14

implementing 136

planning for 14

LinkUserId attribute 136

LinkUserId attribute (CD) 34, 47, 75, 79,

86, 96, 99, 106, 265

Listener Definitions (LD) 210

configuring for CICS family

TCP/IP 27

configuring for CICS family TCP/IP

(SMIT) 31

configuring for local SNA 75, 77, 82

configuring for local SNA (SMIT) 82

example 32, 45, 46, 75, 77, 82

ListenerName attribute (CD) 34

little-endian machines 147

local and remote names of resources 258

local Logical Unit (LU) name 25, 68

local queuing of START commands 275

local SNA support 5, 8, 70

Local TPN Profile 109

local transaction profile used 109

LocalLUName attribute 68

LocalLUName attribute (RD) 75, 78, 83

LocalNetworkname attribute (RD) 75,

78, 83

LocalSysId attribute (RD) 25, 68, 75, 78,

83, 96, 98, 104

logical unit (LU) name 68

Logical Unit (LU) name 25

logical unit of work (LUW) 16, 208, 279,

282

LU 6.2 3

LU-LU verification 125

LUTYPE6.2 3

LUW (logical unit of work) 208, 282

M
mapped conversations

migration of 343

master/slave, defined 279

MBCS
multi byte character set 148

migration
distributed transaction processing

(DTP) 343

DTP 343

function shipping considerations 345

transaction identifiers 345

transactions to transaction routing

environment 264

mirror transaction
abnormal termination 142

security 141

mirror transaction abnormal

termination 261

model
client/server 281

peer-to-peer 281

modename 110

default modename 110

DefaultSNAModeName (CD) 110

364 TXSeries for Multiplatforms: CICS Intercommunication Guide

N
name of region 25, 47, 68

network failures and data integrity 5

network monitoring 22

network name
LocalNetworkName 69

RemoteNetworkName 35, 50

network protocols 3, 5

NOAUTH condition 142

NOCHECK parameter 277

improving performance 275

local queuing 275

START command 275

O
operational issues 22

OPERKEYS
option on ASSIGN command 265

outbound users, flowing 130

outbound, defined 279

OutboundUserIds attribute 130

OutboundUserIds attribute (CD) 34, 47,

75, 79, 86, 96, 99, 106, 265

overview of security 123

P
partner transaction, connecting 288

password verification 133

peer-to-peer model 281

peer-to-peer, defined 279

performance issues 19

performance optimization, DPL 248

persistent verification 133

PIPLENGTH option
CONNECT PROCESS command 288

PIPLIST option
CONNECT PROCESS command 288

planning 5

ASCII to EBCDIC data conversion 19

choosing intercommunication

facilities 20

CICS on Open Systems to CICS OS/2

data conversion 19

CICS OS/2 to TXSeries for

Multiplatforms data conversion 19

conversion of data between

systems 19

data conversion between systems 19

data integrity 5

EBCDIC to ASCII data conversion 19

gateway 5

intercommunication facilities 20

network protocols 5

performance issues 19

security of resources 14

SNA 5

synchronization 5

Systems Network Architecture 5

TCP/IP 5

Transmission Control

Protocol/Internet Protocol 5

PPC Executive 5

PPC Gateway server 5, 9, 89

PPC Gateway server (continued)
altering CICS intercommunication

definitions 210

autostart 183, 186, 191, 197

canceling pending resynchronizations

(ppcadmin) 206

CGWY 177

changing attributes 188

changing attributes (AIX SMIT) 199

changing attributes (IBM TXSeries

Administration Tool) 193

cicscp command set 182

cicscp create ppcgwy_server 182

cicscp destroy ppcgwy_server 184

cicscp start ppcgwy_server 183

cicscp stop ppcgwy_server 184

cicsppcgwy 186, 188

cicsppcgwycreate 184, 188

cicsppcgwydestroy 188

cicsppcgwylock 176

cicsppcgwyshut 187

cold start 183, 186, 191, 197

configuring 177

creating 184, 188

creating (AIX SMIT) 195

creating (cicscp) 182

creating (IBM TXSeries Administration

Tool) 190

deleting 188

deleting (AIX SMIT) 200

deleting (cicscp) 184

deleting (IBM TXSeries Administration

Tool) 194

Gateway Server Definitions

(GSD) 177

listing attributes 188

listing running 189

lock 189

messages 228

overview 175

planning for 5

ppcadmin administration command

set 200

requesting XLN process

(ppcadmin) 205

running (view) 189

starting 186, 188, 230

starting (AIX SMIT) 197

starting (cicscp) 183

starting (IBM TXSeries Administration

Tool) 191

stopping 187

stopping (AIX SMIT) 198

stopping (cicscp) 184

stopping (IBM TXSeries

Administration Tool) 193

trace 228

tracing 230

unlock 189

viewing attributes 188

viewing CICS configuration

(ppcadmin) 203

viewing intersystem requests

(ppcadmin) 207

viewing LUWs (ppcadmin) 208

viewing pending resynchronizations

(ppcadmin) 206

PPC Gateway server (continued)
viewing XLN process status

(ppcadmin) 204

ppcadmin 180, 200

ppcadmin cancel resync 206

ppcadmin force xln 205

ppcadmin list convs 207

ppcadmin list luentries 203

ppcadmin list luws 208

ppcadmin list xlns 204

ppcadmin query conv 207

ppcadmin query luentry 203

ppcadmin query luw 208

ppcadmin query resync 206

ppcgwy 189

preparing a partner for sync point 308

principal facility 111, 281

principal facility, defined 279

PRINSYSID
option on ASSIGN command 265

problem determination support 22

problems 144

program development
APPC mapped conversations 286

programming
APPC mapped conversations 286

programs, securing 126, 127

PROTECT parameter
START command 276

Protocol attribute (LD) 27, 75, 77, 82

protocols 5

SNA 25, 67, 70, 89

TCP/IP 25, 47

pseudo-conversational transactions
with transaction routing 264

R
RBA files, note about 258

RDO 210

RECEIVE command
APPC mapped conversations 301

receive state, defined 279

record lengths for remote files 114

recoverable resources 282

canceling changes to 282, 308

committing changes to 282, 307

region
name 68

Region Definitions (RD)
configuring for local SNA 75, 78, 83

configuring for local SNA (SMIT) 83

configuring for PPC Gateway server

SNA 96, 98, 104

configuring for PPC Gateway server

SNA (SMIT) 104

example 75, 78, 83, 96, 98, 104

region name 25, 47

remote and local names of resources 258

remote files
defining 113

file names 114

record lengths 114

Remote Procedure Call (RPC)
authenticated 126

PPC Gateway server to region

communication 177, 179

Index 365

Remote Procedure Call (RPC) (continued)
region to PPC Gateway server

communication 177, 178

remote regions, availability 304

remote system security 126

remote system, naming 257

remote temporary storage queues
defining 115

remote terminals
terminal identifiers 117

terminal names 118

remote transactions
deadlock time out 120

defining for asynchronous

processing 120

defining for transaction routing 119

security 120

transaction names 120

Transaction Work Area (TWA) 120

remote transient data queues
defining 114

RemoteLUName attribute 117

RemoteLUName attribute (CD) 34, 47,

75, 79, 86, 96, 99, 106

RemoteName attribute 118

RemoteNetworkName attribute (CD) 34,

47, 75, 79, 86, 96, 99, 106

RemoteSysEncrypt attribute (CD) 34, 47

RemoteSysId attribute 118, 257

RemoteSysSecurity attribute 136

RemoteSysSecurity attribute (CD) 34, 47,

75, 79, 86, 96, 99, 106, 265

RemoteTCPAddress attribute (CD) 34

RemoteTCPPort attribute (CD) 34

rerouting transactions 116, 267

resource definition 210

resource definition online
shippable terminal definitions 117

resource definitions
ATI 116

automatic transaction initiation

(ATI) 116

transaction routing 116

resource security
configuring for 136

implementing 136

resource security level 126, 127

resources used 22

resynchronization 180, 206

RETRIEVE command 277

RETURN 16

RETURN command use of 304

rollback 16, 282

rollback, defined 279

RSLKey attribute 136

RSLKeyList 127

RSLKeyList attribute 136

RSLKeyMask 126

RSLKeyMask attribute 136

RSLKeyMask attribute (CD) 34, 47, 75,

79, 86, 96, 99, 106

RuntimeProtection attribute 126

S
SBCS

single byte character set 148

security
ASSIGN command 265

asynchronous processing 273

attaching sessions 125

BIND password 125

BIND request 125

bind-time, implementing 125

checking 123

checklist 143

configuration problems 144

connection 126

files, securing 126, 127

flowing user IDs outbound 130

function shipping 141

function shipping, considerations for

the user 141

intercommunication 123

intersystem requests 123

intersystem, configuring for 136

link 126

link keys, definition of 127

link keys, retrieving 265

LU-LU verification 125

mirror transaction 141

outbound users, flowing 130

OutboundUserIds attribute 130

overview of 123

planning 14

problems 144

programs, securing 126, 127

remote sign on 142

remote system 126

resource security level 126, 127

RSLKeyList 127

session 125

signing on, remote 142

SNA 123

SNA bind-time 125

symptoms 144

temporary storage, securing 126, 127

terminals, securing 126, 127

transaction security level 126, 127

transient data, securing 126, 127

TSLKeyList attribute 127

TSLKeyMask attribute 126

user 127

userid, retrieving 265

users, securing 126, 127

SEND command 304

APPC mapped conversations 291,

292

send state, defined 279

serial connections
distributed program link (DPL) 248

function shipping 257

server and IBM CICS Client 4

session security 125

sessions
allocating under ATI 287

SET FILE command 258

shippable terminal definitions 117

shippable terminal, transaction

routing 263

shortcodes
data conversion 157

SMIT
changing attributes PPC Gateway

server 199

creating PPC Gateway server 195

deleting PPC Gateway server 200

PPC Gateway server system

management 195

starting PPC Gateway server 197

stopping PPC Gateway server 198

SMIT panels
configuring CD entries 39, 52, 86,

106

configuring GD entries 103

configuring LD entries 31, 82

configuring RD entries 83, 104

SNA 5, 8, 9, 282

attaching sessions 125

BIND password 125

BIND request 14, 125

bind-time security 125

bind-time security, implementing 125

local Logical Unit (LU) name 25, 68

Local TPN Profile 109

logical unit (LU) name 25, 68

LU-LU verification 125

planning for 5

security 123

session security 125

synchronization level 16

TCP/IP, differences between for

DTP 343

TPN Profile 109

transaction availability 109

use of 3

SNAConnectName attribute (CD) 34, 47,

75, 79, 86, 96, 99, 106

SNAModeName attribute (TD) 75, 79,

86, 96, 99, 106

SQL databases, accessed by DPL 248

START command 142, 277

START/RETRIEVE 273, 275, 276

deferred sending 275

improving performance 275

local queuing 275

passing information with the START

command 274

RETRIEVE command 276

retrieving data sent with START

command 276

TERMID parameter 277

terminal acquisition 277

state after backout 344

state of a conversation 280

STATE option 281, 285

state tables
synchronization level 0 333

synchronization level 1 335

synchronization level 2 338

using 331

state transition, defined 279

state variable 279, 281

structured distributed transactions 283

subset of calls for DPL 249

supplied transactions
CGWY 177

surrogate terminal 264

symptoms 144

366 TXSeries for Multiplatforms: CICS Intercommunication Guide

sync point 16, 282

preparing a partner for 308

sync point, defined 279

synchronization 5, 282

function shipping 258

levels of 282

synchronization level 5, 16, 282

definitions of 5

described 5

SNA support for 8, 9, 70, 89

TCP/IP support for 5

synchronization level 2
problems 219

synchronization point, defined 279

synchronization, defined 279

synchronize, defined 279

SYNCPOINT 16

SYNCPOINT command 307

SYNCPOINT ROLLBACK 16, 344

SYNCPOINT ROLLBACK

command 308

syncreceive state, defined 279

SYSID 25, 47, 68

SYSIDERR 277

SYSIDERR condition, on START

command 276

system availability 22

system design 5

system failures and data integrity 5

T
TCP/IP 5

configuring connections 47

naming your region 25

planning for 5

SNA, differences between for

DTP 343

transaction availability 109

use of 3

TCPAddress attribute (LD) 27

TCPService attribute (LD) 27

temporary storage
function shipping 260

temporary storage, securing 126, 127

TERMID parameter, START

command 277

terminal definition
transaction routing 263

terminal not found user exit 266

terminals, securing 126, 127

termination, abnormal
APPC mapped conversations 300

testing the conversation state 303

TPN profile 109

TPNSNAProfile attribute 109

tracing
PPC Gateway server 230

transaction
availability 109

back-end 285

back-end DTP 109

front-end 285

performance considerations 109

profiles used 109

Transaction Definitions (TD)
transaction routing 263

transaction identifiers, migration of 345

transaction processing
definition of 3

transaction routing
alias for terminals 118

application programming 264

ATI 266

basic mapping support 264

data conversion 164

defining remote resources 116

defining remote resources,

terminals 118

defining remote resources,

transactions 119

defining resources 116

description of 20

dynamic 116, 267

indirect links 266

overview of 263

pseudo-conversational

transactions 264

resource definitions 116

surrogate terminal 264

terminal, initiating 263

transaction, initiated 263

use of ASSIGN command in

application owning system 265

transaction security level 126, 127

transient data
function shipping 258, 260

principal facility 111

remote 111

securing 126, 127

trigger level 111

TriggeredTransId attribute 111

TSLKey attribute 136

TSLKeyList attribute 127, 136

TSLKeyMask attribute 126, 136

TSLKeyMask attribute (CD) 34, 47, 75,

79, 86, 96, 99, 106

two-phase commit 109

TXSeries for Multiplatforms to CICS

OS/2 data conversion 19

U
unit of work (UOW) 16

user access to CICS
security 142

user exits
DFHTRUC 164

DFHUCNV 160

dynamic distributed program

link 252

dynamic transaction routing 116,

266, 267

terminal not found 266

user securing 127

user security 127

configuring for 136

description of 14

ESM, description of 14

External Security Manager, description

of 14

implementing 136

planning for 14

user, securing 126

USERID
option on ASSIGN command 265

V
verifying passwords 133

VSAM RBA files, note about 258

W
WAIT 276

APPC mapped conversations 288,

291

WAIT option (APPC mapped)
SEND command 291

work-load balancing 116, 267

X
XLN 180, 204, 205

problems 219

Xno 219

Index 367

368 TXSeries for Multiplatforms: CICS Intercommunication Guide

���

SC34-6644-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

T
X

Se
rie

s
fo

r
M

ul
tip

la
tfo

rm
s

C
IC

S
In

te
rc

om
m

un
ic

at
io

n
G

ui
de

Ve

rs
io

n
6.

0
SC

34
-6

64
4-

00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Conventions used in this book
	How to send your comments

	Part 1. Intercommunication planning
	Chapter 1. Introduction to CICS intercommunication
	Network protocols
	Overview of the intercommunication facilities
	IBM CICS Universal Client products

	Chapter 2. Intercommunication planning and system design
	Designing your network configuration
	Communicating across TCP/IP connections
	Using CICS family TCP/IP
	Using CICS PPC TCP/IP

	Communicating across SNA connections
	Using local SNA support to communicate across SNA
	Using a PPC Gateway server to communicate across SNA

	Mixing the communications methods
	Summary of communication methods
	Additional considerations

	Ensuring that the system is still secure
	Identifying the remote system
	Identifying the user that initiated the request

	Ensuring data integrity with synchronization support
	Converting between EBCDIC and ASCII data
	Performance issues for intercommunication
	Choosing which intercommunication facility to use
	When to use function shipping
	When to use transaction routing
	When to use asynchronous processing
	When to use distributed program link (DPL)
	When to use distributed transaction processing (DTP)

	A checklist of application requirements

	Operational issues for intercommunication
	Bidirectional input and display on AIX

	Part 2. Configuring for intercommunication
	Chapter 3. Configuring CICS for TCP/IP
	Naming your region for a TCP/IP intercommunication environment
	Configuring CICS for CICS family TCP/IP support
	Configuring LD entries for CICS family TCP/IP
	Configuring LD entries for CICS family TCP/IP (CICS on Open Systems)
	Configuring LD entries for CICS family TCP/IP (CICS for Windows only)

	Adding a service name to the TCP/IP configuration
	Increasing the size of the mbuf pool (AIX only)
	Using SMIT to configure LD entries (AIX only)

	Tuning TCP/IP on the Windows platform
	TCP/IP's KeepAliveTime registry setting
	TcpTimedWaitDelay settings

	Configuring CD entries for CICS family TCP/IP
	Configuring CD entries for CICS family TCP/IP(CICS on Open Systems only)
	Configuring Communications Definitions (CD) entries for CICS family TCP/IP (CICS for Windows only)

	Using SMIT to configure CD entries (AIX only)

	Configuring an IBM CICS Client to use CICS family TCP/IP
	Timeouts supported on TCP/IP connections between a TXSeries for Multiplatforms region and a Universal Client V3.1 or higher

	CICS family TCP/IP Configuration examples
	CICS OS/2 configuration
	Configuration for region cicsopen
	Configuration for region cics

	Configuring CICS for CICS PPC TCP/IP support
	Configuring CD entries for CICS PPC TCP/IP
	Using SMIT to configure CD entries (AIX only)

	Summary of CICS attributes for TCP/IP resource definitions
	Configuring for autoinstallation of CD entries
	Configuring the default CD entry (CICS on Open Systems)
	Configuring the default CD entry (CICS for Windows)
	Configuring region database table sizes
	What the supplied version of DFHCCINX does
	The parameters passed to DFHCCINX
	Writing your own version of DFHCCINX
	What DFHCCINX can do
	Logging messages to the CCIN log
	Assigning a value to RemoteCodePageTR
	Preventing autoinstall
	Controlling the management of passwords

	Installing your version of DFHCCINX into the region

	Chapter 4. Configuring CICS for SNA
	Naming CICS regions in an SNA intercommunication environment
	Configuring CICS for local SNA support
	Configuring CICS for local SNA from the command line
	Configuring CICS for local SNA support by using the IBM TXSeries Administration Tool (CICS on Windows platforms only)
	Configuring CICS for local SNA support by using SMIT (CICS for AIX only)
	SNA Receive Timeout feature (For CICS on AIX only)

	Configuring CICS for PPC Gateway server SNA support
	Configuring CICS for PPC Gateway server SNA support from the command line
	Configuring CICS for PPC Gateway server SNA support by using the IBM TXSeries Administration Tool (CICS on Windows platforms only)
	Configuring CICS for PPC Gateway server SNA support by using SMIT (CICS for AIX only)

	Chapter 5. Configuring resources for intercommunication
	Configuring transactions for intersystem communication
	Transactions over an SNA connection (CICS on Open Systems only)
	Back-end DTP transactions over TCP/IP and an SNA connection
	Configuring for the indoubt condition
	Default modenames
	SNA tuning

	Configuring intrapartition TDQs for intercommunication
	Terminals as principal facilities
	Remote terminals as principal facilities
	Remote systems as principal facilities

	Configuring Program Definitions (PD) for DPL
	Example of a PD for DPL

	Defining remote resources for function shipping
	Defining remote files
	FD entries for remote files
	Example of a file definition for function shipping

	Defining remote transient data queues
	TDD entries for remote transient data queues
	Example of a TDD for function shipping

	Defining remote temporary storage queues
	TSD entries for remote temporary storage queues
	Example of a TSD for function shipping

	Defining resources for transaction routing
	Shipping terminal definitions
	Fully qualified terminal identifiers
	Defining terminals to the application-owning region
	Example of a WD entry for a remote terminal

	Using the alias for a terminal in the application-owning region
	Defining remote transactions for transaction routing
	TD attributes for remote transactions
	Example of a TD entry for a remote transaction

	Defining remote transactions for asynchronous processing

	Chapter 6. Configuring intersystem security
	Overview of intersystem security
	Implementing intersystem security
	Summary of CICS intersystem security

	Identifying the remote system
	Authenticating systems across CICS family TCP/IP connections
	Authenticating systems across CICS PPC TCP/IP connections
	Authenticating systems across SNA connections
	Authenticating systems across PPC Gateway server connections
	CICS link security
	CICS user security
	Method one:
	Method two:
	The differences between these two methods:

	Setting the RemoteSysSecurity attribute to trusted or verify
	Setting up a CICS region to flow user IDs
	Setting up a CICS region to flow passwords
	To send passwords after local verification
	To send passwords without local verification
	Do not send passwords
	No password checks

	Receiving user IDs from SNA-connected systems

	Link security and user security compared
	How the resource definition security attributes are used
	Map 1. Start
	Map 2. RemoteSysSecurity=local (Link Security)
	Map 3. RemoteSysSecurity=trusted and a user ID is not Flowed (User Security)
	Map 4. RemoteSysSecurity=trusted and a user ID is Flowed (User Security)
	Map 5. RemoteSysSecurity=verify and a user ID is not Flowed (User Security)
	Map 6. RemoteSysSecurity=verify and a user ID is Flowed (User Security)

	Examples of link and user security

	Security and function shipping
	Security requirements for the mirror transaction
	Outbound security checking for function-shipping requests
	The NOTAUTH condition
	EXEC CICS start requests from a remote system

	Using CRTE and CESN to sign on from a remote system
	Intersystem security checklist
	When link security or user security is used
	When link security is used
	When user security is used

	Common configuration problems with intersystem security
	Remote user is logged in to wrong user ID
	User IDs are not flowed to a remote system
	Flowed user IDs are not received from a remote system
	CD RSLKeyMask and TSLKeyMask attributes are ignored
	Unexpected message ERZ045006W - no obvious effect on security
	Access is unexpectedly restrictive (message ERZ045006W)
	Access unexpectedly rejected or granted on inbound request

	Chapter 7. Data conversion
	Introduction to data conversion
	SBCS, DBCS, and MBCS data conversion considerations
	Numeric data conversion considerations
	Summary of data conversion for CICS intercommunication functions

	Code page support
	Data conversion for function shipping, distributed program link and asynchronous processing
	Which system does the conversion
	How code page information is exchanged
	When TXSeries for Multiplatforms does not convert the data
	Avoiding data conversion
	Standard data conversion for function shipping, DPL and asynchronous processing
	Using cicscvt to build the conversion templates

	Non-standard data conversion (DFHUCNV) for function shipping, DPL and asynchronous processing
	Performance and data conversion

	Data conversion for transaction routing
	When is DFHTRUC called
	Parameters passed to DFHTRUC
	Writing your own version of DFHTRUC
	Installing your version of DFHTRUC into the region

	Data conversion for distributed transaction processing (DTP)
	Summary of data conversion
	Data conversion for function shipping
	Data conversion for transaction routing
	Data conversion for distributed transaction processing

	Part 3. Operating an SNA intercommunication environment
	Chapter 8. Creating and using a PPC Gateway server in a CICS environment
	Overview of the PPC Gateway server
	Sharing server names between a CICS region and a PPC Gateway server
	Process for making an intersystem request from a CICS region through a PPC Gateway server
	Process for making an intersystem request to a CICS region through a PPC Gateway server
	Exchange log names (XLN) process

	Choosing a management method
	Using the CICS control program (cicscp) configuration tool to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Destroying a PPC Gateway server

	Using CICS commands to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Destroying a PPC Gateway server
	Changing the attributes of a PPC Gateway server
	Listing the PPC Gateway servers defined on a machine
	Viewing the attributes of a PPC Gateway server
	Listing the PPC Gateway servers running on a machine
	Releasing the lock of a PPC Gateway server

	Using the IBM TXSeries Administration Tool to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Modifying the attributes of a PPC Gateway server
	Destroying a PPC Gateway server

	Using SMIT to manage a PPC Gateway server
	Creating a PPC Gateway server
	Starting a PPC Gateway server
	Stopping a PPC Gateway server
	Viewing and changing the attributes of a PPC Gateway server
	Destroying a PPC Gateway server

	Using ppcadmin commands
	Viewing CICS configuration in the PPC Gateway server
	Viewing XLN process status in the PPC Gateway server
	Requesting the XLN process with a remote SNA system
	Viewing pending resynchronizations in the PPC Gateway server
	Canceling pending resynchronizations in the PPC Gateway server
	Viewing intersystem requests running in the PPC Gateway server
	Viewing LUWs in the PPC Gateway server

	Changing CICS intercommunication definitions for use with a PPC Gateway server

	Chapter 9. Intersystem problem determination
	Intersystem problem solving process
	Step 1. Understand the failure scenario
	Step 2. Identify the failing component
	Step 3. Fix the problem
	Getting further help

	Common intercommunication errors
	Symptom: cannot start (acquire) SNA sessions
	Symptom: the PPC Gateway server fails to start
	Symptom: CICS will not configure the PPC Gateway server
	Symptom: CICS will not configure my transactions in the PPC Gateway server
	Symptom: CICS cannot configure the PPC Gateway server
	Symptom: CICS for MVS/ESA transactions abend AXFX
	Symptom: SNA exchange log names (XLN) fails
	Symptom: all inbound requests fail
	Symptom: all outbound requests fail
	Symptom: invalid or unrecognizable data is passed to applications
	Symptom: applications fail because of security violations
	Symptom: Transaction routing to CICS Transaction Server for z/OS fail with communications error 15a00007/a0000100
	Symptom: Transaction routing causes screen errors
	Symptom: CICS fails to detect a predefined CD entry, and autoinstalls another

	SNA product-specific errors
	CICS error codes
	PPC Gateway server problem determination
	Format of PPC Gateway server messages and trace
	Tracing a PPC Gateway server
	PPC Gateway server message descriptions
	Audit messages
	Attention messages
	Fatal messages

	Part 4. Writing application programs for intercommunication
	Chapter 10. Distributed program link (DPL)
	Comparing DPL to function shipping
	BDAM files, and IMS, DL/I, and SQL databases
	Performance optimization for DPL
	Restrictions on application programs that use DPL
	Security and DPL
	Abends when using DPL
	Taking sync points when using DPL or function shipping
	Multiple DPL links to the same region

	Two ways to implement DPL in your application program
	Implicitly specifying the remote system
	Explicitly specifying the remote system

	Using the dynamic distributed program link user exit
	Information passed to the user exit
	Initial invocation of the user exit
	Changing the target CICS system
	Changing the remote program name
	Changing the mirror transaction name
	Changing the user ID
	Invoking the user exit at end of routed program

	Chapter 11. Function shipping
	How to use function shipping
	Two ways to use function shipping
	Serial connections
	CICS file control data sets
	Transient data
	Local and remote names
	Synchronization
	Data security and integrity

	Application programming for function shipping
	File control
	Temporary storage
	Transient data
	Exceptional conditions
	Remote region not available
	Invalid request
	Mirror transaction abnormal termination
	Long-running mirror transactions
	Timeout on function shipped requests

	Chapter 12. Transaction routing
	Initiating a transaction from a terminal
	The initiating terminal
	The initiated transaction

	Application programming for transaction routing
	Pseudo-conversational transactions
	The terminal in the application-owning region
	Using the assign command in the application-owning region

	Automatic transaction initiation (ATI)
	Terminal definitions for ATI
	Transaction definitions for ATI
	Indirect links for transaction routing

	Dynamic transaction routing
	Writing a dynamic transaction routing user exit
	How information is passed between CICS and the user exit
	Changing the target CICS system
	Changing the program name
	Telling CICS whether to route or terminate a transaction
	If the system is unavailable or not known
	Invoking the user exit at the end of routed transactions
	Invoking the user exit on abend

	Chapter 13. Asynchronous processing
	Security considerations
	How to use asynchronous processing
	Two ways to initiate asynchronous processing
	Starting and canceling remote transactions
	Passing information with the START command
	Passing an APPLID with the EXEC CICS START command
	Improving performance of intersystem START requests
	Deferred sending of START requests with the NOCHECK parameter
	Local queuing of EXEC CICS START commands for remote transactions
	Including EXEC CICS START request delivery in a logical unit of work

	The started transaction
	Started transaction satisfying multiple EXEC CICS START requests
	Terminal acquisition by a remotely initiated CICS transaction

	Application programming for asynchronous processing
	Starting a transaction on a remote region
	Exceptional conditions for the EXEC CICS START command
	Retrieving data associated with a remotely issued start request

	Chapter 14. Distributed transaction processing (DTP)
	Concepts of distributed transaction processing (DTP)
	Conversations
	Conversation states
	Distributed processes
	Maintaining data integrity

	Designing distributed processes
	Structuring distributed transactions
	Avoiding performance problems
	Facilitating maintenance
	Going for reliability
	Protecting sensitive data
	Data conversion
	Safeguarding data integrity

	Designing conversations

	Writing programs for CICS DTP
	Conversation initiation and the front-end transaction
	Allocating a conversation
	Using ATI to allocate a conversation identifier (CONVID)
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	The back-end transaction fails to start
	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The EXEC CICS CONVERSE command

	Communicating errors across a conversation
	Requesting invite from the partner transaction
	Demanding invite from the partner transaction

	Safeguarding data integrity
	How to synchronize a conversation using CONFIRM commands
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to EXEC CICS SEND CONFIRM
	How to synchronize conversations using EXEC CICS SYNCPOINT commands

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Checking EIB fields and the conversation state

	Testing the conversation state
	Initial states
	Summary of CICS commands for APPC mapped conversations
	Using DTP to check the availability of the remote system

	Chapter 15. Sync pointing a distributed process
	The EXEC CICS SYNCPOINT command
	The EXEC CICS ISSUE PREPARE command
	The EXEC CICS SYNCPOINT ROLLBACK command
	When a backout is required
	Synchronizing two CICS systems
	SYNCPOINT in response to SYNCPOINT
	SYNCPOINT in response to ISSUE PREPARE
	SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK
	SYNCPOINT ROLLBACK in response to SYNCPOINT
	SYNCPOINT ROLLBACK in response to ISSUE PREPARE
	ISSUE ERROR in response to SYNCPOINT
	ISSUE ERROR in response to ISSUE PREPARE
	ISSUE ABEND in response to SYNCPOINT
	ISSUE ABEND in response to ISSUE PREPARE

	Synchronizing three or more CICS systems
	Sync point in response to EXEC CICS SYNCPOINT
	Sync point rollback in response to EXEC CICS SYNCPOINT
	Conversation failure and the indoubt period

	Part 5. Appendixes
	Appendix A. DFHCNV - The data conversion macros
	Using the DFHCNV macros
	Examples of DFHCNV macros
	Flow of DFHCNV macro sequence

	The DFHCNV TYPE=INITIAL macro
	The DFHCNV TYPE=ENTRY macro
	The DFHCNV TYPE=KEY macro
	The DFHCNV TYPE=SELECT macro
	The DFHCNV TYPE=FIELD macro
	The DFHCNV TYPE=FINAL macro

	Appendix B. The conversation state tables
	How to use the state tables
	The state numbers
	The state conversation table notes

	Synchronization level 0 conversation state table
	Synchronization level 1 conversation state table
	Synchronization level 2 conversation state table

	Appendix C. Migrating DTP applications
	Migrating to LU 6.2 APPC mapped conversations
	Differences between SNA and TCP/IP for DTP
	Allocating a conversation
	Use of conversation identifiers (CONVIDs)
	State after backout
	Terminating a synchronization level 2 conversation
	The EXEC CICS WAIT and EXEC CICS SEND WAIT commands
	Transaction identifiers
	Migration considerations for function shipping

	Appendix D. Data conversion tables (CICS on Windows Systems and CICS for Solaris only)
	Bibliography
	Notices
	Trademarks and service marks

	Index

